
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 1

CAFuser: Condition-Aware Multimodal Fusion

for Robust Semantic Perception of Driving Scenes
Tim Brödermann1, Christos Sakaridis1, Yuqian Fu1,2, and Luc Van Gool1,2

Abstract—Leveraging multiple sensors is crucial for robust
semantic perception in autonomous driving, as each sensor type
has complementary strengths and weaknesses. However, existing
sensor fusion methods often treat sensors uniformly across all
conditions, leading to suboptimal performance. By contrast, we
propose a novel, condition-aware multimodal fusion approach
for robust semantic perception of driving scenes. Our method,
CAFuser, uses an RGB camera input to classify environmental
conditions and generate a Condition Token that guides the
fusion of multiple sensor modalities. We further newly introduce
modality-specific feature adapters to align diverse sensor inputs
into a shared latent space, enabling efficient integration with a
single and shared pre-trained backbone. By dynamically adapting
sensor fusion based on the actual condition, our model signifi-
cantly improves robustness and accuracy, especially in adverse-
condition scenarios. CAFuser ranks first on the public MUSES
benchmarks, achieving 59.7 PQ for multimodal panoptic and 78.2
mIoU for semantic segmentation, and also sets the new state of
the art on DeLiVER. The source code is publicly available at:
https://github.com/timbroed/CAFuser.

Index Terms—Sensor fusion, semantic scene understanding,
computer vision for transportation, deep learning for visual
perception, multimodal semantic perception

I. INTRODUCTION

CURRENT perception pipelines for automated driving
systems yield excellent results under normal, clear-

weather conditions, but still struggle when they encounter
adverse conditions. This prevents achieving the ultimate Level-
5 driving automation, which requires a reliable perception
system with an unlimited operational design domain (ODD). A
major associated challenge is the accurate pixel-level seman-
tic parsing of driving scenes, as experimental evidence [1]
suggests that such high-level parsing is beneficial for the
downstream driving tasks of prediction and planning.

Because of the aforementioned universal ODD requirement,
using a single type of sensor for dense semantic perception
of driving scenes is a fragile choice. More specifically, the
sensitivity patterns of different sensors across environmental
conditions differ drastically. For instance, while standard, RGB
frame-based cameras have excellent spatial resolution, their

© 2024 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
This work was supported by the ETH Future Computing Laboratory (EFCL),
financed by a donation from Huawei Technologies. (Corresponding authors:
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Fig. 1. CAFuser overview. We encode the weather and lighting conditions
in a Condition Token and guide the condition-aware fusion with it.

measurements degrade severely in low illumination and ad-
verse weather. Lidars and event cameras are by contrast much
more robust to ambient lighting, but they are also strongly
affected by weather particles such as raindrops or snowflakes.
Radars handle adverse weather excellently but offer a far
more limited spatial resolution. Thus, utilizing inputs from all
sensor modalities of a vehicle’s suite in a multimodal fusion
framework shows much more promise for reliable semantic
perception, especially in adverse ODDs such as nighttime, fog,
rain, or snowfall.

We observe that despite the decreasing cost of the afore-
mentioned types of sensors and their growing adoption in
autonomous vehicles, little attention has been paid to lever-
aging their complementary strengths in a condition-aware
manner. That is, most current multimodal fusion methods
fuse sensors uniformly across all environmental conditions.
However, as the reliability of each sensor depends strongly
on these conditions, fusing all sensors in a condition-agnostic
fashion can generally lead to suboptimal performance. Thus,
we propose a multimodal condition-aware fusion (CAF) mod-
ule for robust semantic perception of driving scenes. By
explicitly representing environmental conditions and adjusting
the sensor fusion algorithm to these representations, we aim
to arrive at an adaptive, condition-aware sensor fusion model,
which knows its ODD and has learned which sensors are more
informative and reliable for perception in that ODD.

Our network uses the RGB camera input to generate a
Condition Token (CT), which guides the fusion of multiple
sensors, ensuring that all sensors interact optimally. Learning
this token is supervised with a verbo-visual contrastive loss
utilizing text prompts à la CLIP [2], so as to ensure that
the CT embeddings are aligned with the abstract language-
based descriptions of environmental conditions, which can
be provided as frame-level annotations of the multimodal
input data [3]. By training the system end-to-end, our model
learns to dynamically adapt to actual conditions, ensuring that
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sensor fusion is optimized for each condition, leading to more
accurate semantic parsing.

Additionally, most existing fusion approaches rely on sep-
arate encoders for each sensor modality, leading to high com-
putational complexity and requiring separate training pipelines
for each modality. However, in real-time automated driving
systems, efficiency is of paramount importance. In this regard,
recent work [4] has demonstrated the effectiveness of large-
scale pre-trained models even for non-RGB-camera modalities,
showing the feasibility of using a shared backbone across
multiple sensor modalities. This motivates us to introduce a
single network backbone for extracting features from different
sensor modalities, while still preserving the unique information
from each modality.

Thus, our novel condition-aware multimodal fusion network
design comprises a shared backbone for all modalities, com-
bined with individual lightweight feature adapters [5] for each
modality. We project all sensor inputs onto the image plane, as
in prior multimodal segmentation approaches [6], [7], [8], in
order to make them all compatible with the backbone they are
fed to. Beyond being efficient, this design has two additional
merits: 1) using the same backbone naturally allows non-RGB
modalities such as lidar, radar, and event camera to get mapped
to an RGB-compatible feature space, and 2) the feature
adapters enable extraction of modality-specific information,
providing complementary features to the RGB modality. Our
experiments show a substantial reduction in model parameters
(by 54%) via this design, while not sacrificing performance.

Extensive experiments show that our method, CAFuser
(Condition-Aware Fuser), effectively learns to weigh different
modalities in the fusion according to the present condition.
CAFuser sets the new state of the art on DeLiVER [7] and
ranks first on the public MUSES [3] benchmarks for both
multimodal panoptic and semantic segmentation.

Our main contributions can be summarized as:
• Condition-aware fusion: We propose a Condition Token

that guides our model to adaptively fuse based on the
present environmental conditions, significantly improving
robustness in adverse scenarios.

• Efficient architecture: We newly utilize feature adapters
in a shared-backbone sensor fusion architecture. Each
sensor’s features are aligned in a shared latent space, al-
lowing efficient integration with the pre-trained backbone
and reducing model size significantly.

• Modular and scalable design: Our architecture allows
flexible and efficient addition of diverse sensor modali-
ties, being adaptable to various sensor setups.

• SOTA Performance: We extensively ablate our method
and demonstrate SOTA performance in multimodal
panoptic and semantic segmentation.

II. RELATED WORK

Semantic perception involves understanding the environment
in a scene, encompassing tasks like semantic, instance, and
panoptic segmentation. Semantic segmentation [9] focuses
on classifying each pixel into a predefined category, while
instance segmentation distinguishes between individual in-
stances of objects within “things” (e.g., cars, pedestrians)

categories. Panoptic segmentation [10], [11] unifies semantic
and instance segmentation by predicting both “stuff” (e.g.,
sky, road) and “things” in an image. These tasks are crucial
for autonomous vehicles and robotics in general, as they
provide the detailed environmental understanding necessary
for downstream tasks such as path planning, obstacle avoid-
ance, and applications like domestic service robotics [12].
Recent transformer-based architectures like MaskFormer [13]
and Mask2Former [14] have advanced semantic perception.
EfficientPS [15] improves efficiency without sacrificing accu-
racy, MaskDINO [16] predicts object masks simultaneously
with bounding boxes, and OneFormer [17] achieves state-of-
the-art results in instance, semantic, and panoptic segmentation
with a single architecture and model. In contrast to these RGB-
only methods, we tackle multimodal semantic perception by
leveraging diverse sensor modalities for robust scene under-
standing in autonomous driving. Utilizing the recent MUSES
dataset [3], which includes an RGB camera, a lidar, a radar,
and an event camera, we enhance the reliability and accuracy
of semantic perception.
Multimodal feature fusion is crucial in autonomous driv-
ing, as different sensors provide complementary information.
Early research focused on enhancing lidar-based 3D detection
with RGB camera data [18]. Large-scale datasets such as
KITTI [19] and nuScenes [20] propelled this research but
lacked recordings under adverse weather conditions, which
motivated subsequent synthetic [7] and real-world [21], [22],
[23], [3] datasets focusing on challenging environments.

Fusion techniques evolved from fusing two specific modali-
ties [24], [25] to RGB-X fusion with arbitrary modalities [26],
[27]. Methods like HRFuser [6] and CMNeXt [7] introduced
architectures capable of handling multiple arbitrary sensor
inputs, employing modular designs and attention mechanisms.
StitchFusion [28] integrated large-scale pre-trained models di-
rectly as encoders and feature fusers, using a multi-directional
adapter module for cross-modal information transfer during
encoding. Recent works such as SAMFusion [29] explore
modality-specific multimodal fusion for 3D detection, and [30]
examines modality-agnostic multimodal fusion for semantic
segmentation by employing a shared backbone but lacking
feature adapters, leading to over-reliance on two modalities
and no performance gain when adding lidar or event data.
GeminiFusion [8] combines intra-modal and inter-modal at-
tention to dynamically integrate complementary information
across modalities, representing the state of the art in mul-
timodal semantic segmentation. MUSES [3] tackles multi-
modal panoptic segmentation by local-window cross-attention
to merge features from multiple independent backbones.

While these works enhance perception in challenging en-
vironments, they generally fuse sensor modalities uniformly
and lack explicit adaptation to environmental conditions such
as fog or low light. In contrast, we perform condition-aware
fusion in a shared latent space, allowing our model to adapt
dynamically to environmental conditions, thereby improving
the robustness of multimodal semantic perception.
Condition-aware perception incorporates knowledge of the
environmental conditions to guide perception. [31] tackles 2D
object detection by implicitly allocating higher weights to the
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[“A rainy driving scene
at nighttime with light
rain, a wet ground and
a dark sky.”, “rainy”,
“night”, “light rain”,
“wet”, “dark”]
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Fig. 2. Our proposed CAFuser architecture with RGB camera, lidar, radar, and event camera as input modalities. Each input is passed through the shared
backbone and an individual feature adapter. The CT is generated from the highest-level RGB feature map, supervised with a verbo-visual contrastive loss to
our encoded condition prompts (Qtext), and used to guide the condition-aware fusion (CAF). The resulting fused multi-scale feature maps are then passed
to the pixel decoder and the OneFormer [17] head to produce the prediction.

modality with better detection features at the late-stage fusion.
CoLA [32] enhances salient object detection by leveraging
pre-trained vision-language models with prompt learners to
adjust for noisy or missing inputs. Knowledge distillation
from vision-language models is used in [33] for modality-
agnostic representations, without focusing on condition-aware
predictions. By contrast, we explicitly encode detailed envi-
ronmental conditions using a Condition Token supervised by
verbal scene descriptions. This token dynamically guides our
sensor fusion, improving the robustness of segmentation across
diverse ODDs.

Feature adapters [5], [34], [35] offer a lightweight solution
for integrating different sensor modalities into shared models.
CLIP-Adapter [5] uses MLP adapters with residual connec-
tions to adapt features without overfitting. Modality-shared and
modality-specific adapters were employed in [36] for RGB-
thermal tracking. EventClip [4] aligns event data with CLIP
features using feature adapters. While these methods focus on
bimodal fusion, our network extends feature adapters to align
diverse inputs from several modalities in a shared latent space,
enabling flexible multimodal fusion.

III. METHOD

We build on the recent OneFormer [17], using its head and
segmentation framework as our starting point. In contrast to
previous multimodal approaches, we introduce a single, shared
backbone for all sensor modalities (see Fig. 2). By employing
lightweight adapters for efficient feature transformation, this
design significantly reduces model parameters while main-
taining competitive performance. We initialize the backbone
with ImageNet pre-training, which corresponds to the RGB
camera modality. For pre-processing, we follow MUSES [3]
and project each sensor’s data (e.g., lidar, radar) as a 3-
channel image onto the RGB plane. Further, we normalize
each modality over the entire dataset to ensure an input
representation consistent with the RGB modality.

A. Multimodal Adapter

As the feature adapter, we employ a 2-layer MLP with a 4x
reduction in hidden dimensions [5]. A learnable parameter α
controls the weighting of adapted and original features. Each
modality and each feature map from the Swin backbone’s 4-
level feature pyramid is adapted using an individual adapter at



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025

each stage. For 4 modalities and 4 feature levels this results in
16 individual lightweight adapters. In Sec. IV-B we show that
this setup allows us to reduce the parameters by 54% without
any loss in performance.

B. Condition-Aware Fusion

Since sensor reliability changes predictably based on envi-
ronmental conditions, we introduce a condition-aware fusion
(CAF) mechanism that dynamically adapts sensor fusion in
response to the current ODD. As labeled condition data cannot
be assumed to be available at inference time, we generate
a Condition Token from the RGB camera input and use it
to modulate the fusion process. The RGB camera captures
sufficient global environmental information to effectively rep-
resent scene conditions, avoiding the computational overhead
of processing additional modalities.
Condition Token (CT): Our CT generation, as shown in
Fig. 2, starts by flattening the highest-level RGB feature map
and passing it through a Transformer with 2 encoder and 2
decoder layers. The resulting CT is directly supervised during
training using a verbo-visual contrastive loss utilizing text
prompts based on a detailed description of the environmental
condition. For this, the MUSES dataset provides several key
scene attributes, including weather condition, precipitation
type and level, ground condition, time of day, and sky con-
dition. We automatically create a condition prompt from these
attributes by slightly adapting them to fit into a continuous
sentence. For example, the sky condition of Sunlight becomes
a sunny sky. We further combine the precipitation type and
level into one precipitation text (e.g. light rain) and fill in
empty condition labels from context: e.g. at nighttime the
sky condition attribute is often missing and is filled in as
dark. Using these attributes, we construct a rich, descriptive
condition prompt for each scene using the following template:

A {weather condition} driving scene at
{time of day}time with {precipitation text},

a {ground condition} ground and a {sun level} sky.
(1)

For example, our condition prompt may be instantiated as “A
rainy driving scene at nighttime with light rain, a wet ground
and a dark sky.” This detailed prompt is combined with the
individual scene attributes and guides the CT to capture the
nuanced environmental context needed for robust fusion.

We follow [17] to generate text queries (Qtext) from our
encoded condition prompts. This step includes a tokenizer
for the condition prompts and a pass through a 6-layer
transformer text encoder [37] and stacking with four context
tokens Qctx [17], [38]. For the resulting Qtext and the CT, we
apply a CT −Qtext contrastive loss [17], [39], [37].

At inference, we dynamically generate the CT directly from
the RGB input, removing any reliance on explicit condition
classification. This approach allows the CT to regulate the
fusion on-the-fly based on the current environmental context,
without any condition labels. Using the CT, we explore two
fusion strategies:
Condition-Aware Addition (CAA) Fusion: In this simpler
approach, we implement a CT-guided weighted addition fu-
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condition-aware query for cross-attention. Afterwards, we remove the token
corresponding to the CT to maintain the original spatial dimensions before
reassembling the full feature map.

sion. We predict one weight per modality (totaling four modal-
ities), ensuring that all weights sum to one. This is achieved
by passing the flattened CT through a fully connected layer
with four output dimensions, followed by a softmax function.
After the feature adapters, we multiply each modality’s feature
map by its corresponding predicted weight from the CT. We
then sum the weighted feature maps per feature map level.
The fused feature maps are then fed to the OneFormer head.
This method already shows promising results by dynamically
increasing the relevance of specific sensors based on different
environmental conditions (cf. Sec. IV-B).
Condition-Aware Cross-Attention (CA2) Fusion: In our
final model, CAFuser, we introduce CA2 Fusion, where the CT
directly guides cross-attention to enhance modality fusion. As
visualized in Fig. 3, we build upon the MWCA fusion block
from [6], which utilizes a 7× 7 local-window cross-attention.
In this block, we replace the standard cross-attention within
each local window with our novel CA2 fusion, integrating
the CT into the attention process. As depicted in Fig. 4, we
first pass the CT through a fully connected layer to match
the dimensionality of the appropriate feature map tokens. We
then concatenate this adjusted CT with the 49 RGB tokens
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from the local window, forming an enhanced, condition-
aware query for cross-attention. This combined query captures
both visual features and environmental conditions, which we
use to compute the attention map applied to the value of
the secondary modality (lidar, radar, etc.). After obtaining
the attention output, we remove the token corresponding to
the CT to maintain the original spatial dimensions before
reassembling the full feature map. This condition-aware fu-
sion approach leads to a significant performance boost, as
evidenced by our experimental results in Sec. IV, where we
observe notable improvements in segmentation accuracy under
challenging conditions.
Intuition: In our approach, the RGB modality generates a
query that interacts with the keys from secondary modalities
via cross-attention. The intuition behind this design is that the
RGB camera often contains high-quality visual information,
but in challenging situations (e.g., a blurry region due to
a raindrop on the lens), it might miss critical details. The
cross-attention mechanism allows the RGB to “fill in the
blanks” by looking up at the corresponding regions in the
secondary modalities. Depending on the environmental condi-
tion (encoded in the CT) and in contrast to the CAA module,
the model can focus more heavily on certain modalities for
different regions within an image. For instance, in foggy
conditions, the radar might be more reliable for distant objects,
while in clear nighttime conditions, the lidar might be more
useful. The combination of the RGB and the CT tokens
enables the system to generate a dynamic attention map that
adapts to the environment, ensuring robust performance across
diverse conditions.

IV. EXPERIMENTS

We evaluate CAFuser on two multimodal driving datasets:
MUSES [3] and DeLiVER [7]. MUSES contains 2500 real-
world scenes with panoptic segmentation labels across eight
conditions (day and night for rain, snow, fog, and clear
weather). Each scene has RGB, lidar, radar, and event camera
modalities, along with metadata describing the weather. We
use the official SDK to project each modality onto the RGB
plane. DeLiVER offers 7885 synthetic scenes for semantic
segmentation in four adverse weather settings (cloudy, foggy,
night, rainy), each with five corner-case artifacts (e.g. motion
blur, lidar jitter). Each scene has RGB, projected lidar, depth,
and event camera modalities. We generate a textual condition
prompt similar to Sec. III-B with the template: “A synthetic
[condition] driving scene with [case] artifacts.”.

CAFuser uses a Swin-T backbone [40] and follows the
standard OneFormer training setup [17] with a batch size of
8. For MUSES, we train for 960 epochs with a 20% random
drop of each modality [3] and for DeLiVER, we use 200k
iterations, selecting the best checkpoint on the validation set.

A. Comparison to The State of The Art

We compare our model to state-of-the-art methods both in
panoptic and semantic segmentation. Below, we summarize
our results in comparison to other methods, showcasing the
superior performance of CAFuser.

TABLE I
COMPARISON OF PANOPTIC SEGMENTATION METHODS ON THE MUSES

TEST SET IN PQ↑. ∗ : USES ONLY THE CAMERA MODALITY AS INPUT.

Method Clear Fog Rain Snow Day Night All
Mask2Former [14]∗ 48.8 46.5 45.4 45.1 49.4 39.4 46.9
MaskDINO [16]∗ 54.1 46.2 46.23 48.54 51.9 42.7 49.4
OneFormer [17]∗ 58.3 53.7 53.4 53.8 57.6 47.8 55.2
HRFuser [6] 47.0 43.6 42.7 40.6 44.6 40.0 43.9
MUSES [3] 55.3 50.3 53.8 50.5 54.1 49.7 53.6
CAFuser-CAA 61.2 56.4 59.4 57.9 59.9 56.2 59.4
CAFuser-CA2 (Ours) 61.4 57.5 59.6 57.2 59.5 57.3 59.7

TABLE II
COMPARISON OF SEMANTIC SEGMENTATION METHODS ON THE MUSES

TEST SET. C: RGB CAMERA, L: LIDAR, R: RADAR, E: EVENTS

Method Modalities Backbone mIoU ↑
Mask2Former [14] C Swin-T 70.7
SegFormer [41] C MiT-B2 72.5
OneFormer [17] C Swin-T 72.8
CMNeXt [7] CLRE MiT-B2 72.4
GeminiFusion [8] CLRE MiT-B2 75.3
CAFuser-CAA CLRE Swin-T 78.5
CAFuser-CA2 (Ours) CLRE Swin-T 78.2

In Table I, we compare our model with existing panop-
tic segmentation methods, both using RGB-camera-only in-
puts and multimodal inputs. For RGB-camera-only panop-
tic segmentation, we compare to strong baselines such as
Mask2Former [14], MaskDINO [16], and OneFormer [17].
Among these methods, OneFormer achieves the highest per-
formance, highlighting the strength of this architecture. In a
multimodal setting, MUSES [3] achieves the highest PQ with
53.9%. However, our method, which introduces CAF, achieves
a new state-of-the-art result with a PQ score of 59.7%. The
performance gain is especially notable in the night split with
+7.6% margin over the second best method, compared to
+1.9% in the day split. Since each time-of-day split includes all
weather conditions (clear, fog, rain, and snow), these findings
underscore the importance of adapting sensor weights when
the RGB modality is less reliable.

As multimodal panoptic segmentation is still an emerging
field, we further benchmark our model against the state of the
art in multimodal semantic segmentation on both MUSES in
Table II and DeLiVER in Table III. Given the OneFormer head
simultaneously solves panoptic and semantic segmentation, we
obtain one CAFuser model solving both tasks on MUSES. The
results show that our model outperforms top methods such as
CMNeXt [7] and GeminiFusion [8]. While these multimodal
methods do improve over the RGB-camera-only methods, our
CAFuser model significantly outperforms all multimodal and
RGB-only methods and sets the new SOTA. This validates
the strength of CAF, which allows optimal sensor integration
under diverse environmental conditions and thus superior
performance both in panoptic and semantic segmentation.

B. Ablation Studies

We perform all our ablations on MUSES due to its diverse
real-world conditions and high-quality panoptic annotations.
Feature Adapter: We ablate the effect of our proposed feature
adapter and CAF module in Tab. IV where we first create
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TABLE III
COMPARISON OF SEMANTIC SEGMENTATION METHODS ON DELIVER. C:

RGB CAMERA, D: DEPTH, E: EVENTS, L: LIDAR

Method Modalities Backbone mIoU-val ↑ mIoU-test ↑
CMNeXt [7] CLDE MiT-B2 66.3 53.0
StitchFusion [28] CLDE MiT-B2 68.2 53.4
GeminiFusion [8] CLDE MiT-B2 66.9 54.5
CAFuser-CAA CLDE Swin-T 68.6 55.2
CAFuser-CA2 (Ours) CLDE Swin-T 67.8 55.6

TABLE IV
ABLATION STUDY OF OUR PROPOSED MODULES ON MUSES. USING A
SHARED BACKBONE REDUCES THE PARAMETERS BY 55% WHILE THE

ADAPTER AND CAF MODULE INCREASE THE PQ TO A NEW SOTA.

Method Shared Backb. Adapter CAF Params PQ ↑
1 OneFormer [17] n/a - - 50.7M 55.7
2 OneFormer w/ MUSES - - - 149.0M 59.3
3 CAFuser ✓ - - 66.4M 58.4
4 CAFuser ✓ ✓ - 68.0M 59.3
5 CAFuser-CA2 (Ours) ✓ ✓ ✓ 77.7M 59.7

a strong baseline (row 2) by training OneFormer with the 4
parallel backbones proposed by MUSES. Using a shared back-
bone (row 3) significantly reduces the number of parameters (-
55%), but also results in a significant performance drop (-0.9%
PQ). Adding our proposed feature adapter (row 4) gains back
all the lost performance (+0.9% PQ) while still having less
than half of the original parameters. Adding our CAF module
(row 5) gains another 0.4% in PQ, surpassing the performance
of the larger, baseline model.
CAA Fusion: We conduct an ablation study to evaluate the
impact of our CAA fusion method. As shown in Table V,
we compare four fusion strategies: mean, random weights,
learned weights, and CAA Fusion, which dynamically predicts
modality weights using the CT. For the basic method that
takes a simple mean over all modalities, we can see a large
improvement of +1% PQ when adding the adapter (row 2) to
the no-adapter baseline, highlighting the benefit of adapting
features before fusion. Random fusion, where weights are
randomly assigned to each modality, underperformed with
a PQ of 58.5%. Learning static weights for each modality,
without considering environmental conditions, reaches a sim-
ilar performance to the mean fusion. Finally, our proposed
CAA Fusion, which dynamically adjusts weights based on
the CT, outperforms all other strategies with a PQ of 59.4%,
demonstrating the effectiveness of adapting the fusion process
to environmental conditions.
CA2 Fusion: In Tab. VI, we investigate the detailed design
of our CA2 fusion and how to best utilize the CT for CAF.

TABLE V
ABLATION STUDY USING ALL FOUR MODALITIES ON DIFFERENT

WEIGHTED FUSION STRATEGIES FOR OUR CAA MODULE ON MUSES.

Adapter CAF Fusion Type PQ ↑
1 × × Mean 58.1
2 ✓ × Mean 59.1
3 ✓ × Random Weights 58.5
4 ✓ × Learned Weights 59.1
5 ✓ ✓ CAA 59.4

TABLE VI
ABLATION STUDY ON CA2 FUSION DESIGN ON MUSES. THE CONDITION

TOKEN IS APPENDED TO THE RGB QUERIES (Q) OR THE SECONDARY
MODALITIES’ KEYS AND VALUES (K&V).

Q K&V PQ ↑
1 × × 59.3
2 × ✓ 59.1
3 (Ours) ✓ × 59.7
4 ✓ ✓ 59.6

TABLE VII
ABLATION STUDY ON THE GUIDANCE OF THE VERBO-VISUAL

CONTRASTIVE LOSS BETWEEN Qtext AND THE CT ON MUSES.

Condition Loss PQ ↑
1 × 59.3
2 (Ours) ✓ 59.7

Appending the CT to the secondary modalities’ keys and
values yields a small decrease in performance. Since the CT
is derived from RGB features, mixing it with other modalities
could introduce confusion to the fusion process.

In contrast, our proposed approach (row 3), where the CT
is only appended to the RGB queries, achieves the highest PQ
score of 59.7%. This design enables dynamic cross-attention
tailored to environmental conditions, effectively guiding the
fusion process and aligning with our intuition described in
Sec. III-B and motivating our design choice.
Condition Loss: In Table VII, we assess the impact of our
contrastive condition loss, by training an identical network,
with and without applying the loss on the CT. As this loss is
designed to ensure the CT effectively captures environmental
conditions, we want to investigate if the model could learn
this internally without additional supervision. Adding the
condition loss improves the performance by +0.4% in PQ.
This demonstrates that our contrastive loss is essential as an
additional supervision to efficiently guide CAF.
Condition Encoding: In Table VIII, we ablate the use of dif-
ferent condition prompt encodings in the CT generation. Using
a high-level condition description, such as simply classifying
weather with a single token as e.g. clear or foggy, yields the
same performance as without CAF (PQ 59.2%). However, our
proposed detailed condition prompt construction, which cap-
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Fig. 5. Average Condition-Aware Addition (CAA) fusion weights in % on
the MUSES test set across different weather conditions and times of day. This
figure illustrates how the relative contributions of each sensor modality vary
under various environmental conditions, highlighting the adaptability of the
fusion mechanism to changing visibility and lighting scenarios.
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Fig. 6. Qualitative panoptic segmentation results on MUSES with visualization of the four input modalities. Best viewed on a screen at full zoom.

TABLE VIII
ABLATION STUDY ON THE CONDITION PROMPT ENCODINGS ON MUSES.

1: SIMPLE HIGH-LEVEL CONDITION PROMPT (E.G. [“CLEAR”]) 2:
DETAILED CONDITION PROMPTS ACCORDING TO SEC. III-B.

Text Tokens PQ↑
1 w/o detailed condition prompts 59.2
2 (Ours) w/ detailed condition prompts 59.7

TABLE IX
ABLATION FOR CAFUSER WITH DIFFERENT INPUT MODALITIES ON

MUSES. EACH ADDED MODALITY IMPROVES THE PQ.

RGB Lidar Radar Events PQ ↑
1 ✓ × × × 55.7
2 ✓ ✓ × × 58.7 (+3.0)
3 ✓ ✓ ✓ × 59.3 (+0.6)
4 ✓ ✓ ✓ ✓ 59.7 (+0.4)

tures nuanced aspects of the environment (e.g., distinguishing
between snow on the ground versus snow in the air), results
in a significant improvement of +0.5% in PQ, achieving a
PQ of 59.7%. This suggests that detailed condition prompts
provide more fine-grained information for the fusion process,
enabling more effective sensor integration based on the actual
environmental context.
Modalities: Table IX shows the performance of our model
with different combinations of input modalities. Starting with
RGB-only input (55.7% PQ), we observe consistent perfor-
mance gains with each added modality: +3.0% PQ for lidar,
+0.6% PQ for radar, and an additional +0.4% PQ for event
camera, reaching 59.7% PQ. These results demonstrate that
our approach effectively leverages all modalities, with each
additional sensor contributing to performance. The flexibility
of our design allows to generalize well across various input
combinations.

C. CAA Weight Analysis

We also investigate how our CAA fusion mechanism dy-
namically adjusts sensor modality weights in response to
changing environmental conditions in scenes that were not
encountered during training. Fig. 5 illustrates that under clear

daytime conditions, the RGB modality dominates with a
weight of 68%, capitalizing on its rich visual detail. In con-
trast, in foggy nighttime scenes, the RGB weight significantly
decreases by -20% to 48%, while the weights of other modali-
ties increase correspondingly by +8% for lidar, +2% for radar,
and +10% for the events. This substantial shift indicates that
our CAA module effectively adapts to challenging conditions
by decreasing reliance on less reliable sensors and boosting
the weight of more robust ones per case. These adjustments
mirror the natural strengths of each sensor modality. Since
RGB cameras struggle in low light and in certain adverse
weather conditions, the CAA fusion places greater reliance
on the active sensors (lidar and radar) and event cameras,
which offer a high dynamic range and excel in low-light
environments. These findings highlight that we successfully
encode environmental conditions in our CT from RGB inputs
alone and adjust the fusion mechanism to prioritize the most
informative sensors, thereby making semantic perception in
automated driving more robust.

D. Qualitative Results

In Fig. 6, we compare qualitative results of CAFuser with
competing methods. In the foggy nighttime scene (row 1),
CAFuser successfully identifies the distant car in the center.
In row 2, both multimodal approaches label the person on the
right, despite a droplet obscuring the RGB input. In row 3, only
CAFuser segments the more distant of the two riders waiting at
the traffic light. In row 4, while all methods recognize the four
vehicles on the sides, only CAFuser achieves good instance
separation without unnecessary gaps.

V. CONCLUSION

In this work, we introduced CAFuser, a novel condition-
aware multimodal fusion framework for robust semantic
perception in autonomous driving. By employing a shared
backbone and modality-specific feature adapters, CAFuser
efficiently aligns diverse sensor inputs into a common latent
space while significantly reducing the model complexity. Our
attention-based condition-aware fusion module dynamically
adapts to environmental conditions guided by a Condition
Token that is learned from the RGB input. This dynamic fusion
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enhances robustness and accuracy under challenging weather
scenarios. We demonstrated that our method outperforms com-
peting approaches both in panoptic and semantic segmentation,
setting the new state of the art on MUSES and DeLiVER.
Extensive ablation studies demonstrate the effectiveness of
our proposed modules. These advancements make CAFuser
a promising solution for enhancing semantic perception in
autonomous driving and robotics, particularly under adverse
environmental conditions.
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