Home > mpt > extras > control > mpt_oneStepCtrl.m

mpt_oneStepCtrl

PURPOSE ^

MPT_ONESTEPCTRL Computes low complexity controller for LTI systems

SYNOPSIS ^

function [ctrlStruct,feasibleN,loopCtr,Piter] = mpt_oneStepCtrl(sysStruct,probStruct,Options)

DESCRIPTION ^

MPT_ONESTEPCTRL Computes low complexity controller for LTI systems

 ctrlStruct = mpt_oneStepCtrl(sysStruct,probStruct)
 ctrlStruct = mpt_oneStepCtrl(sysStruct,probStruct,Options)

 ---------------------------------------------------------------------------
 DESCRIPTION
 ---------------------------------------------------------------------------
 This function computes a low complexity controller for the system defined in 
 "sysStruct".

 ---------------------------------------------------------------------------
 INPUT
 ---------------------------------------------------------------------------  
 sysStruct        - System structure in the sysStruct format
 probStruct       - Problem structure in the probStruct format

    See the MPT Manual for additional details on the structure format or   
   consult one of the example systems (e.g. Double_Integator) which were  
    provided with this package.                                            

 Options.maxCtr   - Maximum number of iterations (default is 1000)
 Options.scaling  - Scaling the set at each iteration with a parameter 
                    0 < lambda < 1 guarantees finite time convergence to a
                    robust invariant subset of the maximal control invariant
                    set. (Default: Options.scaling = 1) 
 Options.PWQlyap  - if set to 1, compute PWQ Lyapunov function (default)
 Options.verbose  - Optional: level of verbosity
 Options.Kinf     - If set to 1, then K_inf will be computed. If set to 0,
                    C_inf will be computed. (default is 0)
 Options.set_limit - If the invariant set has a chebychev redius which is
                     smaller than this value the iteration is aborted. 
                     (Default is 1e-3) 
 Options.Vconverge - A non-zero value will force the algorithm to break if
                     relative increase of volume of atractive set at the next
                     iteration compared to volume of the set at the previous
                     iteration decreases below this value. E.g.
                     Options.Vconverge=1 will terminate the procedure if
                     (Vnew-Vold)/Vold*100 < 1.
                     NOTE! Currently works only for LTI systems!
                     NOTE! Value of this option has percents as units!
                     NOTE! Should only be used if you are computing Kinf set!!! 
 Options.useprojection - if true, uses projections to obtain feasible set. if
                         false, feasible sets are obtained by solving a
                         multi-parametric program.
                         (Default is true)

 Note: If Options is missing or some of the fields are not defined, the default
       values from mptOptions will be used (see help mpt_init)

 ---------------------------------------------------------------------------
 OUTPUT
 ---------------------------------------------------------------------------
 ctrlStruct     - Controller structure with following fields:
   Pn,Fi,Gi     - for region Pn(i).H*x <= Pn.K(i) computed input is U=Fi{i}*x+Gi{i}   
   Ai,Bi,Ci     - cost associated to each region (x'Aix + Bi*x + Ci)
   Pfinal       - The maximum control invariant set as a polytope object
   dynamics     - Dynamics active in region Pn(i)
   details      - Structure with more details about the solution:
     lyapunovQ  - Output of the function mpt_getPWQLyapFct
     lyapunovL  - Output of the function mpt_getPWQLyapFct
     lyapunovC  - Output of the function mpt_getPWQLyapFct
     feasible   - Output of the function mpt_getPWQLyapFct
     loopCtr    - Number of iterations needed to converge

   feasibleN       Set to 1, if LMI analysis was successfull
   loopCtr         Total number of iterations in computation
     
 ---------------------------------------------------------------------------
 LITERATURE
 ---------------------------------------------------------------------------
 "Complexity Reduction of Receding Horizon Control", P. Grieder and M. Morari;
 In the Proceedings of the IEEE Conference on Decision and Control 2003, Maui, Hawaii


 see also MPT_ITERATIVEPWA

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Thu 30-Mar-2006 10:26:47 by m2html © 2003