System Identification Lecture 6: Frequency-domain identification & input signals

Roy	Sm	ith
-----	----	-----

2023-10-24

2023-10-24

6.2

Spectral transformations (random signals) $\begin{array}{c}
 & \downarrow e(k) \\
 & \downarrow H(e^{j\omega}) \\
 & \downarrow v(k) \\
 & \downarrow v(k) \\
 & \downarrow g(e^{j\omega}) \\
 & \downarrow$

Spectral estimation methods:

$$\hat{G}(\mathsf{e}^{j\omega}) = \frac{\hat{\phi}_{yu}(\mathsf{e}^{j\omega})}{\hat{\phi}_u(\mathsf{e}^{j\omega})}$$

2023-10-24

Spectral estimation methods

$$\phi_y(\mathbf{e}^{j\omega}) = |G(\mathbf{e}^{j\omega})|^2 \phi_u(\mathbf{e}^{j\omega}) + \phi_v(\mathbf{e}^{j\omega})$$

$$\phi_{yu}(\mathbf{e}^{j\omega}) = G(\mathbf{e}^{j\omega})\,\phi_u(\mathbf{e}^{j\omega})$$

$$\hat{G}(\mathbf{e}^{j\omega_n}) = \frac{\hat{\phi}_{yu}(\mathbf{e}^{j\omega_n})}{\hat{\phi}_u(\mathbf{e}^{j\omega_n})}$$

2023-10-24

Spectral estimation (periodic signals)

Autocorrelation function

Periodic signal, x(k), with period M(N = mM for some integer m)

 $R_x(au) = rac{1}{M} \sum_{k=0}^{M-1} x(k) x(k- au)$ (using a periodic calculation)

Power spectral density

The power spectral density can be calculated exactly and is also equal to the periodogram.

$$\phi_x(\mathbf{e}^{j\omega_n}) = \sum_{\tau=0}^{M-1} R_x(\tau) \mathbf{e}^{-j\omega_n\tau} = \frac{1}{M} |X_M(\mathbf{e}^{j\omega_n})|^2$$

2023-10-24

Spectral estimation of random signals

Periodogram

The periodogram (for a length N measurement of a random signal v(k)) is:

$$\frac{1}{N} \left| V_N(\mathsf{e}^{j\omega}) \right|^2$$

Asymptotically unbiased estimator of the spectrum:

$$\lim_{N \longrightarrow \infty} E\left\{\frac{1}{N} |V_N(\mathbf{e}^{j\omega})|^2\right\} = \phi_v(\mathbf{e}^{j\omega})$$

Assumes:

$$\lim_{N \longrightarrow \infty} \frac{1}{N} \sum_{\tau = -N}^{N} |\tau R_v(\tau)| = 0$$

Spectral estimation (via covariances)

Autocovariance function

Autocovariance estimate (stochastic, zero mean, v(k)):

$$\hat{R}_{v}(\tau) = \begin{cases} \frac{1}{N - |\tau|} \sum_{k=\tau}^{N-1} v(k) v(k - \tau), & \text{ for } \tau \ge 0, \\ \frac{1}{N - |\tau|} \sum_{k=0}^{N+\tau-1} v(k) v(k - \tau), & \text{ for } \tau < 0, \end{cases}$$

Gives estimates for $-N + 1 \leq \tau \leq N - 1$.

This is an unbiased estimator of $R_v(\tau)$: $E\{\hat{R}_v(\tau)\} = R_v(\tau)$

Spectral estimate

$$\hat{\phi}_{v}(\mathbf{e}^{j\omega}) = \sum_{\tau=-N+1}^{N-1} \hat{R}_{v}(\tau) \mathbf{e}^{-j\omega\tau}$$

2023-10-24

Spectral estimation (more general case)

Alternative autocorrelation estimate:

$$\hat{R}_{x}(\tau) = \begin{cases} \frac{1}{N} \sum_{k=\tau}^{N-1} x(k) x(k-\tau), & \text{ for } \tau \ge 0, \\ \\ \frac{1}{N} \sum_{k=0}^{N+\tau-1} x(k) x(k-\tau), & \text{ for } \tau < 0, \end{cases}$$

Periodic x(k): unbiased (exact) if N = mM (for integer m)

Random
$$x(k)$$
: biased $E\{\hat{R}_x(\tau)\} = \frac{N - |\tau|}{N}R_x(\tau)$
asymptotically unbiased
(as $N \longrightarrow \infty, \tau/N \longrightarrow 0$)

2023-10-24

ETFE smoothing

Averaging adjacent frequencies

$$E\left\{\left(\hat{G}_N(\mathsf{e}^{j\omega_n}) - G_0(\mathsf{e}^{j\omega_n})\right)\left(\hat{G}_N(\mathsf{e}^{-j\omega_i}) - G_0(\mathsf{e}^{-j\omega_i})\right)\right\} = 0$$

Window functions	
Frequency smoothing window characteristics: width (specified by γ parameter)	
The wider the frequency window (i.e. decreasing γ)	
the more adjacent frequencies included in the smoothed estimate,	
the smoother the result,	
the lower the noise induced variance,	
the higher the bias.	
2023-10-24	6.19

Window functions

Window characteristics: shape

Some common choices:

Bartlett:
$$W_{\gamma}(e^{j\omega}) = \frac{1}{\gamma} \left(\frac{\sin \gamma \omega/2}{\sin \omega/2} \right)^2$$

Hann: $W_{\gamma}(e^{j\omega}) = \frac{1}{2} D_{\gamma}(\omega) + \frac{1}{4} D_{\gamma}(\omega - \pi/\gamma) + \frac{1}{4} D_{\gamma}(\omega + \pi/\gamma)$
where $D_{\gamma}(\omega) = \frac{\sin \omega(\gamma + 0.5)}{\cos \omega + 1}$

ere
$$D_{\gamma}(\omega) = \frac{1}{\sin \omega/2}$$

Others include: Hamming, Parzen, Kaiser, ...

The differences are mostly in the leakage properties of the energy to adjacent frequencies. And the ability to resolve close frequency peaks.


```
ETFE smoothing example: MATLAB calculations
     U = fft(u);
                                                 % calculate N point FFTs
     Y = fft(y);
     Gest = Y./U;
                                                 % ETFE estimate
     Gs = 0*Gest;
                                                 % smoothed estimate
                                                 % window (centered)
     [omega,Wg] = WfHann(gamma,N);
     zidx = find(omega==0);
                                                 % shift to start at zero
     omega = [omega(zidx:N);omega(1:zidx-1)];
                                                 % frequency grid
     Wg = [Wg(zidx:N);Wg(1:zidx-1)];
     a = U.*conj(U);
                                                 % variance weighting
     for wn = 1:N,
                                                 % reset normalisation
       Wnorm = 0;
       for xi = 1:N,
         widx = mod(xi-wn,N)+1;
                                                 % wrap window index
          Gs(wn) = Gs(wn) + \dots
                 Wg(widx) * Gest(xi) * a(xi);
         Wnorm = Wnorm + Wg(widx) * a(xi);
       end
       Gs(wn) = Gs(wn)/Wnorm;
                                                 % weight normalisation
2023-10-24 end
                                                                                              6.33
```

Duality

Familiar relationship:

$$y(k) = \sum_{-\infty}^{\infty} g(i)u(i-k) \quad \longleftrightarrow$$

 $\underbrace{Y(\mathbf{e}^{j\omega_n}) = G(\mathbf{e}^{jw_n})U(\mathbf{e}^{j\omega_n})}_{\mathbf{e}^{j\omega_n}}$

Convolution in time domain

Multiplication in frequency domain

By duality, we also have:

$$\tilde{\Phi}(\mathsf{e}^{j\omega_n}) = \sum_{\xi=-N/2+1}^{N/2} W(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \qquad \longleftrightarrow \quad \underbrace{\tilde{R}(\tau) = w(\tau)}_{\xi=-N/2+1} \Psi(\mathsf{e}^{j\xi}) \Phi(\mathsf{e}^{j\omega_n - j\xi}) \Phi(\mathsf{e}^{j\omega_n - j$$

Convolution¹ in frequency domain

Multiplication in time domain

 $(au) R_{ au}$

¹This is a circular convolution

Time-domain windows

Spectra

For periodic signals (with period M = N),

$$\frac{1}{N} \left| U_N(\mathbf{e}^{j\omega_n}) \right|^2 = \phi_u(\mathbf{e}^{j\omega_n}) = \sum_{\tau=0}^{N-1} R_u(\tau) \mathbf{e}^{-j\omega_n\tau}$$

= Fourier transform of $R_u(\tau)$.

2023-10-24

Time-domain windows — smoothing the spectral estimates

Time-domain window

Define, via the inverse Fourier transform, a time-domain window,

$$w_{\gamma}(au) \;=\; rac{1}{N} \sum_{n=-N/2+1}^{N/2} W_{\gamma}(\mathsf{e}^{j\omega_n}) \mathsf{e}^{j\omega_n au}.$$

Time-domain windowing of spectral estimates

Then, the smoothed input spectral estimate, $\tilde{\phi}_u(\mathrm{e}^{j\omega_n}),$ is

$$\sum_{\xi=-N/2+1}^{N/2} W_{\gamma}(\mathsf{e}^{j(\xi-\omega_n)}) \frac{1}{N} \left| U_N(\mathsf{e}^{j\xi}) \right|^2 \approx \sum_{\tau=-\infty}^{\infty} w_{\gamma}(\tau) \hat{R}_u(\tau) \mathsf{e}^{-j\tau\omega_n}$$

This is the Fourier transform of a time-domain multiplication.

Time-domain windows

Time-domain truncations

In practice choose $W_{\gamma}(e^{j\omega})$ (or $w_{\gamma}(\tau)$) so that,

$$w_{\gamma}(\tau) = \begin{cases} 0 & \text{for} \quad \tau < -\gamma \\ > 0 & -\gamma \leqslant \tau \leqslant \gamma \\ 0 & \tau > \gamma \end{cases}$$

where we often have $\gamma \ll N$.

Windowed spectral estimate

Then, the smoothed input spectral estimate is

$$\tilde{\phi}_u(\mathsf{e}^{j\omega_n}) = \sum_{\tau=-\gamma}^{\gamma} w_{\gamma}(\tau) \hat{R}_u(\tau) \mathsf{e}^{-j\tau\omega_n},$$

and $\hat{R}_u(\tau)$ need only be calculated over $-\gamma \leqslant \tau \leqslant \gamma$.

2023-10-24

Time-domain windows

Cross-spectral estimates

The smoothed cross-spectral estimate, $\tilde{\phi}_{yu}(\mathrm{e}^{j\omega_n}),$ is

$$\begin{split} \tilde{\phi}_{yu}(\mathbf{e}^{j\omega_n}) &= \sum_{\xi=-N/2+2}^{N/2} W_{\gamma}(\mathbf{e}^{j(\xi-\omega_n)}) \frac{1}{N} Y_N(\mathbf{e}^{j\xi}) U_N^*(\mathbf{e}^{j\xi}) \\ &\approx \sum_{\tau=-\infty}^{\infty} w_{\gamma}(\tau) \hat{R}_{yu}(\tau) \mathbf{e}^{-j\tau\omega_n}, \end{split}$$

and in the finite support $w_{\gamma}(\tau)$ case,

$$= \sum_{\tau=-\gamma}^{\gamma} w_{\gamma}(\tau) \hat{R}_{yu}(\tau) \mathrm{e}^{-j\tau\omega_{\gamma}}$$

Again, $\hat{R}_{yu}(\tau)$ need only be calculated over $-\gamma \leqslant \tau \leqslant \gamma$.

2023-10-24

Window functions

Bartlett window

Hann window

$$\begin{split} W_{\gamma}(\mathbf{e}^{j\omega}) &= \frac{1}{2}D_{\gamma}(\omega) + \frac{1}{4}D_{\gamma}(\omega - \pi/\gamma) \\ &+ \frac{1}{4}D_{\gamma}(\omega + \pi/\gamma) \\ \end{split}$$
 where $D_{\gamma}(\omega) = \frac{\sin\omega(\gamma + 0.5)}{\sin\omega/2}$

$$w_{\gamma}(\tau) = \frac{1}{2} \left(1 + \cos \frac{\pi \tau}{\gamma} \right)$$

2023-10-24

Input signals

Filtered white noise

$$u = L(z)e, \quad e \in \mathcal{N}(0,1) \qquad \phi_u(\mathbf{e}^{j\omega}) = \left| L(\mathbf{e}^{j\omega}) \right|^2.$$

Designing L(z) specifies (in expectation) the frequency content of the input signal.

Random binary signal

$$u(k) = a \operatorname{sign}(e(k)), \quad e \in \mathcal{N}(0,1), \qquad R_u(\tau) = \begin{cases} a^2, & \tau = 0\\ 0 & \tau \neq 0, \end{cases} \quad \phi_u(e^{j\omega}) = a^2.$$

Weighted version: $u(k) = a \operatorname{sign}(L(z)e(k)), e \in \mathcal{N}(0,1)$

L(z) is used to modify the spectrum.

2023-10-24

PRBS signals

Run length distribution

Autocorrelation function

Using a calculation length of 1 period: $N = M = 2^X - 1$.

$$R_u(\tau) = \frac{1}{N} \sum_{k=0}^{N-1} u(k)u(k-\tau) = \begin{cases} a^2 & \text{if } \tau = 0, \\ \frac{-a^2}{(2^N-1)} & \text{if } \tau \neq 0 \end{cases}$$

Multi-sinusoidal signals

Sum of (harmonically related) sinusoids

$$u(k) = \sum_{s=1}^{S} \sqrt{2\alpha_s} \cos \left(\omega_s kT + \phi_s \right)$$
 where T is the sampling period

Select S harmonically related frequencies:

$$\omega_s = \frac{2\pi ls}{N}, \quad s = 1, \dots, S$$

Lowest frequency is $\frac{2\pi l}{N}$ where l is an integer.

Highest frequency must be less than the Nyquist frequency:

$$\frac{2\pi lS}{N} < \pi, \qquad \Longrightarrow \qquad S < \frac{N}{2l}.$$

Total signal power $= \sum_{s=1}^{S} \alpha_s = 1$ (normalised).

2023-10-24

Multi-sinusoidal signals

Schroeder phasing

$$u(k) = \sum_{s=1}^{S} \sqrt{2\alpha_s} \cos\left(\omega_s kT + \phi_s\right)$$

Select the phases, ϕ_s , to minimise the peak amplitude of u(k).

Solution:
$$\phi_s = 2\pi \sum_{n=1}^s n\alpha_s.$$

For equal power in each sinusoid:

$$\alpha_s = 1/S$$
 and $\phi_s = \frac{\pi(s^2 + s)}{S}.$

General case: arbitrary selection of frequencies

Consider S = N/2 sinusoids (l = 1).

 $\alpha_s > 0 \text{ for } s \in \{ \text{selected frequencies set} \}, \qquad \alpha_s = 0 \text{ otherwise}.$

```
2023-10-24
```

Chirp signals

Bibliography

Spectral estimation:

Lennart Ljung, System Identification; Theory for the User, (see Section 6.4) Prentice-Hall, 2nd Ed., 1999.

P. Stoica & R. Moses, Introduction to Spectral Analysis (see Chapters 1 and 2), Prentice-Hall, 1997.

Windowing and ETFE smoothing

P. Stoica & R. Moses, Introduction to Spectral Analysis (see Chapters 1 and 2), Prentice-Hall, 1997.

Lennart Ljung, System Identification; Theory for the User, (see Section 6.4) Prentice-Hall, 2nd Ed., 1999.

Input signals:

Lennart Ljung, System Identification; Theory for the User, (see Section 13.3) Prentice-Hall, 2nd Ed., 1999.

D. Bayard, "Statistical plant set estimation using Schroeder-phased multisinusoidal input design," *Applied Math. & Computation*, Vol. 58, pp. 169–198, 1993.

R. Pintelon & J. Schoukens, "System Identification; A Frequency Domain Approach," 2002, [chirp signals: p. 120].