Home > mpt > @polytope > getInnerEllipsoid.m

getInnerEllipsoid

PURPOSE ^

GETINNERELLIPSOID Computes the largest ellipsoid inscribed in a polytope

SYNOPSIS ^

function E = getInnerEllipsoid(Pset,E,Options)

DESCRIPTION ^

GETINNERELLIPSOID Computes the largest ellipsoid inscribed in a polytope

 E = getInnerEllipsoid(Pset,x0,E,Options)

 ---------------------------------------------------------------------------
 DESCRIPTION
 ---------------------------------------------------------------------------
 This function computes he largest ellipsoid inscribed in a polytope. 
 It is also possible to pass an ellipsoid (x-x0) E (x - x0) <= rho and 
 to compute the maximum rho such that the scaled ellipsoid is still contained
 in the polytope.

 ---------------------------------------------------------------------------
 INPUT
 ---------------------------------------------------------------------------  
   Pset    -   Polytope object constraining the ellipsoid
   E,x0    -   Optional: input ellipsoid with center x0, i.e.
                           (x-x0) E^(-1) (x - x0) <= rho 
               given as an ELLIPSOID object
               The function then computes the maximum rho such that the 
               ellipsoid is still contained in Pset.
   Options
     .plotresult    - If problem is in 2D and flag is set to 1, the result 
                      will be plotted (Default: 0).
 ---------------------------------------------------------------------------
 OUTPUT
 ---------------------------------------------------------------------------
  E       -   Maximum volume ellipsoid,  (x-x0) E (x - x0) <= 1, returned as
              an ELLIPSOID object

 ---------------------------------------------------------------------------
 LITERATURE
 ---------------------------------------------------------------------------
   S. Boyd and L. Vanderberghe, Convex Optimization

 see also MPT_PLOTELLIP, GETOUTTERELLIPSOID

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Thu 30-Mar-2006 10:26:47 by m2html © 2003