SpringSemester
Experiments in the Spring Semester
On this page you will find short descriptions of every experiment we offer. You can also download the manuals and necessary files for your homework preparation from here.
Registration: Please register for experiments on the D-ITET online registration website.
2.2 Self Erecting Inverted Pendulumg - LQR
In this experiment, a pendulum is mounted on a cart. The pendulum shall be controlled to stay in its unstable equilibrium, i.e. the upright position. You will design an LQR controller to achieve this goal. Additionally, you will implement a destabilizing controller that will make the pendulum swing up from its stable downward position. Finally, the two controllers will be combined to yield a self-erecting pendulum.
Prerequisites
- Linear Quadratic Regulator
Homework
Preparation time approx 2.5 hrs, see Manual.
Place
Downloads
2.6 Helicopter II - Lead/Lag
You will control the two coupled axes of a helicopter model. First the model of the plant is calculated and then linearized. Using Matlab and Simulink, you will design a compensation controller (Lead/Lag), which can then be tested on the real system.
Prerequisites
Lead/Lag Compensators
Homework
Preparation time approx 2.5 hrs, see Manual.
Place
Downloads
3.4 Quad Tank
The quad-tank system is a relatively simple MIMO (multi-input, multi-output) system. MIMO systems are inherently more difficult to control than systems with only one input / output. In this experiment, you will learn some fundamental techniques to control a MIMO system, like coupled- and decoupled designs or LQR / LQG state-space controllers.
Prerequisites
- Basics in MIMO control
- Minimum/Non-minimum phase plants
- PI control
- LQR control
Homework
Preparation time approx 2.5 hrs, see Manual.
Place
Downloads