MPT_BLOCKINGMATRICES Constructs matrices for the CFTOC problem for move blocking strategies [Matrices]=mpt_blockingMatrices(Matrices,sysStruct,probStruct,Options) --------------------------------------------------------------------------- DESCRIPTION --------------------------------------------------------------------------- Constructs cost and constraint matrices for the finite time constrained optimal control problem on linear time-invariant systems with quadratic cost (2-norm) in the case where inputs or their differences are fixed to be constant over a certain number of steps during the prediction horizon N. Matrices received from function mpt_constructMatrices are compressed depending on probStruct.inputblocking and probStruct.deltablocking. Degrees of freedom are reduced from full degrees of freeedom m * N (m=number of inputs, N=prediction horizon) in the non blocking case to m * M (M < N, M independent decision variables in blocked input sequence) in the case where inputs are their differences are fixed to be constant during the prediction horizon. --------------------------------------------------------------------------- INPUT --------------------------------------------------------------------------- Matrices NORM=2 -------- G,W,E,H,F,Y,Cf,Cx,Cc - matrices of the problem, i.e. sysStruct - System structure in the sysStruct format probStruct - Problem structure in the probStruct format - NORM=2 - horizon Prediction horizon N; How many time steps are considered. - inputblocking Fix inputs u_k to be constant over a certain number of steps in the prediction horizon. inputblocking=[n1 n2 ... nk], \sum_{n1}^{nk} = N. Entries define how many consecutive inputs are fixed to be constant. Sum of all entries has to be equal the prediction horizon N. Example: N = 5, inputblocking = [1 4] First predicted input is independent and the next 4 predicted inputs are fix to be constant, i.e. u1, u2=u3=u4=u5. - deltablocking Fix difference u_k - u_{k+1} to be constant over a certain number of steps in the prediction horizon. deltablocking = [1 ... nk ... N], 1 < .. < .. nk < .. < N Entries defines wich inputs are independent (=decision variables), inputs in between are interpolated (=constant differences). Example: N = 5, deltablocking = [1 5] First input u1 and last input u5 are independent, inputs in between are interpolated, i.e. u1-u2 = u2-u3 = u3-u4 = u4-u5. Note: If Options is missing or some of the fields are not defined, the default values from mptOptions will be used --------------------------------------------------------------------------- OUTPUT --------------------------------------------------------------------------- Matrices NORM=2 -------- Compressed matrices for fixed inputs or fixed differences in prediction horizon. G,W,E,H,F,Y,Cf,Cx,Cc - matrices of the problem, i.e. --------------------------------------------------------------------------- LITERATURE --------------------------------------------------------------------------- "Move Blocking Strategies in Receding Horizon Control" R. Cagienard, P. Grieder, E. C. Kerrigan and M. Morari, 2004, submitted check http://control.ee.ethz.ch for latest info see also MPT_CONSTRUCTMATRICES Copyright is with the following author(s): (C) 2004 Raphael Cagienard, Automatic Control Laboratory, ETH Zurich, (C) 2003 Pascal Grieder, Automatic Control Laboratory, ETH Zurich, cagienard@control.ee.ethz.ch