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Abstract

This paper reviews the first challenge on single image
super-resolution (restoration of rich details in an low reso-
lution image) with focus on proposed solutions and results.
A new DIVerse 2K resolution image dataset (DIV2K) was
employed. The challenge had 6 competitions divided into 2
tracks with 3 magnification factors each. Track 1 employed
the standard bicubic downscaling setup, while Track 2 had
unknown downscaling operators (blur kernel and decima-
tion) but learnable through low and high res train images.
Each competition had∼ 100 registered participants and 20
teams competed in the final testing phase. They gauge the
state-of-the-art in single image super-resolution.

1. Introduction

Example-based single image super-resolution (SR) aims
at the restoration of rich details (high frequencies) in an im-
age based on a set of prior examples with low resolution
(LR) and corresponding high resolution (HR) images. The
loss in image content can be due causes such as quantization
error, limitations of the sensor from the capturing camera,
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the presence of blur or other degrading operators and the use
of downscaling operators to reduce the image resolution for
storage purposes. SR is ill-posed, since for each LR image
the space of corresponding HR images can be very large.

In recent years a significant amount of literature fo-
cused on example-based single image super-resolution re-
search. The performance of the top methods continuously
improved [41, 33, 17, 18] showing that the field reaches
maturity. Yet, the field lacks standardized benchmarks to
allow for an assessment that is based on identical image
datasets and criteria. Recently, most single image SR pub-
lications use the 91 train images of Yang et al. [41], the
three test image sets (Set5 [3], Set14 [42], B100 [22, 33])
brought together by Timofte et al. [32, 33] and a bicubic
downscaling (imresize from Matlab) to simulate the HR to
LR transformation. This standard setup allowed for sub-
stantial improvement, but has significant shortcomings: (1)
small train set: only 91 small size images with jpeg arti-
facts (some works [17, 18] already adopted BSD [22] and
ImageNet [26] for extra train images); (2) small test sets
and image sizes (often below 500× 500 pixels); (3) bicubic
downscaling is a oversimplification of the real conditions.

The NTIRE 2017 challenge is a step forward in bench-
marking example-based single image super-resolution. It
uses 1000 DIVerse 2K resolution images (DIV2K) dataset
and two types of degradations: the standard bicubic and the
unknown downscaling operators aka downscaling operators
known only through train data of LR and corresponding HR
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images. The DIV2K dataset is introduced in [1] along with
a study of the challenge results in relation with the prior art.
In the next we describe the challenge, present and discuss
the results and describe the methods.

2. NTIRE 2017 Challenge

The objectives of the NTIRE 2017 challenge on
example-based single-image super-resolution are: (i) to
gauge and push the state-of-the-art in SR; (ii) to compare
different solutions; (iii) to promote a novel large dataset
(DIV2K); and (iv) more challenging SR settings.

2.1. DIV2K Dataset

Complementary with the small sized and low resolution
SR datasets commonly used, a novel dataset is promoted,
namely DIV2K dataset [1]. It consists from 1000 DIVerse
2K resolution RGB images. 800 are for training, 100 for
validation and 100 for testing purposes. The images are
of high quality both aesthetically and in the terms of small
amounts of noise and other corruptions (like blur and color
shifts). All images were manually collected and have 2K
pixels on at least one of the axes (vertical or horizontal).
DIV2K covers a large diversity of contents, from people,
handmade objects and environments (cities), to flora and
fauna, natural sceneries, including underwater.

2.2. Tracks and competitions

Track 1: Bicubic downscaling (‘classic’) facilitates the
easy deployment of recent proposed methods for the task of
example-based single-image super-resolution. It assumes
that the degradation operators are the same as commonly
used in the recent SR literature. Each LR image is obtained
from the HR DIV2K image by using Matlab function ‘im-
resize’ with default settings (bicubic interpolation) and the
downscaling factors: 2, 3, and 4.
Track 2: Unknown downscaling goes on step ahead and
considers that at runtime we know the LR image and a set
of (training) pairs of LR and corresponding HR images. No
Gaussian or other types of noise is added to the images,
only blur and decimation. No other information is provided
about the degrading operators producing the downscaling
images. Each ground truth HR RGB image from DIV2K
is downscaled (by factor 2, 3, and 4) to corresponding LR
images and used either for training, validation, or testing of
the methods.
Competitions For each track there is a competition per
each downscaling factor (2, 3, and 4). CodaLab platform
was used for all 6 competitions of NTIRE 2017 challenge.
To access the data and submit their HR image results to the
CodaLab evaluation server each participant had to register.

https://competitions.codalab.org

Challenge phases (1) Development (training) phase: the
participants got both LR and HR train images and the LR
images of the DIV2K dataset; (2) Validation phase: the
participants had the opportunity to test their solutions on
the LR validation images and to receive immediate feed-
back by uploading their results to the server. A validation
leaderboard is available; (3) Final evaluation (test) phase:
the participants got the LR test images and had to submit
both their super-resolved image and a description of their
methods before the challenge deadline. One week later the
final results were made available to the participants.
Evaluation protocol The Peak Signal-to-Noise Ratio
(PSNR) measured in deciBels (dB) and the Structural Sim-
ilarity index (SSIM) [35] computed between an image re-
sult and the ground truth are the quantitative measures. The
higher the score is the better the restoration fidelity to the
ground truth image. A rim of 6+ s image pixels, where s is
the magnification factor, are ignored in the evaluation.

3. Challenge Results
From 100 registered participants on average per each

competition, 20 teams entered in the final phase and sub-
mitted results, codes/executables, and factsheets. Table 1
reports the final scoring results of the challenge and Table 2
shows the runtimes and the major details for each entry.
Section 4 describes briefly the methods for each team while
in the Appendix A are the team members and affiliations.
Architectures and main ideas All the proposed methods,
excepting WSDSR, use the end-to-end deep learning and
employ the GPU(s) for both training and testing. The very
deep super-resolution net (VDSR) using VGG-16 CNN ar-
chitecture [17] and the deep residual nets (ResNet) architec-
ture [13, 18] are the basis for most of the proposed methods.
Lab402 and iPAL prefer to work in the wavelet domain for
both efficiency and robustness. They convert the RGB im-
ages and then use a deep ResNet to process the wavelet data.
iPAL is the fastest GPU method (0.1s per image), however
it ranks 12 on average in Track 1, while Lab402 goes deeper
with the nets and a winner of the challenge, ranks 3rd over-
all. For design efficiency and for speeding up the train-
ing some solutions (such as VICLab,HIT-ULSee,UIUC-
IFP,nicheng) employ the sub-pixel layer [28], other remove
the batch normalization layers (SNU CVLab), stack nets
(HelloSR,GTY,Resonance), jointly train subnets (‘I hate
mosaic’), firstly deblur then upscale the image (DL-61-86),
jointly deblur (using multi-scales) and upscale (SR2017) or
treats SR as a motion prediction (SDQ SR). WSDSR is a
self-similarity approach based on BM3D and Wiener filter.
WSDSR does not use train data only the LR image. How-
ever, it is the slowest method (more than 0.5h per image on
CPU) on Track 1.
Restoration fidelity SNU CVLab, HelloSR and Lab402
are the best scoring teams and the winners of NTIRE 2017
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Track 1: bicubic downscaling Track 2: unknown downscaling
×2 ×3 ×4 ×2 ×3 ×4

Team User PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SNU CVLab 1 limbee 34.93(1) 0.948 31.13(1) 0.889 26.91∗

(14) 0.752∗ 34.00(1) 0.934 30.78(1) 0.881 28.77(1) 0.826
SNU CVLab 2 sanghyun 34.83(2) 0.947 31.04(2) 0.888 29.04(1) 0.836 33.86(2) 0.932 30.67(2) 0.879 28.62(2) 0.821
HelloSR sparkfirer 34.47(4) 0.944 30.77(4) 0.882 28.82(3) 0.830 33.67(3) 0.930 30.51(3) 0.876 28.54(3) 0.819
Lab402 iorism 34.66(3) 0.946 30.83(3) 0.884 28.83(2) 0.830 32.92(7) 0.921 30.31(4) 0.871 28.14(6) 0.807
VICLab JSChoi 34.29(5) 0.943 30.52(5) 0.880 28.55(5) 0.845
UIUC-IFP fyc0624 34.19(6) 0.942 30.44(7) 0.877 28.49(6) 0.821 28.54(14) 0.840 28.11(14) 0.816 24.96(15) 0.717
HIT-ULSee chenyunjin 34.07(7) 0.941 30.21(9) 0.871 28.49(6) 0.822 33.40(4) 0.927 30.21(6) 0.871 28.30(4) 0.812
I hate mosaic tzm1003306213 34.05(8) 0.940 30.47(6) 0.878 28.59(4) 0.824
nicheng nicheng 30.24(5) 0.871 28.26(5) 0.811
GTY giangbui 34.03(9) 0.941 30.24(8) 0.874 28.34(7) 0.817 33.32(5) 0.926 30.14(7) 0.869 27.33(8) 0.785
DL-61-86 rosinwang 33.10(6) 0.922 30.05(8) 0.863 28.07(7) 0.800
faceall Xlabs xjc faceall 33.73(10) 0.937 30.07(10) 0.869 27.99(10) 0.805 24.98(15) 0.707 29.87(9) 0.862 26.84(10) 0.762
SR2017 xiangyu xu 33.54(11) 0.934 29.89(12) 0.865 28.07(8) 0.809 29.92(12) 0.871 28.84(11) 0.836 26.05(11) 0.754
SDQ SR XibinSong 33.49(12) 0.936 32.35(8) 0.912
HCILab phunghx 33.47(13) 0.934 29.92(11) 0.866 28.03(9) 0.807 31.13(9) 0.896 29.26(10) 0.849 25.96(12) 0.749
iPAL antonGo 33.42(14) 0.932 29.89(12) 0.865 27.99(10) 0.806
WSDSR cristovao.a.cruz 33.19(15) 0.933 29.74(13) 0.864 27.92(11) 0.805
Resonance arnavkj95 30.21(10) 0.889 28.43(13) 0.840 24.79(16) 0.724
zrfanzy zrfan 31.87(17) 0.927 28.80(15) 0.858 27.67(12) 0.800 21.94(16) 0.618 18.03(15) 0.490 26.95(9) 0.773
assafsho assafsho 30.39(18) 0.894 27.23(16) 0.806 25.74(15) 0.742
UESTC-kb545 naiven 25.08(14) 0.714
spectrum spectrum 28.76(13) 0.854
bicubic interp. baseline 31.01 0.900 28.22 0.822 26.65 0.761 25.08 0.713 25.81 0.736 21.84 0.583

Table 1. NTIRE 2017 Challenge results and final rankings on DIV2K test data. (∗) the checked SNU CVLab1 model achieved 29.09dB
PSNR and 0.837 SSIM.

Team Track 1: bicubic downscaling Track 2: unknown downscaling Platform CPU GPU Architecture Ensemble / Fusion
×2 ×3 ×4 ×2 ×3 ×4 (at runtime) (at runtime) (at runtime) (at runtime)

SNU CVLab 1 67.240 28.720 20.050 8.778 4.717 2.602 Torch (Lua) GTX TITAN X 36 ResBlocks Track1: flip/rotation (×8), Track2: 2 models
SNU CVLab 2 14.070 7.340 5.240 4.600 2.310 1.760 Torch (Lua) GTX TITAN X 80 ResBlocks Track1: flip/rotation (×8), Track2: 2 models
HelloSR 27.630 27.970 18.470 11.540 19.260 15.360 Torch (Lua) GTX TITAN X stacked ResNets Track1: flip/rotation (×4), Track2: 2/3 models
Lab402 4.080 5.120 5.220 4.120 1.880 1.120 Matconvnet+Matlab GTX 1080ti wavelet+41 conv. layers none
VICLab 0.539 0.272 0.186 Matconvnet TITAN X Pascal 22 layers none
UIUC-IFP 1.683 1.497 1.520 1.694 1.474 1.523 TensorFlow+Python 8×GPUs 6+4 ResBlocks flip/rotation (×8)
HIT-ULSee 0.370 0.160 0.100 0.370 0.160 0.100 Matlab Titan X Pascal 20 (sub-pixel) layers none
I hate mosaic 10.980 8.510 8.150 TensorFlow+Python Titan X Maxwell Joint ResNets rotation (×4)
nicheng 0.241 0.175 Torch (Lua) Titan X Pascal modified SRResNet none
GTY 4.400 4.230 4.320 4.370 4.390 4.210 Theano (Lasagne) Titan X stacked 4 modified VDSRs none
DL-61-86 2.220 3.650 1.160 Torch7 + Matlab Geforce GTX 1080 blind deconv+SRResNet none
faceall Xlabs 0.050 0.050 0.050 0.050 0.050 0.050 PyTorch / Matlab caffe GTX-1080 20/9 layers ResNet none
SR2017 2.480 2.480 2.540 2.500 2.470 2.470 Matlab + caffe GTX1080 multi-scale VDSR none
SDQ SR 3.100 10.080 Matlab Titan X? motion prediction+VDSR none
HCILab 0.852 0.851 0.858 0.897 0.867 0.856 caffe+cudnn Titan X VDSR-based none
iPAL 0.092 0.091 0.093 TensorFlow+Python Titan X wavelet+10 layers CNN none
WSDSR 1678.000 2578.000 2361.000 Matlab+mex X iter. back proj+modif.BM3D none
Resonance 6.730 3.830 7.020 Theano (Keras) Titan X? 2 nets, Inception ResBlocks none
zrfanzy 16.150 13.440 11.640 11.370 12.790 13.560 TensorFlow+Python Titan X? modified SRResNet none
assafsho 33.010 23.920 19.850
UESTC-kb545 11.390 TensorFlow GTX 1080 2-way RefineNet / ResNet none
spectrum 40.000
bicubic interp. 0.029 0.014 0.009 0.029 0.014 0.009 Matlab X imresize function none

Table 2. Reported runtimes per image on DIV2K test data and details from the factsheets.

challenge. SNU CVLab with single-scale nets achieves
34.93dB for Track 1 & ×2 and 34.00dB for Track 2 & ×2,
almost +4dB and +9dB, respectively, better than the bicu-
bic interpolation baseline results. SNU CVLab achieves the
best results for all the 6 competitions. If in PSNR terms the
differences are significant, in SSIM terms the best entries
in each competition are very close (SSIM varies from 0.948
(1st result) to 0.940 (8th result) for Track1&×2) and show
the limitation of the SSIM.
Runtime / efficiency In Figs. 1& 2 we plot runtime per im-
age vs. achieved PSNR performance for two competitions.
HIT-ULSee solution is the most efficient, it gives the best
trade-off between runtime and quality of the results. It runs
in 0.1s for ×4, on Titan X Pascal GPU while being only
0.5dB below the best reported result of SNU CVLab which
is much slower: 20s on (Track1,×4) and 2.6s on (Track 2,
×4).
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Figure 1. Runtime vs. performance for (Track 1, ×2).

Ensembles and fusion Only SNU CVLab, HelloSR,
UIUC-IFP, and ‘I hate mosaic’ used ensembles of meth-
ods/results to boost their performance. The common ap-
proach is the enhanced prediction or multi-view process-
ing [34, 36] which assumes flips and rotations (in 90◦ steps)
of the input LR image to obtain 4 or 8 HR results that are
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Figure 2. Runtime vs. performance for (Track 2, ×4).

aligned back through the inverse transformation and aver-
aged to get the final result. On Track 2 this approach can
not be applied as the degradation operators (blur kernel) are
variant with the rotation or flip. Therefore, only the first
teams deployed 2 or 3 models per each competition and av-
eraged their results. SNU CVLab used different losses to
train their ensemble models.
Train data DIV2K dataset [1] has 800 train images and
all the competitors found the amount of data sufficient for
training their model, especially after data augmentation (by
operations such as flipping, rotation, scaling [34]). For
Track 2 SNU CVLab first learned the HR to LR mapping
to then generate more train data by applying the mapping
on extra images collected from Flickr.
Conclusions By analyzing the challenge methods and their
results we can draw several conclusions. (i) The proposed
solutions have a degree of novelty and go beyond the pub-
lished state-of-the-art methods. (ii) The top solutions are
consistent for all 6 competitions, showing that they gener-
alize well for both bicubic and unknown downscaling with
different magnification factors (2,3, and 4) given that suffi-
cient train data is provided. (iii) As expected, the unknown
downscaling track is more challenging than the bicubic one
and this is reflected by the relatively lower PSNR (up to
1dB for the winners) of the results. (iv) SSIM is unable
to capture the differences between the SR solutions. Other
(perceptual) measures are more relevant (see the studies
in [1, 40]). (v) The community would benefit from a more
realistic setup including complex combinations of degrada-
tion factors (blur, decimation, noise) in a uniform and/or
non-uniform manner.

4. Challenge Methods and Teams
4.1. SNU CVLab team

SNU CVLab delves into SRResNet architecture [18, 13]
and better optimizes it with several modifications [20].
First, removes unnecessary modules and produces a sim-
pler model architecture. For each NTIRE 2017 challenge
track, a model is trained that super resolves given images
with the corresponding scale. Second, SNU CVLab further
reduces model complexity by constructing a new multi-task

model in a single structure. A model is build that can super
resolves an image in multiple scales simultaneously.

SNU CVLab solution 1: single-scale nets
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Figure 3. SNU CVLab team: single-scale architectures, solution 1

A new building block is constructed by removing batch
normalization layers [16] from the residual blocks (Res-
Block) in [13]. Contrary to high-level vision tasks, remov-
ing batch normalization layers is sometimes beneficial in
terms of PSNR. Also, a residual scaling layer (constant mul-
tiplication) is added after the second convolutional layer of
the block. Empirically is found that setting this constant
C = 0.1 stabilizes the learning procedure, especially when
the number of feature maps is large. The model as an end-
to-end CNN with 36 such modified residual blocks (Res-
Blocks) (see Fig. 3). Each block is composed of 3×3 convo-
lutional layers with 256 feature maps. A single-scale model
is trained for each challenge track and only the upsampling
modules differ for each scale factor. At training time, the
input patch size is set to 48 × 48 and the mini-batch size
to 16. The model is trained with l1 loss using an ADAM
optimizer with learning rate 1 × 104. The learning rate is
halved after every 2 × 105 iterations. For the Track 1, the
×3 and ×4 models are trained starting from the pretrained
model for ×2 while the upsampling modules are randomly
initialized. The train DIV2K train data is augmented with
vertical/horizontal flips and 90◦ rotations. At runtime, ver-
tical/horizontal flips and 90◦ rotations are used to generate
8 images that are processed and then the results averaged
as in [34, 36]. For the Track 2 first the downsampling op-
erators are learned using the nets from Fig. 3(b). The nets
are used to augment the train data (by rotations and flip)
and also to generate new train data from the newly crawled
Flickr2K dataset with 2650 HR images from flickr.com. 2



additional ResBlocks are used for each scale in Track 2.
Supplementary, two models were trained and their results
averaged at runtime: one using l1-norm loss and another
with loss = ‖SR−HR‖1 + ‖∇SR−∇HR‖1.
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Figure 4. SNU CVLab team: multi-scale architectures, solution 2

SNU CVLab solution 2: multi-scale nets

SNU CVLab makes their model compact by estimating
HR images at multiple scales simultaneously. In contrast
to the single-scale model, the multi-scale model includes
multiple upsampling modules at the end as shown in Fig. 4.
Thus, the multi-scale model can estimate ×2, ×3, ×4 HR
image while keeping the increase in number of parameters
small. At training time, a SR scale among 2, 3 and 4 is cho-
sen at random for each minibatch. For upsampling modules,
only parameters for the selected scale is updated. 80 Res-
Blocks with 64 feature maps and three upsampling modules
are used to build the multi-scale model. As the number of
feature maps is not large, a residual scaling layer was not
used. For training, the input patch size is set to 64 × 64.
For Track 1, the same train and test procedures are fol-
lowed as for the single-scale solution, only this time with
a multi-scale compact model. For Track 2, as in the single-
scale case, the train data is augmented and extra data is used
(Flickr2K) and also ensembles of two models are used.

4.2. HelloSR team

HelloSR proposes a novel stacked residual-refined net-
work design (see Fig. 5) inspired by the effectiveness of
learning high-frequency residuals for SR [41, 32, 5, 17].
The model consists of three stacks marked in blue, pur-
ple and yellow, resp. Each stack consists of a LR feature
extraction module (LRFE-Net), a multi-kernel upsampling

module (Fig. 6), and a reconstruction module from HR fea-
tures. The blue stack recovers the basic SR image, the pur-
ple one recovers the residual of an image, while the yellow
one recovers the residuals residual of an image. Therefore,
the model performs SR operation in a coarse-to-fine man-
ner. The LR and HR feature space adaptations serve as the
bridges. More stacks can be consecutively placed together.
For the challenge only up to three levels were explored.

Stacked Residual-Refined Network

LRFE-Net
Image Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Basic Image

LRFE-Net
Residual Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Residual

(From image features to 
residual features)

HR feature space adaption

LRFE-Net
Residual s 

Residual Features

Multi-kernel 
Upsampling

Conv

Conv

Residual s residual

HR feature space adaption

Final output

Can explore more stacks

Input LR

(From residual features to 
residual s residual features)

LRFE-Net

C
o

n
v

C
o

n
v

R
eLU

C
o

n
v

R
eLU

Residual Block

C
o

n
v

R
eLU

C
o

n
v

R
eLU

C
o

n
v

R
eLU

C
o

n
v

R
eLU

LR feature space adaption

LRFE-Net
Image Features

LR feature space adaption
(From image features to 

residual features)

LRFE-Net
Image Features

Subtraction has the similar performance, 
which means residual features

Intermediate supervision

LRFE-Net
Image Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Basic Image

LRFE-Net
Residual Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Residual

(From image features to 
residual features)

HR feature space adaption

LRFE-Net
Residual s 

Residual Features

Multi-kernel 
Upsampling

Conv

Conv

Residual s residual

HR feature space adaption

Input LR

(From residual features to 
residual s residual features)

C
o

n
v

Ground-Truth

loss

loss

loss

K=4

K=8

K=6
Multi-kernel 
Upsampling

LR feature space adaptionMulti-kernel Upsampling

(a) Stacked Residual-Refined Network

Stacked Residual-Refined Network

LRFE-Net
Image Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Basic Image

LRFE-Net
Residual Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Residual

(From image features to 
residual features)

HR feature space adaption

LRFE-Net
Residual s 

Residual Features

Multi-kernel 
Upsampling

Conv

Conv

Residual s residual

HR feature space adaption

Final output

Can explore more stacks

Input LR

(From residual features to 
residual s residual features)

LRFE-Net

C
o

n
v

C
o

n
v

R
eLU

C
o

n
v

R
eLU

Residual Block

C
o

n
v

R
eLU

C
o

n
v

R
eLU

C
o

n
v

R
eLU

C
o

n
v

R
eLU

LR feature space adaption

LRFE-Net
Image Features

LR feature space adaption
(From image features to 

residual features)

LRFE-Net
Image Features

Subtraction has the similar performance, 
which means residual features

Intermediate supervision

LRFE-Net
Image Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Basic Image

LRFE-Net
Residual Features

Multi-kernel 
Upsampling

LR feature space adaption

Conv

Conv

Residual

(From image features to 
residual features)

HR feature space adaption

LRFE-Net
Residual s 

Residual Features

Multi-kernel 
Upsampling

Conv

Conv

Residual s residual

HR feature space adaption

Input LR

(From residual features to 
residual s residual features)

C
o

n
v

Ground-Truth

loss

loss

loss

K=4

K=8

K=6
Multi-kernel 
Upsampling

LR feature space adaptionMulti-kernel Upsampling

(b) LR Feature Extraction network
Figure 5. HelloSR team: proposed architectures.

Intermediate supervision to each of the stacks as in [24],
shown in Fig. 6(a), helps the training convergence of each
stack. At the end, the intermediate supervision is removed
and an end-to-end optimization is applied with the final loss.
The adaptation of the features from a stack to another, called
here features space adaptation, is done by 1× 1 convolu-
tional layers. In LRFE skip connections are used as well.
To ease the training of the network and improve its power,
preserving the negative information is important [19] as
well as the pre-activations and the skip connections [14]. In
LRFE-Net the residual blocks adopt pre-activation strategy
and LeakyReLU (with parameters 0.2) is used instead of
ReLU in the HR feature part. In the LR feature part, neg-
ative information can be preserved by residual blocks. The
upsampling operation is performed by the deconvolutional
layers [10, 15] and a multi-kernel upsampling is used (see
Fig. 6(b)).

The same network structure is used for training models
for each competition, only the specification of the multi-
kernel upsampling layers changes. All the models work on
RGB [9] and are trained from scratch on DIV2K train data.
The train DIV2K images are cropped to small sub-images
(480× 480) and further 32× 32 randomly cropped patches
are used from the sub-images. The loss is the Charbonnier
function. For Track 1, at test, the back projection and rota-
tions with 90◦ to generate 4 images and averaged results as
output [34] are used, while for track 2 are used ensembles
of 2 (for ×2) and 3 models (for ×3 and ×4).
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Figure 6. HelloSR team: supervision, upsampling and adaptation.

4.3. Lab402 team

A 41 layers wavelet residual network based on persistent
homology analysis of the data manifold in the feature space
is proposed by Lab402. The Haar wavelet transform [4]
can annihilate the smoothly varying signals while maintain-
ing the image edges, which results in simpler manifolds.
A long bypass connection is used to mitigate the gradient
vanishing problem. In addition, a sub-pixel shuffling based
on [28] and residual learning are used. The basic design and
ideas are introduced in detail in [2]. The challenge networks
details are summarized in Fig. 7 and Table 3.
Each model is trained on DIV2K train images with a
patch size of 20x20, batch size of 64, learning rate of
(0.1, 0.00001) in logscale, 0.0001 weight decay, 0.9 mo-
mentum and 0.05 gradient clipping, for 150 epochs. It is
used the sub-epoch system that repeats forward and back-
propagation 512 times by using randomly cropped patches
per a single image. Training takes almost 7 days with GTX
1080ti. For bicubic ×3 and ×4, the models are trained with
all data from bic. ×2, ×3 and ×4, for data augmentation.

Bicubic x2 (256ch) Bicubic x3,x4 (320ch) Unknown x2,x3,x4(320ch)
Input WT( BU(LR) ) COPY ch(LR)
Label Input - WT(HR) Input - PS(HR)

1st layer Conv→ ReLU
2nd layer Conv→ BN→ ReLU
LB layer LB(1) - -

1st module BypassM1→Conv→BN→ReLU→ Conv→BN→ ReLU→Conv→BN→SumF(BypassM1)→ReLU
Repeat 1st module 5× (2 ∼ 6 module) 11× (2 ∼ 12 module) 12×(2 ∼ 12 module)
LB & layer catch

∑
(LB(1)+‘Output of 6th module’→ BN→ ReLU - -

LB layer LB(2) - -
Repeat 1st module 6× (7 ∼ 12 module) - -
LB & layer catch

∑
(LB(2)+‘Output of 12th module’)→ BN→ ReLU - -

Last layer Conv→BN→ReLU→Conv→BN→ReLU→Conv
Restoration IWT(Input-Output) IPS(Input-Output)

* WT: haar Wavelet Transform, BU: Bicubic Upsampling, LR: Low Res image, HR: High Res image, Conv: 3x3 Convolution, BN: Batch Normaliza-
tion, BypassM: send output to last layer of module, LB: Long Bypass, SumF: Sum of output of previous layer and BypassM output, COPY ch: Copy
input image (scale x scale) times on channel direction, PS: sub-Pixel Shuffling, IPS: Inverse sub-Pixel Shuffling, IWT: Inverse Wavelet Transform

Table 3. Lab402 team: details of the proposed nets.

4.4. VICLab team

The proposed solution uses a novel 22-layered deep net-
work architecture with selection units (see Fig. 8 and [6]).
The rectified linear unit (ReLU) has been widely used in
deep-learning literatures and VICLab found that ReLU can
be re-defined as a point-wise multiplication of a linear unit

and a switch unit (0 for < 0 and 1 for ≥ 0). In this sense,
ReLU does not have control over which element to pass or
not, because a derivative of a switch unit is 0 and the er-
ror cannot be back-propagated through this unit. By using
sigmoid instead of the switch unit, we have come up with
a novel nonlinear unit: selection unit, which is a multipli-
cation of a linear unit and a sigmoid. Experiment results
show that any network structure with our selection units out-
performs conventional network structure with ReLU or sig-
moid. Furthermore, the proposed architecture jointly incor-
porates residual units, residual learning [17], gradient clip-
ping [17] and sub-pixel convolutions [28] for faster learning
and higher performance. The size of the output after the fi-
nal convolution layer is W ×H×(s2×3), where W ×H is
the size of LR image, and s is a scaling factor. This output
is converted to (W×s)×(H×s)×3-sized RGB HR image.
4.5. UIUC-IFP team The proposed balanced two-stage
residual networks (BTSRN) [11] contains LR and HR
stages with 6 and 4 residual blocks [13], resp. The two
stages are connected by element sum of nearest neigh-
bor up-sampling and de-convolution. Compared with
VDSR [17], the proposed approach takes LR image as input
and reduces the computational redundancy; compared with
ESPCN [28], SRGAN [18] and EnhanceNet [27], the pro-
posed model performs better refinement in the HR space
and yields fewer checkerboard artifacts. The proposed
residual block (see Fig. 9) achieves the overall best trade-
off between the accuracy and the speed among several tried
architectures. The model learns the residual between HR
images and bicubic up-sampled LR ones. For ×4, the up-
sampling module is decomposed into two ×2 up-sampling
modules. The models for each track and upscaling factor
were trained separately.
4.6. HIT-ULSee team The solution incorporates the sub-
pixel layer [28] into a denoising CNN [43] for fast and ef-
fective SR (see Fig. 11). The proposed network takes the
color LR image as input. A SR network with upscaling
factor s uses 128 filters of size 3 × 3 × 3 to generate 128
feature maps in the first convolution layer, while in the last
convolution layer, uses 3s2 filters of size 3× 3× 128. The
middle layers use 128 filters of size 3 × 3 × 128. In the
final sub-pixel layer, 3s2 LR feature maps are merged into
the residual with desired size via the sub-pixel layer. Then
the bicubically interpolated LR input is added. The depth
is set to 20 layers. Zeros are padded before each convolu-
tion to ensure that each feature map of the middle layers
has the size of the input LR image. A leaky ReLU function
f(x) = max(x, 0.05x) is used as activation function. For
each competition a separate model was trained.
4.7. ‘I hate mosaic’ team A two nets architecture solution
which uses a parameter shared network and a color prior
network (see Fig. 12). Different color channels share the
same downscaling operator and part of model parameters



(a) Bicubic ×2 (b) Bicubic ×3,×4 (320ch) (c) Unknown ×2,×3,×4 (320ch)

Figure 7. Lab402 team: the proposed nets for challenge tasks.

Figure 8. VICLab team: proposed network with selection unit.

Figure 9. UIUC-IFP team:
proposed residual block.

Figure 10. Resonance team:
an inception ResNet block.

Figure 11. HIT-ULSee team: proposed CNN architecture.

(a) Parameter shared net

(b) ResBlock in parameter shared net (c) ResBlock in color prior net
Figure 12. ‘I hate mosaic’ team: nets and residual blocks.

to exploit cross channel correlation constraints [23]. An-
other net is deployed to learn the difference among different
color channels and color prior. Upsampling module upscale
feature maps from LR to HR via depth-to-space convolu-
tion (aka sub-pixel convolution). A shallow and extremely
simple sub-network is used to reduce the low-frequent re-

dundancy [31] and to accelerate training. The color prior
network has 6 residual blocks. This objective function is
robustified (includes a variant of MSE and a differentiable
variant of l1 norm) to deal with the outliers in training.
4.8. nicheng team A SRResNet [18]-based solution with
a couple of modifications (see Fig. 13. For ×4, the nearest-
neighbour interpolation layer replaces the sub-pixel layer,
otherwise the sub-pixel layer would cause the checkerboard
pattern of artifacts [25]. Also the input is interpolated and
added to the network output as in [17]. ×3 model uses the
pixel shift method to up-sample the image.

Figure 13. nicheng team: SRResNet modif. models for ×3 & ×4.

4.9. GTY team Four modified VDSR nets [17] (PReLU
instead of ReLu, RGB channels instead of one) are stacked
and their outputs are linearly combined to obtain the final
HR output as shown in Fig. 14.

Figure 14. GTY team: multi-fused deep network based on VDSR.

4.10. DL-61-86 A two-stage solution: deblurring then
SR of the LR blur-free images. A blind deconvolution
method [39] estimated the blur kernel on each train image
and the average blur kernel was used for deblurring. Af-
ter deblurring, a SRResNet [18, 28] learned the mapping to
HR using both MSE loss and a perceptual loss. The train-
ing employed the cyclical learning rate strategy [29] and in-
spired by [37] used both train images and re-scaled images



to enhance the generality of the model for local structures
of different scales in natural images.
4.11. faceall Xlabs team For Track 1, ×2, a 20 layer
VDSR was trained, while for the other settings 9 layers of
ResNet structure (see Fig. 15) were trained with a combina-
tion of three losses [38].

Figure 15. faceall Xlabs team: proposed net.

4.12. SR2017 team A DNN (similar to VDSR [17]) learns
the residual map for the bicubic upscaled input. Since the
downscaling operators might be unknown, a multi-scale
strategy is employed as commonly used in deblurring meth-
ods [30]. Specifically, strided and fractionally-strided con-
volutional layers are used to downsample and upsample the
intermediate feature maps, which exploits multi-scale infor-
mation and thus helps reconstruct sharper results. In addi-
tion, similar with [21] skip links are added to remedy the
information loss during the downsampling operation.
4.13. SDQ SR team SR is seen as a motion prediction
problem. The method can be divided into two stages, mo-
tion prediction stage and post train stage. (i) For motion pre-
diction stage, a 10 layers VDSR [17] (3×3 kernels, Fig. 16)
generated four pixels for each input image pixel then com-
bines them to get the result. (ii) A 10 layers VDSR (5 × 5
kernels) is used in the post train stage to remove the block-
ing effects and further improve the final result. The mo-
tion prediction and post train strategy are used in unknown
down-sampling of ×2 and only motion prediction strategy
is used in bicubic down-sampling of ×2.
4.14. HCILab team The VDSR model [17] based on caffe
is deployed for the DIV2K dataset. In addition, the solution
uses cudnn library for increase in speed and performance.
A single model was trained per each challenge track.

Figure 16. VDSR [17] model based on VGG-16 architecture.

4.15. iPAL team A CNN is implemented to predict the
missing details of wavelet coefficients (sub-bands) of the
LR images. The network (see Fig. 17) is trained in the
wavelet feature domain uniquely with four input and output

channels which is named Deep Wavelet Super-Resolution
(DWSR) [12]. The input comprises of 4 sub-bands of the
LR wavelet coefficients and outputs are residuals (missing
details) of 4 sub-bands of HR wavelet coefficients.The out-
put prediction is added to the input to form the final SR
wavelet coefficients. Then the inverse 2d discrete wavelet
transformation is applied to transform the predicted details
and generate the SR results.
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Figure 17. iPAL team: deep wavelet super-resolution.

4.16. WSDSR team WSDSR [7] is an iterative back pro-
jection approach (see Fig. 18) which uses as a regularizer a
BM3D [8] based filter especially designed for SR. It uses a
1D Wiener filter, as opposed to the more common 3D fil-
ter. This difference proved to be crucial to improved perfor-
mance in SR problems. WSDSR uses self-similarities, no
training data, and any real valued scaling factor can be used.

Figure 18. WSDSR team: method diagram.

4.17. Resonance team The solution is based on two cas-
caded networks. The first deep residual net is used for LR-
to-HR upscaling and has inception blocks, skip connections
and, instead of deconvolution, employs two PixelShuffle
layers [28] for upscaling. The second network, a simple
5-layer convnet with one skip connection from input to out-
put, is used for sharpening/enhancement of the HR image
obtained by the first net. First net uses 6, 8, and 10 incep-
tion ResNet blocks (see Fig. 10) for ×2, ×3 and ×4.
4.18. zrfanzy team The solution is based on SRRes-
Net [18], uses more layers, a deconv layer, l1 loss and no
batch normalization. The models are trained only for ×4,
for ×2 and ×3 the images are upscaled by ×4 and then
bicubic downscaled using imresize Matlab function.
4.19. UESTC-kb545 team First, by bicubic interpolation
the ×2 image, ×4 image and ×4 sobel boundary image are
produced from the unknown downscaled 4x image, then the
3 images are fed into a CNN for two-way fusion of convolu-
tion and convolution-transpose, followed by a deep residual
net to further regress to the ground truth details.
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