User Forum of Software BASEMENT

BASEMENT
Basic Simulation Environment for computation of environmental flow and natural hazard simulation
Laboratory of Hydraulics, Hydrology and Glaciology (VAW)
ETH Zurich
Basement_Logo

You are not logged in.

#1 2020-12-13 11:47:02

Marulke
User
Registered: 2015-11-14
Posts: 24

No gravity transport across a breakline?

Hi,
i am running a sediment transport model with bed load only.

I feed all the incoming bed load into a rectangular area a short distance from the upper (infow) boundary. I use "external source", "sediment discharge" and an index number too feed the bed load.

To avoid the sediment piling up in the feeding area I have activated "gravity transport" for that area and set all the critical slopes very low, only 5 degrees. 

I expected that if the sediment feed was too high gravity transport (slope failure) would prevent excessive bed build up. By limiting slope to 5 degrees i would force bedmaterial slide out of the feeding area.

However, I got tens of meters of sediment buildup in the feeding area and a steep wall of sediment formed along the break line between the feeding area and the surrounding area. Much steeper than the 5 degree limit for slope failure.

So my question is: What happens with gravity transport across the boundary between two regions, when one region has gravity transport activated and not the other region? Gravity transport stops at the boundary?

Thanks,
Marulke

Offline

#2 2020-12-21 12:37:01

Matteo Facchini
Developer
From: Trento
Registered: 2014-09-05
Posts: 278

Re: No gravity transport across a breakline?

Hi marulke,

actually, this should not happen. However, it is hard to help you out without seeing at least your bmc file. Could you copy/paste it here?

Cheers,
Matteo

Offline

#3 2020-12-27 10:36:26

Marulke
User
Registered: 2015-11-14
Posts: 24

Re: No gravity transport across a breakline?

Hi,
you find the bmc-file below.

Sediment was fed into region index 4.

Kind regards,
Marulke





PROJECT {
    title = Base_case
    date  = 4 December 2020
}
DOMAIN {
    PARALLEL {
        number_threads = 0
    }
    BASEPLANE_2D {
        region_name = Big_reservoir
        GEOMETRY {
            type = 2dm
            file = 20201213_A200_short.2dm
            STRINGDEF {
                name               = US_boundary
                node_ids           = (1 544 421 462 362 419 415 5677 270 472 435 448 431 5678 450 507 2)
                upstream_direction = right
            }
            STRINGDEF {
                name               = DS_boundary
                node_ids           = (30 5862 4225 4411 3989 4003 3997 5857 31)
                upstream_direction = right
            }
            STRINGDEF {
                name               = DS_feeding_area
                upstream_direction = right
                node_ids           = (5 160 106 123 98 253 118 313 107 317 117 245 77)
            }
            STRINGDEF {
                name               = US_feeding_area
                node_ids           = (79 333 104 268 135 279 97 284 122 298 105 297 116 5595 4)
                upstream_direction = right
            }
            STRINGDEF {
                name               = feed_region
                node_ids           = (91 267 134 278 109 283 153 119 295 121 324 92 326 241 321 100 258 114 93 124 120 264 113 254 108 5597 115 249 94 248 111 242 99 110 252 91)
                upstream_direction = right
            }
        }
        HYDRAULICS {
            PARAMETER {
                riemann_solver = exact
            }
            FRICTION {
                type             = manning
                default_friction = 0.025
                wall_friction    = on
            }
            INITIAL {
                type                  = continue
                file                  = nosed_4000m3s__restart.cgns
                restart_solution_time = -1.0
            }
            BOUNDARY {
                type        = hydrograph
                string_name = US_boundary
                slope       = 1
                file        = Inflow_4000_m3s.txt
            }
            BOUNDARY {
                name        = DS_boundary
                type        = hqrelation
                file        = DS_HQ_boundary_Q_4000m3s_WL575masl.txt
                string_name = DS_boundary
            }
        }
        TIMESTEP {
            total_run_time       = 5000000
            start_time           = 0
            ignore_wave_celerity = off
            CFL                  = 0.975
            morph_cycle          = constant
            cycle_step           = 50
        }
        OUTPUT {
            console_time_step = 1000
            restart_time_step = 10000
            SPECIAL_OUTPUT {
                type             = node_centered
                output_time_step = 100000
                values           = (depth velocity wse grain_bedload tau deltaz)
                format           = sms
            }
            SPECIAL_OUTPUT {
                output_time_step = 1000
                type             = BASEviz
            }
            SPECIAL_OUTPUT {
                type             = stringdef_history
                output_time_step = 100000
                stringdefs       = (DS_feeding_area US_feeding_area feed_region)
                stringdef_values = (Q Qsed)
            }
            SPECIAL_OUTPUT {
                type             = balance
                output_time_step = 100000
                balance_values   = (sediment)
            }
        }
        MORPHOLOGY {
            PARAMETER {
                control_volume_type            = constant
                control_volume_thickness       = (0.1 0.1 0.1 0.1)
                control_volume_thickness_index = (1 2 3 4)
            }
            BEDMATERIAL {
                GRAIN_CLASS {
                    diameters = (13.3)
                }
                MIXTURE {
                    name            = Unigrain_13mm
                    volume_fraction = (100)
                }
                SOIL_DEF {
                    name = Reservoir_bed
                    LAYER {
                        mixture          = Unigrain_13mm
                        bottom_elevation = -5
                    }
                }
                SOIL_ASSIGNMENT {
                    index = (1 2 3 4)
                    soil  = (Reservoir_bed outer_feeding_area Reservoir_bed Reservoir_bed)
                }
                SOIL_DEF {
                    name = outer_feeding_area
                    LAYER {
                        mixture          = Unigrain_13mm
                        bottom_elevation = -0.1
                    }
                }
            }
            INITIAL {
                type = initial_mesh
            }
            BEDLOAD {
                FORMULA {
                    bedload_formula         = mpm
                    bedload_factor          = 0.61625
                    bedload_exponent        = 1.6
                    theta_critical_approach = theta_critical_vanrijn
                }
                DIRECTION {
                    lateral_transport_type = lateral_bed_slope
                    lateral_index          = (1 2 3 4)
                }
                DIRECTION {
                    lateral_transport_type  = curvature_effect_dynamic
                    lateral_index           = (1 2 3 4)
                    radius_calculation_type = velocity_vectors
                    min_abs_radius          = 100.0
                    min_abs_radius_use      = min_value
                }
                BOUNDARY {
                    type        = IODown
                    string_name = DS_boundary
                }
                PARAMETER {
                }
            }
            SOURCE {
                EXTERNAL_SOURCE {
                    type    = sediment_discharge
                    file    = US_bedload_inflow_831.5kg_per_sek_tilsv_1,375kgmin i modell.txt
                    mixture = Unigrain_13mm
                    index   = (4)
                }
            }
            GRAVITATIONAL_TRANSPORT {
                index                   = (4)
                angle_failure_dry       = (5)
                angle_failure_wetted    = (5)
                angle_failure_deposited = (5)
            }
        }
    }
}

Offline

#4 2021-03-08 09:54:52

Matteo Facchini
Developer
From: Trento
Registered: 2014-09-05
Posts: 278

Re: No gravity transport across a breakline?

Hi marulke,
I think that what happens to you is quite "normal": you are imposing some strong conditions in your region "4", with very low failure angles, while outside this condition does not hold. Therefore, you have a lot of sediment flushed out of your region 4, that cannot move at the same "pace" outside this region.
You could try to use the gravitational transport everywhere on your domain (with different angles) or to feed the sediment from the upstream cross-section and setting a short gravitational transport area at the upstream end of your domain.
Best
Matteo

Offline

Board footer

Powered by FluxBB