3D objects (3DO) Bitmap (BMP) Boundary (BND) Directive (DIR) Domain (DOM) Expansion (EXP) Field (FLD) Field formula (FLF) Field transform (FLT) Function (FUN) General information Grid formula (GRF) Grid transform (GRT) Integral (INT) MMP (MMP) Movie (AVI) OpenGL (OGL) Palette (PAL) PET basis (BAS) PFD (PFD) Project (PRO) Window (WIN)
The integral files contain data for evaluating an integral as well as the results of the integration - provided that it has been evaluated before the file was saved.
Data structure:
File ID string (Current version: " CHINT Version 2.0")
Boundary integral type (0:sum, 1: Gauss-Legendre, 2:Gauss-Kronrod, 3: HP), boundary number, integrand component (1: tangential component, 2: normal component, -1: x component, -2: y component, -3: z component), integrand field (0: current, derived field, 1: E field, 2: H field, 3: S field, -1: E field average, -2: H field average, -3: S field average), interpolation (0: none (compute value), 1: 1 point (nearest point), 2: 3 point, 3: 4 point), order, max. function calls, desired relative accuracy (7 integer, 1 real values)
Rectangular integral data: nx, ny, xmin, xmax, ymin, ymax (2 integer, 4 real values)
Result data: error flag, function calls, integral value, min. and max. integrand values (2 integer, 3 real values)
Object number (1 integer value). Note: the object may either be a sphere or a rectangle.
Absolute flag (0: no absolute value integration or 1: integrate over absolute values), R (R > 1: radius of spherical object, otherwise: rectangular object) (1 integer, 1 real value). Absolute flag:
Location of object (3 real values: coordinates x,y,z)
Space vector 1 (3 real values: coordinates x,y,z of the first tangent vector) used to define rectangular integration area in 3D space.
Space vector 2 (3 real values: coordinates x,y,z of the second tangent vector) used to define rectangular integration area in 3D space.
Space vector 3 (3 real values: coordinates x,y,z of the normal vector) used to define rectangular integration area in 3D space.
Blank line
Responsible for this web page: Ch. Hafner, Computational Optics Group, IEF, ETH, 8092 Zurich, Switzerland
Last update
17.02.2014