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Abstract— Robust semantic perception for autonomous vehi-
cles relies on effectively combining multiple sensors with com-
plementary strengths and weaknesses. State-of-the-art sensor
fusion approaches to semantic perception often treat sensor
data uniformly across the spatial extent of the input, which
hinders performance when faced with challenging conditions.
By contrast, we propose a novel depth-guided multimodal
fusion method that upgrades condition-aware fusion by in-
tegrating depth information. Our network, DGFusion, poses
multimodal segmentation as a multi-task problem, utilizing the
lidar measurements, which are typically available in outdoor
sensor suites, both as one of the model’s inputs and as ground
truth for learning depth. Our corresponding auxiliary depth
head helps to learn depth-aware features, which are encoded
into spatially varying local depth tokens that condition our
attentive cross-modal fusion. Together with a global condition
token, these local depth tokens dynamically adapt sensor fusion
to the spatially varying reliability of each sensor across the
scene, which largely depends on depth. In addition, we propose
a robust loss for our depth, which is essential for learning
from lidar inputs that are typically sparse and noisy in adverse
conditions. Our method achieves state-of-the-art panoptic and
semantic segmentation performance on the challenging MUSES
and DELIVER datasets. Code and models will be available at
https://github.com/timbroed/DGFusion

I. INTRODUCTION

Robust segmentation for automated driving systems de-
mands reliable sensor fusion under any environmental condi-
tion. Conventional semantic perception pipelines that rely on
a single sensor struggle in domains such as fog, rain, or low
light, where the performance of individual sensors degrades.
Prior work [1] has shown that conditioning cross-modal
fusion for semantic perception on a global representation
of the environmental condition of the scene can effectively
guide fusion by dynamically adapting sensor contributions.
However, while this approach models the global scene con-
dition, it overlooks the spatial variability of the effect of
this condition on the sensor measurements, which largely
depends on the local depth.

In practice, depth is a key factor affecting the variable
reliability of each sensor in each part of the scene. For
instance, lidars provide accurate returns for nearby objects
but degrade rapidly at longer distances, e.g. in fog or
snowfall [2], [3]. Radars, on the other hand, operate well
at long distances even in adverse weather but suffer from
strong noise due to multi-path effects, whereas cameras
are reliable only in well-lit parts of the scene, which are
in turn related to the 3D structure of the scene. In other
words, environmental conditions introduce spatial variations
in the signal-to-noise ratio of each sensor, which call for
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Fig. 1: Intuition on DGFusion. Unlike previous sensor
fusion works that use lidar only as an input, we additionally
utilize this readily available modality for depth supervision
to create a multi-tasking setup, hinging on the well-known
benefits of depth estimation for semantic perception.

a fine-grained local adaptivity of the fusion strategy. Con-
sequently, incorporating explicit depth cues into the fusion
mechanism for semantic perception could enable such spatial
adaptivity to sensor reliability, which would in turn enhance
segmentation robustness in challenging environments. This
hypothesis is reinforced by several works on RGB-only
semantics and depth multi-tasking [4], [5], which improve
segmentation performance over semantics-only learning. De-
spite this promise for depth-informed fusion, most state-
of-the-art multi-sensor segmentation methods [0], [7], [&],
[O] treat lidar solely as an input modality, overlooking its
potential for improving segmentation via multi-tasking by
leveraging it also as sparse ground truth for learning depth
together with semantics.

We fill in this gap and propose DGFusion, a depth-guided
multimodal fusion network which upgrades condition-aware
sensor fusion for semantic perception with explicit local
depth guidance (cf. Fig. 1). In DGFusion, we introduce
an auxiliary depth prediction head to enrich local features
with implicit depth cues, while a global condition token
is generated to guide each local-window cross-attention fu-
sion. This dual encoding of global environmental conditions
and spatially-varying depth cues enables the network to
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make more precise decisions based on which sensor to rely
more on for each feature. By incorporating depth cues, the
fusion mechanism can adaptively adjust the weighting of
each modality per image region, favoring the per-case more
reliable sensor. Moreover, since the noisy depth reference
is already available as one of our network’s inputs, i.e. the
lidar, depth supervision comes at no extra cost compared to
existing fusion pipelines. The synergy between the global
condition and local depth representation is especially bene-
ficial in adverse conditions, which have been found [10] to
cause pronounced spatial variations in sensor reliability.

Besides, training our model on adverse conditions poses
additional challenges. For example, in fog or snowfall the
lidar measurements, which serve as ground truth for depth,
become inherently noisy [2], [3], making the direct inte-
gration of standard depth estimation approaches and losses
in our multi-tasking model infeasible. In order to get a
reliable training signal across all conditions, we carefully
design our depth loss to be robust to sparse and noisy
ground truth by combining an outlier-robust L; loss with
strategies commonly used in monocular depth estimation.
These strategies consist of an edge-aware smoothness loss
to penalize depth gradients in uniform regions of the RGB
image and a novel panoptic-edge-aware smoothness loss that
better captures depth discontinuities between instances of the
same semantic classes compared to previous semantic-edge-
aware smoothness losses.

Casting the training of DGFusion as a multi-tasking
problem leverages the synergy between depth and semantics
with minimal changes to the inference pipeline. Extensive
experiments on MUSES [11] and DeLiVER [7] demonstrate
that DGFusion sets the new state of the art in multi-sensor
semantic perception across diverse conditions.

Our key contributions can be summarized as follows:

e We propose DGFusion, a novel depth-guided multi-
sensor fusion network for semantic perception that
reformulates the problem as multi-tasking of semantics
and depth, at no extra annotation or inference cost.

« We leverage the internal dense depth features to perform
a spatially-variant conditioning of our cross-modal at-
tentive fusion on local depth tokens. Combined with a
global condition token, this makes the fusion locally
adaptive to the effect of this environmental condition
on the sensor at the respective feature location.

o We design an outlier-resistant depth loss suitable for
sparse, noisy lidar ground truth, incorporating edge-
aware smoothness and a novel panoptic-aware smooth-
ness term for reliable training.

o We extensively validate and ablate our network on two
widely used outdoor datasets, MUSES and DeLiVER,
and we set the new state of the art on multi-sensor
semantic perception.

II. RELATED WORK

Semantic perception encompasses tasks like semantic [12],
panoptic [13], and instance [!4] segmentation, which are

pivotal for robotics applications such as automated driv-
ing [15]. Recent mask-based networks have advanced the
state of the art [16], and unifying these tasks within a single
model has proven beneficial [17]. In contrast to these RGB-
only methods, our work focuses on multimodal semantic
perception, leveraging sensor fusion to enhance robustness
in challenging conditions where RGB data is unreliable.
Sensor fusion is central in practical vision applications, as
different sensors feature complementary characteristics. The
availability of large multimodal datasets, from early ones like
KITTI [ 18] to recent ones focusing on adverse conditions [7],
[10], [11], has driven the development of fusion methods.
Architectures have evolved from two-modality systems [19]
to modular, attention-based networks that handle an arbitrary
number of inputs [0], [7]. Recent approaches have inte-
grated large-scale pre-trained models [8], explored modality-
agnostic designs with shared backbones [20], and combined
intra-modal with inter-modal attention [9]. The MUSES
method [11] extends [21] to the multimodal setting, solving
panoptic and semantic segmentation via local-window cross-
attention. However, all these works fuse sensors uniformly,
lacking explicit adaptation to the conditions that affect each
image region non-uniformly, largely depending on depth.
Condition-aware fusion utilizes information about the en-
vironmental conditions to guide perception. [19] addresses
object detection by implicitly assigning larger weights to the
modality that yields better detection features at late fusion.
Knowledge distillation from vision-language models is used
in [22] for learning modality-agnostic representations. The
most closely related work to ours in this regard is [I],
which guides cross-modal attention with a global camera-
based condition token that is learned contrastively based on
training-time supervision with image-level verbal condition
descriptions. In contrast, we aim at a more fine-grained,
pixel-level adaptivity to the environmental condition, as its
effects on sensor data vary non-uniformly with depth.
Semantics and depth are strongly correlated tasks, and
it is well-established that they benefit from being learned
jointly in a multi-task setup [4], [5]; cf. [23] for a com-
prehensive overview of such semantics-depth multi-tasking
methods. Prior work has leveraged this synergy, with seman-
tics guiding monocular depth estimation [24], [25]. Similarly,
depth supervision has benefited from edge-aware smoothness
losses based on image gradients [26] and semantics-aware
losses that use semantic annotations [27], which we extend
to use more fine-grained panoptic annotations. In contrast to
previous works, we explore the use of depth in multimodal
settings as a readily available input signal, e.g. from sparse
lidar measurements in typical outdoor multi-sensor suites,
in order to benefit semantics. While the aforementioned
multi-sensor semantic perception works utilize such depth
information only as input to the fusion architecture, we
instead leverage it as a reference output during training,
reframing sensor fusion as a multi-task problem where depth
completion serves as an auxiliary task to learn informative,
localized features for semantic perception. The internal depth
features learned from this auxiliary task are leveraged as a
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Fig. 2: DGFusion overview. We process all input modalities with a shared backbone with individual feature adapters. Their
outputs are split into three branches: the depth estimation branch at the top, the segmentation branch in the middle, and
the condition representation branch at the bottom. In our multi-task setup, the sparse and noisy lidar serves as supervision
for the auxiliary depth head, enabling the network to learn depth-informed features that improve semantic representations.
Both the depth and the condition branch send additional features into the Depth-Guided Fusion modules. In these modules,
features from the RGB input, the respective secondary modality, and the depth are divided into local windows. Each depth
window is processed to extract a local Depth Token (DT), which is concatenated with the RGB tokens and the Condition
Token (CT) to form the set of queries for cross-attention. After fusion, the DT and CT are removed, and the windows are
reassembled, yielding enriched features that are fed to the segmentation head to produce the final segmentation prediction.

spatially varying conditioning in our attentive fusion together
with global condition information. This combination allows
DGFusion to adaptively weigh modalities not only per-input,
but also per-region, based on how depth modulates the effect
of the environmental condition on each sensor.

III. DGFUSION

In this section, we present DGFusion, our depth-guided
sensor fusion network for robust segmentation. We first
describe our architecture (Sec. III-A), which integrates an
auxiliary depth head and a depth-guided fusion module.
Next, we detail our multi-task loss design (Sec. III-B) that
improves depth supervision with noisy lidar ground truth.
Finally, we outline key implementation details (Sec. III-C).

A. Architecture

Our goal is to achieve robust multimodal segmentation
in all weather conditions. We build on the state-of-the-
art CAFuser [I] method, which uses global environmental
condition encodings to guide the sensor fusion for the

OneFormer [17] segmentation head. Following CAFuser,
we project the secondary modalities (lidar, radar, and event
camera) as 3-channel images onto the RGB camera plane. To
further align these projected inputs with the RGB modality,
we dilate the respective images with a square kernel of size
Kensor, Which compensates for the sparsity of the secondary
modalities and yields denser input images. In contrast to
CAFuser, we treat lidar not only as an input modality but
also as a source of sparse, noisy ground-truth depth. Training
our network via multi-tasking semantics and depth provides
robust supervision to enhance semantic features and allows
us to leverage depth-informed features for locally adaptive
depth-guided fusion.

In Fig. 2, our complete DGFusion architecture is de-
picted. On the left, an arbitrary number of sensor modalities,
including camera as the primary modality and otherwise
depending on the dataset at hand, are first processed by
shared backbones equipped with modality-specific feature
adapters, resulting in per-level feature maps. These features
are then split into three branches: the depth estimation branch



(top), the segmentation branch (center), and the condition
representation branch introduced by CAFuser [1] (bottom).
The depth branch uses raw, undilated lidar ground truth to su-
pervise depth predictions and induce depth-informed features
via a lightweight fusion module, while the condition branch
generates a global condition token (CT) from the RGB input.
Both of the latter branches provide supplementary cues to
the central depth-guided fusion module in the segmentation
branch.

Depth estimation branch. At each feature level [, we
fuse all modalities with a light-weight fusion module to
produce a “depth” feature pyramid {d;};_,. In our fusion
module, we concatenate all modality features along the
channel dimension and process the result with a 2-layer
multilayer perceptron (MLP) with a bottleneck, followed
by a residual connection from the RGB features to ensure
stable gradient flow. The resulting depth features are passed
to our auxiliary depth head and supervised by our depth
loss described in Sec. III-B. Note that we fuse all input
modalities to exploit all available information and to fully
utilize their complementary strengths. We use a Semantic
FPN [13] decoder as our auxiliary depth head. This head
upsamples the features d; from each level of the pyramid
with multiple convolutions and bilinear upsampling steps
until it reaches 1/4 scale. The respective outputs from the
various levels are then summed and finally transformed into
a single depth prediction. This structure fuses coarse and
fine information efficiently, enabling robust depth estimation
at various scales. At inference time, we drop the auxiliary
depth head, but keep the depth features d; and still feed them
to our fusion module. This setup keeps the alterations to the
inference pipeline to a minimum while still computing depth-
informed features for guiding fusion in the semantic branch
in a locally adaptive fashion.

Condition representation branch. We adopt the CA-
Fuser [1] strategy to produce a global CT. Specifically, we
flatten the highest-level features from the RGB camera and
feed them into a Transformer composed of 2 encoder and
2 decoder layers. The resulting token is then supervised
during training with a verbo-visual contrastive loss [1], [17],
[28] that leverages text prompts describing the environmental
conditions in detail.

Depth-guided fusion. We use the depth features {d;}}_, to
guide sensor fusion in our main semantic branch. Our Depth-
Guided Fusion module follows CAFuser in utilizing parallel
multi-window cross-attention fusion [6] to fuse in parallel
each secondary modality via cross-attention with the primary
camera modality within K, x K, local windows. This fusion
design is efficient and scales well with the number of input
modalities. In each Depth-Guided Fusion module, the RGB
features, the features from the relevant secondary modality
and the depth features are split into local windows of size
K,, x K. The depth features from each local window are
passed through a 2D convolution and a mean pooling to
yield a local Depth Token (DT), which represents the local
depth context per window. This local DT is concatenated
with the corresponding RGB tokens and the global CT to

form the set of queries for the cross-attention operation with
the secondary modality. After cross-attention, the DT and
CT are removed to restore the original spatial dimensions
of the RGB tokens. Finally, the fused features from all
parallel Depth-Guided Fusion modules are summed with the
residual features and passed to the segmentation head, which
outputs the panoptic prediction. This design ensures that
the predicted depth assists the multi-sensor semantic fusion
while imposing minimal changes to the overall architecture.
Crucially, the depth head is only active at training time,
allowing the network to learn richer feature representations
via multi-task supervision. At inference, we do not require
the depth head, as the Depth-Guided Fusion module only
needs the depth features that are computed from the sensor
inputs. Each local-window cross-attentive fusion is jointly
guided both by the global condition context encoded in the
CT and the localized depth cues encoded in the respective
local DT, which together model well the local effect of the
present condition on the reliability of each sensor and adapt
fusion properly.

B. Losses

Our training pipeline casts semantic perception and depth
estimation as a multi-task problem by utilizing the raw and
undilated lidar projections as ground truth for the auxiliary
depth head. We need to carefully design the loss to obtain
effective supervision of the depth head, as this ground truth
is both sparse and noisy, especially in adverse weather.
Specifically for the depth branch, we combine three weighted
loss terms into a single objective: a robust L; term, an RGB-
edge-aware smoothness term, and a novel panoptic-edge-
aware smoothness loss.

Outlier-robust L; loss. Lidar returns degrade in adverse
conditions, making the raw depth measurements noisy and
unreliable. To address this, we compute an L1 loss on loga-
rithmic depth values. The L; loss is inherently more robust
to outliers than Lo, and using the logarithmic scale better
handles depth variations across orders of magnitude [5], [29],
[30]. Let f)p be the predicted depth at pixel p and D, the
corresponding raw lidar reference depth. Since raw lidar
depths are often severely corrupted in adverse conditions,
directly supervising depth predictions using all available
measurements can degrade learning (cf. Sec. IV-B). To
address this, we restrict the loss computation to a more
reliable subset of pixels, i.e. those pixels below the T-quantile
of depth errors. We first define the absolute log-error at pixel
p as

Tp = ‘log (Dp) —log (Dp)| . (1)

We define the set of valid pixels used for supervision as
P, = {p € P : rp < Quantile, ({rq iq € Pl})} , (@

where P, denotes the set of pixels containing a lidar mea-
surement and Quantile_ returns the 7-quantile of the error
values. Our outlier-robust L1 loss is then computed as

1
ﬁzpepr 'l"p. (3)

Aclong =



This “r-filtering” requires no additional preprocessing and
renders the training robust to lidar noise, as our network
leverages the noisy lidar measurements both as input for the
fusion and reference for the depth.

Edge-aware smoothness loss. To guide depth prediction
in regions lacking reliable lidar supervision, we employ an
edge-aware smoothness term popular in monocular depth
estimation [26]. Specifically, we weigh depth gradients with
the local intensity gradients in the RGB image, thereby
encouraging smooth depth predictions while preserving dis-
continuities at actual object boundaries:

1 N
£es =15 ax

where [ is the image intensity, 9D and 8,1 are approximate
derivatives in the z-direction (resp. for y), and P is the set
of all pixels in the RGB image. This formulation penalizes
large depth gradients in regions with homogeneous intensity
while permitting sharper transitions where the intensities
vary sharply. As our method uses lidar both as input and
output, L.s ensures that we do not learn only an identity
mapping from lidar to depth. Instead, we encourage the
full depth map to remain geometrically regular, i.e. smooth,
where no lidar supervision is available, thus forcing the
network to predict plausible depths across the image and
to learn better features for guiding our fusion.
Panoptic-edge-aware smoothness loss. In our multi-task
setup, we leverage ground-truth panoptic segmentation la-
bels to guide depth estimation. In depth maps, sharp dis-
continuities often coincide with object boundaries, which
include both semantic class boundaries and instance-level
boundaries within the same class. Previous semantic-aware
smoothness losses [24] only handle class transitions, e.g.
between “road” and “car”, while several scenes also contain
multiple adjacent objects of the same class, e.g. two adjacent
“cars”, whose shared boundaries are equally informative
about depth transitions. To overcome this limitation, we
extend the semantic-edge formulation to a panoptic-edge
one, ensuring that depth gradients respect both class and
instance boundaries. In particular, we compute a binary
mask based on the panoptic labels to determine where depth
gradients should be penalized. More formally, let

e_|6rIp| + |ayﬁp‘e_‘ay1p|)7 (4)

B {o, if S(p) # S(p+ Aw), )
1, otherwise,
. 1, if S(p) # 0 and S(p + Az) # 0,
vy = : ()
0, otherwise.

Here, Az is a one-pixel shift in the x-direction and S are
the panoptic labels. After dilating B by a k x k kernel (with
k = 3) to account for imperfect edge localization, we define

w, = BV, 7
and define wy similarly for the y-direction. Our panoptic-
edge-aware smoothness loss is then defined as

1 T
ﬁpes = ﬁzpep (wp

ax[),,‘ +wl )ayD,,D G

In this formulation, wy and w} are 0 (i) around panoptic
boundaries, allowing depth discontinuities, and (ii) at unla-
beled regions, where variations in depth are not penalized.
This promotes smooth depth estimates in the interior of each
object. Thus, our loss in Eq. (8) guides the depth estimation
to smoothly fill in areas between valid lidar pixels supervised
via Liogr1, while allowing sharp transitions between adjacent
objects.

Total loss. Finally, the outlier-robust depth loss is weighted
together with our smoothness losses as follows:

£deplh = )\Ll [/long + /\esﬁes + /\pestes; (9)

where ALi, Aes, and Apes are hyperparameters that control
the relative strength of each term. We now define our total
multi-task loss as

Etolal = /\segﬁseg + Acondﬁcond + /\depthﬁdeplhy (10)

where L, denotes the full segmentation loss used in One-
Former [17], which supervises our predicted semantics, Lcong
supervises the CT embedding following CAFuser [!], and
Lgepn supervises our predicted depth.

C. Implementation Details

We use a Swin-T backbone [31] pre-trained on Ima-
geNet [32] and follow the training protocol of CAFuser [1].
DGFusion is trained with a batch size of 8 for 180k iterations
on MUSES and 200k on DeLiVER. For the depth branch, we
set 7= 0.8, AL; = 0.9, Aes = 0.05, )\pes = 0.05, and )\depth =
1. We use the OneFormer head [17] for our semantic branch,
which enables semantic, instance, and panoptic segmentation
via a single model, and we adopt the default settings for the
segmentation and CT losses from OneFormer and CAFuser,
respectively. All input modalities are normalized over the
entire dataset and the data augmentations from CAFuser are
applied. Our network is optimized using AdamW with a poly
learning rate scheduler.

IV. EXPERIMENTS

We evaluate DGFusion on two challenging multi-sensor
datasets with a focus on adverse conditions in driving
scenes: MUSES and DeLLiVER. MUSES [11] is a real-world
dataset that comprises 2500 multi-sensor scenes captured
under eight environmental conditions (rain, snow, fog, and
clear weather, each in day/night) and containing high-quality
human-annotated panoptic and semantic ground truth. Each
sample includes RGB camera, lidar, radar, and event data,
all of which we project onto the RGB plane with the help of
the official SDK. We perform all our ablations on this chal-
lenging real-world dataset. Due to computational constraints,
the hyperparameter ablation in Tab. VI was performed on
half of the training data. DeLiVER [7] is a synthetic dataset,
featuring 7885 scenes recorded under adverse conditions
(cloudy, foggy, night, rainy) and corner-case sensor failures
(e.g. motion blur, lidar jitter) with semantic ground truth.
Each scene provides RGB camera, lidar, and event camera
modalities as well as a pixel-perfect depth map of the scenes.
As this depth map is not a direct sensor recording and not



TABLE I: Comparison of panoptic segmentation methods on the MUSES test set. C: Camera, L: Lidar, R: Radar, E: Events.

Method Modalities Backbone Day Night Clear Fog Rain Snow Things Stuff SQ RQ PQ 1
Mask2Former [21] C Swin-T 49.35 39.38 48.84 46.48 45.39 45.1 31.29 58.23 78.34 58.01 46.89
MaskDINO [16] C Swin-T 51.85 42.73 54.05 46.20 46.23 48.54 38.64 57.29 80.51 60.28 49.44
OneFormer [17] C Swin-T 57.55 47.83 58.33 53.68 53.43 53.77 43.54 63.69 80.93 66.97 55.21
HRFuser [6] CLRE HRFuser-T 44.60 40.01 47.03 43.59 42.69 40.62 28.33 55.23 78.41 54.34 43.90
MUSES [11] CLRE 4xSwin-T 54.06 49.73 55.28 50.34 53.77 50.51 39.94 63.53 81.06 65.02 53.60
CAFuser-CAA [1] CLRE Swin-T 59.93 56.24 61.16 56.41 59.38 57.88 48.03 67.64 81.80 71.61 59.38
CAFuser [1] CLRE Swin-T 59.49 57.34 61.36 57.52 59.63 57.2 48.42 67.90 82.03 71.75 59.70
DGFusion (Ours) CLRE Swin-T 60.94 58.97 62.16 58.86 61.26 59.77 49.68 69.28 82.34 73.07 61.03

TABLE II: Results of semantic segmentation methods on the
MUSES test set. C: Camera, L: Lidar, R: Radar, E: Events.

Method Modalities Backbone mloU 1
Mask2Former [21] C Swin-T 70.7
SegFormer [33] C MiT-B2 72.5
OneFormer [17] C Swin-T 72.8
CMNeXt [7] CLRE MiT-B2 72.1
GeminiFusion [9] CLRE MiT-B2 75.3
CAFuser-CAA [1] CLRE Swin-T 78.5
CAFuser [1] CLRE Swin-T 78.2
DGFusion (Ours) CLRE Swin-T 79.5

realistic to obtain in this quality in any real-world scenario,
we argue that one should treat it rather as an additional
ground truth. Hence, we use the depth map as the dense
supervision for the depth head of our method. As previous
methods treat it as an input, we compare to such methods on
both scenarios, with (CLDE) and without (CLE) the depth
map as an input.

A. Comparison with The State of The Art

DGFusion sets the new state of the art (SOTA) in multi-
sensor panoptic and semantic segmentation compared to
prior methods. As presented in Tab. I, we outperform pre-
vious methods on MUSES across all metrics, including a
variety of adverse weather and lighting conditions. We set
the new SOTA with 61.03% PQ (+1.33%) and improve-
ments are most pronounced in adverse conditions. Compared
with the previous SOTA method CAFuser [1], all adverse
conditions show a substantial improvement: 1.34% PQ in
Fog, 1.63% PQ in Rain and even +2.57% PQ in Snow
conditions, compared to a moderate +0.8% PQ in Clear
conditions. This confirms our hypothesis that fusing both
global condition cues and local depth features is crucial for
robust performance under adverse environmental conditions.

As the OneFormer segmentation head can predict both
panoptic and semantic segmentation, we also compare DG-
Fusion to SOTA multimodal semantic segmentation methods
on the MUSES dataset. Tab. II shows that our method sig-
nificantly outperforms both camera-only baselines and prior
multimodal approaches, achieving 79.5% mloU (+ 1.0%).
Notably, we surpass other fusion-based methods, such as
CMNeXt [7] and CAFuser [1], highlighting the effectiveness
of our multi-task setup for improving semantic segmentation
in adverse-weather driving scenes.

Tab. III shows our semantic segmentation results on De-

TABLE III: Comparison of semantic segmentation methods
on the DeLiVER test set. C: RGB Camera, L: Lidar, D:
Depth, E: Events.

Method Backbone ~ MIoU-test T
CLE CLDE
CMNeXt [7] MiT-B2 50.3 53.0
StitchFusion [8] MiT-B2 50.8 534
GeminiFusion [9] MiT-B2 50.5 54.5
CAFuser-CAA [1] Swin-T 51.2 55.2
CAFuser [1] Swin-T 51.3 55.6
DGFusion (Ours) Swin-T 51.6 56.7

LiVER for two input settings: CLE (camera, lidar, events)
and CLDE (camera, lidar, depth, events). DGFusion outper-
forms prior fusion methods in both cases, reaching 51.6%
mloU (+0.3%) for CLE and 56.7% mloU (+1.1%) for
CLDE. Notably, using depth as an auxiliary training signal
boosts performance even further in the CLDE setting, where
perfect depth is already available as an additional sensor.
This highlights our system’s ability to exploit even “ground-
truth” depth in a more principled way, resulting in more
reliable multimodal segmentation under challenging weather
and sensor-failure conditions represented in DeLiVER.

B. Ablations

We perform ablation studies to investigate the impact of
each proposed architectural component in Tab. IV, super-
vised with the complete loss described in Sec. III-B. Starting
with the baseline CAFuser (ID 1), adding an auxiliary depth
head (ID 2) significantly boosts performance by +0.64%
PQ. Notably, this auxiliary depth head is used only during
training and does not alter the inference architecture at all,
indicating that leveraging existing lidar inputs as auxiliary
supervision provides a substantial benefit. When further
adding our proposed depth-guided fusion module (ID 4),
performance improves by an additional +0.69% PQ. We
also observe a synergy of the global CT and local DT,
as removing either the global CT (ID 3) or the local DT
(ID 2) leads to performance drops of -0.65% PQ and -
0.69% PQ, respectively. These results confirm that localized
depth cues and condition-aware fusion mutually reinforce ro-
bust multimodal segmentation, demonstrating the individual
contributions and complementary strengths of our proposed
architectural components.

We also investigate our depth loss design from Sec. III-B,
with results presented in Tab. V. The baseline (ID 1), which



Ours-depth

Lidar

Radar

i H\uuuw \\\\\\\\\\\

m ///////’ WW“ N

Ry

il

?

7

=
=

GT MUSES [11] OneFormer [17]

CAFuser [1] DGFusion (Ours)

Fig. 3: Qualitative comparison on MUSES with visualization of the input modalities. Best viewed on a screen at full zoom.

TABLE IV: Ablation of architectural components on the
MUSES test set.

D CT Aux. Depth Head DT mloU 1 PQ +
1 v 78.20 59.70
2 v v 78.63 60.34
3 - v v 79.19 60.38
4 (Ours) v v v 79.50 61.03

TABLE V: Loss design ablations on the MUSES test set.

ID Lo & Lpes 7-filtering mloU 1 PQ 1t
1 - - 78.87 59.84
2 v - 78.94 59.98
3 - v 78.50 60.04
4 (Ours) v v 79.50 61.03

is trained only with a basic L; loss as depth supervision,
achieves moderate performance. Introducing our smoothness
terms Les and Lpes (ID 2) improves PQ slightly by +0.14%,
indicating their benefit in regularizing sparse lidar depth
supervision. Finally, combining both our smoothness terms
and T-quantile filtering (ID 4) results in the best overall
performance, further improving PQ by +1.05%. Our smooth-
ness losses shine especially at the presence of 7-filtering,
as removing the former (from ID 4 to ID 3) reduces PQ
by -0.99%. These experiments confirm the importance of
explicitly addressing sparse and noisy lidar returns through
outlier filtering and smoothness constraints for more robust
depth guidance and hence improved panoptic segmentation.

To demonstrate the robustness of our approach, we inves-
tigate the sensitivity of our method to variations in the hy-
perparameters introduced by our work. As shown in Tab. VI,
we evaluate performance across a range of hyperparameter
values by scaling each parameter by 0.5x and 2x relative
to our default settings. All five introduced hyperparameters
(AL1> Aess Apes> T» Adeptn) €xhibit stable performance on
the validation set with < 1.24% variation in PQ across
these scaling factors. This stability demonstrates that our
method does not require tedious hyperparameter tuning for
each new deployment scenario, as evidenced by our cross-

TABLE VI: Hyperparameter ablation on the MUSES val. set.

Parameter x0.5 Default x2

ALl 54.15 5534 55.03
Aes 54.16 5534 5522
Apes 5520 5534 54.26
T 5458 5534 5496
Adepth 54.10 5534 5497

dataset generalization where the same hyperparameter values
achieve SOTA performance on both MUSES (real-world) and
DeLiVER (synthetic) without any dataset-specific tuning.

TABLE VII: Computational efficiency on MUSES test set.

Method Parameters FPS  GFLOPs PQ 1
CAFuser [1] 77.68M 7.04 349.3 59.70
DGFusion (Ours) 79.45M 6.83 358.1 61.03

Finally, in Tab. VII, we investigate the computational
efficiency of our method. DGFusion adds only 2.3% to the
parameter count at test time and runs at 6.83 FPS on an
A6000 GPU. Hence, our significant +1.33% PQ gain comes
at only marginal computational cost. This demonstrates
that our depth-guided fusion approach achieves substantial
performance improvements while maintaining practical effi-
ciency for real-world deployment.

C. Qualitative Results

In Fig. 3, we present qualitative prediction results
on MUSES under various conditions, demonstrating the
strengths of our approach compared to existing methods.
Under the clear day scenario, we accurately capture the tram
in the distance and all four pedestrians on the left sidewalk,
whereas other baselines overlook some of these persons. In
the second example, our model successfully segments the
person on the right edge and the cyclist on the left and
even detects one of the smaller signs in the background.
In the foggy night scene, we are the only method that
detects both the cyclist and the bicycle despite the very low
visibility. In the snowy nighttime case, we correctly identify
wall regions on the side of the bridge in front and detect



the bicycle on the left. Finally, in the snow daytime scene,
DGFusion is the only method that predicts at least one of
the two pedestrians on the left sidewalk, though it misses the
second person, highlighting a limitation in detecting heavily
occluded objects. Our method also occasionally confuses
similar classes, such as “wall” and “fence” (4th and last
rows). Nevertheless, these examples highlight how our depth-
guided method improves detection under all environmental
conditions.

V. CONCLUSION

We have presented DGFusion, a novel depth-guided sensor
fusion network for robust semantic perception. Our approach
reformulates the multi-sensor fusion task as a multi-task
problem by integrating an auxiliary depth head and directly
leveraging noisy lidar input as additional supervision. In
addition, we propose a depth-guided fusion module that
combines local depth tokens with global condition tokens to
adaptively guide sensor fusion in any condition. Extensive
evaluations on both the real-world MUSES dataset and the
synthetic DeLiVER dataset show that DGFusion outperforms
previous state-of-the-art methods in panoptic and semantic
segmentation, particularly in adverse conditions such as
night, fog, rain, and snow. Moreover, our ablation studies
confirm the essential contribution of our multi-task loss
design and robust depth supervision, demonstrating the value
of leveraging noisy lidar depth signals without incurring extra
annotation costs. These advancements position DGFusion as
a promising solution for enhancing semantic perception in
autonomous driving and robotics under diverse and challeng-
ing environmental scenarios.
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APPENDIX
DETAILED CLASS-LEVEL RESULTS

We present detailed class-level panoptic quality results
on the MUSES test split in Table VIII. Our method con-
sistently achieves superior performance across most classes.
This highlights our model’s robust adaptation across varied
semantic categories compared to other strong multimodal
fusion methods, reflecting the effectiveness of our depth-
guided fusion strategy.

VISUAL ABLATION ON OUR L0OSS DESIGN

In Figure 4, we visually explore the effect of our loss
design, which we investigate quantitatively in the main paper.
The results illustrate that our proposed loss enhances the
depth estimation quality by targeting the challenges of using
noisy lidar as ground truth. Specifically, structural artifacts
such as holes in building facades are effectively reduced,
and boundaries are notably cleaner. Thereby demonstrating
the strength of our method in handling challenging visual
scenarios and providing visually superior depth predictions.

FURTHER QUALITATIVE RESULTS

In Figure 5, we present further qualitative comparisons
across diverse scenarios on the MUSES dataset. Our pro-
posed method DGFusion shows improved robustness in
scenarios challenging for RGB-only methods and baseline
fusion approaches, such as perception at night, fog, and
detection of distant objects. Specifically, it achieves superior
instance separation and effectively leverages multimodal
information under adverse conditions, thereby visually con-
firming the quantitative improvements in panoptic segmen-
tation accuracy.
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Fig. 4: Visual study Qualitative ablation on our loss design on the MUSES dataset. Best viewed on screen at full zoom.
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TABLE VIII: Class-wise PQ results on the MUSES test split.
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Mask2Former 95.12 72.08 76.59 3835 28.96 39.85 37.54 4873 69.73 49.60 83.95 34.03 19.31 5570 28.59 4258 38.21 14.88 17.06
MaskDINO 9522 69.06 77.87 3132 32.81 4431 37.52 4456 70.81 4223 84.51 46.88 27.65 6222 3541 4141 38.07 30.89 26.61
OneFormer 9595 75.68 81.29 44.13 3730 47.80 4821 56.87 7237 52.53 8850 47.07 29.92 6441 4094 62.03 4737 31.14 2544
HRFuser 9435 69.15 71.73 34771 2443 3561 30.04 5123 67.62 4649 82.16 3350 18.89 5649 26.87 31.53 29.73 1994 9.70
MUSES 95.86 76.42 80.40 47.43 37.56 4557 42.83 6023 75.01 53.83 83.69 4221 33.51 63.65 40.01 45.09 42.65 28.52 23.88
CAFuser-CAA 96.14 7829 83.12 51.40 4248 4935 53.79 64.07 78.65 56.09 90.65 51.79 39.53 66.33 46.88 58.99 52.51 39.07 29.18
CAFuser 96.36  79.52 84.38 50.87 43.55 49.84 50.82 63.18 79.40 5690 92.11 50.51 39.05 65.69 4595 6223 54.34 40.63 28.96
DGFusion (Ours) 96.63 80.80 84.51 53.60 43.56 52.54 54.39 65.56 79.41 57.22 93.63 51.74 42.17 67.13 49.33 64.07 53.26 39.41 28.36




