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Lecture 3: Least-squares estimation
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Least-Squares data-fitting

Framework

v(k)
y(k) ,L u(k)
< (Fre G |e——m

True system: y = Gou + v, v~N(0,02), wvisi.id.

Data set: Z = {(yo,uo,...yN_l,uN_l}.

Yo uo V0
= : 0 +
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Least-Squares data-fitting

Objective: least-squares

“Closest fit” in the 2-norm sense:

miniemise ly — @0“3
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Least-Squares

Normal equations

(@ch) 0 = o7y

These are always consistent.
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Least-Squares

Pseudo-inverse formulation

Notation: X1, Defining properties: X = XxTx, xt = xTxXxT,
XX and XTX are symmetric.

SVvD: UZVT =svd(X), VEUT =svd(xT), == [20 8], >t = {
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Least-Squares

QR formulation
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Least-Squares

Geometric interpretation
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Least-Squares

Geometric interpretation
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Least-Squares

Linear regression problems
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Least-Squares

Example

y=uG + v, yeRN,uERN,veRN.

Normal equations: (u"u)G = u"y,

N-1
u(n)y(n)
H . A T \—1 T _ n=
Estimate: G = (v u) vy = —(—
-\ 12
|u(9)]
1=0
This is equivalent to:
N—1 2
2 Qn <(—>, where «a, = NEL(n)'
n=0 ) 1
= u(@)?
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Least-Squares: Applicability
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F.J. Anscombe, “Graphs in Statistical Analysis”, The American Statistician, 27:1, 17-21, 1973.
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Example: Ceres orbit determination

1801, 1st January. Guissepe Piazzi finds and makes 22 observations of a
“planet” over 44 days.

1801, February. Ceres is obscured by the sun. The observations
correspond to 9 degrees of arc.

Dawn mission image of Ceres

1801, June. Zach publishes the observational data. Many astronomers e )
m. diameter

attempt to estimate when and where Ceres will reappear.
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1801, September. Karl Fredrich Gauss estimates the orbit of Ceres and
Zach publishes his empheris (along with many others). Those of Gauss
differ significantly.

DEUTSCHE O
BUNDESPOST

1801, 7th December. Zach locates Ceres within 1/2 a degree of Gauss's
prediction. Gauss refuses to disclose his method and is accused by some
of sorcery.
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Example: Ceres orbit determination

1802. Gauss also estimates the orbit of Pallas.
1805 Legendre publishes a paper on the method of least squares.

1807 Gauss becomes director of Gottingen observatory. Olbers discovers Vesta
and Gauss takes only 10 hours to estimate its orbit. Ceres’ orbit had taken him
100 hours.

1809. Gauss finally publishes details of his method and claims priority over
Legendre.

Gauss's approach: least squares
Basic assumptions: Kepler's laws of planetary motion.
> Planetary orbits are ellipses with the sun at one of the foci.
» A line drawn between the Sun and any planet sweeps out equal areas in equal time.

» The ratio of the square of the orbital periods of two planets is equal to the ratio of the cubes of
their major semi-axes.
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Parametrisation: Keplerian orbital elements

7 Five parameters define an orbit in space,
and a sixth parameter gives the current
position of the body on the orbit.

Orbital Elements:

> Orbit size and shape:

— eccentricity (e)
— semimajor axis (a)

Y
~

—

Ozero angle positions simplified in the figure
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Parametrisation: Keplerian orbital elements

AZ, ZQ

(\
Y
~

Five parameters define an orbit in space,
and a sixth parameter gives the current
position of the body on the orbit.

Orbital Elements:

> Orbit size and shape:
— eccentricity (e)
— semimajor axis (a)

> Longitude of ascending node (2)

P% Q Xao
Ozero angle positions simplified in the figure
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Parametrisation: Keplerian orbital elements
A7, Zq Five parameters define an orbit in space,
Zor s i and a sixth parameter gives the current
’ position of the body on the orbit.
Orbital Elements:
Ya,i > Orbit size and shape:
— eccentricity (e)
1 — semimajor axis (a)
Y . .
@ » Longitude of ascending node (£2)
0 » Inclination (1)
i )
X Q2 Xa, Xa.i
Ozero angle positions simplified in the figure
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Parametrisation: Keplerian orbital elements

Five parameters define an orbit in space,

A Za ) .
Zoir Zarie i and a sixth parameter gives the current
’ v position of the body on the orbit.
Q’“" Orbital Elements:
Ya,i > Orbit size and shape:
— eccentricity (e)
— semimajor axis (a)
Y . .
& > Longitude of ascending node (2)
> Inclination (%)
>Y > Argument of periapsis (w)
XQ.iw
X X0
Ozero angle positions simplified in the figure
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Parametrisation: Keplerian orbital elements
A7, Zq Five parameters define an orbit in space,
i Zoiw ; and a sixth parameter gives the current
position of the body on the orbit.
‘“7‘“ Orbital Elements:
> Orbit size and shape:
— eccentricity (e)
— semimajor axis (a)
» Longitude of ascending node (£2)
» Inclination (1)
» Argument of periapsis (w)
> True anomaly (v)
X0iw
X Xa, X,
Ozero angle positions simplified in the figure
3.14
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Example: Ceres orbit determination

Gauss's approach: least squares

» Select three observations: 1 January, 21 January and 11 February.

» Calculate a nominal orbit matching the observations.
> Calculate a Taylor series approximation to the nonlinear differential equations.
> |terative refinement of the nominal orbit.

» Adjust linearized versions of the orbit to minimise the sum of squares of the error in all 22
observations.

Problem formulation

[ RA of obs. 1 ]
Dec. of obs. 1

y = : = H(0,t), where 6 = vector of orbital elements.

RA of obs. 22
| Dec. of obs. 22 |
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Example: Ceres orbit determination

Problem formulation

€ = Yobs — H (0, 1), € is the vector of residuals.
. e’ R e
Define a “cost function”:  J(0) = — with weighting: R > 0.

Optimisation: 6y = argmin J(6).
0

84
oY
Nominal orbit /4—4\

Nominal orbit

11 Feb.

Nominal orbit determination Estimated orbit errors
6 equations in 6 unknown parameters. 44 equations in 6 unknown parameters.
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Example: Ceres orbit determination

Linearisation and iterative refinement

The orbit is specified by ;. Start with initial case (¢ = 0). Close to this,

H(0) ~ H(0:) + Ho(0 — 6:), where Hy = %—IZ .
0;
Define 660 = 0 — 6; and §y = yobs — H(6:). Then,

(8y — Had0)T R~ (6y — He60)™
2

Jlinear((se) = ~ J(01 + 59)

The gradient of Jinear(0) is,

aJlinear (0)
00

Setting this to zero is equivalent to solving,

— —Hy R™"(6y — Hpd0).

Hy R™'Hy60 = Hy R™'6y. (linear least-squares problem)

Solve for 66 and iteratively update: 0;11 = 6; + §6.
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Linearization and iterative refinement

Cost function A
(to be minimised)

Jlinear(g)

J(0:) A

J(g*) .

. > parameters: 6
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Example: Ceres orbit determination

Gauss's sketch
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Regularised Least-Squares

Tikhonov regularisation
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Regularised Least-Squares

Example
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Example

Bias-Variance trade-off

0.0546 -

MSE
MSE gpt

variance

n=0,/IG|?
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Statistical properties of the LS estimates

Model

€(0)
Y = ®0 + ¢, €= :
e(N —1)

Error assumptions,

E{e} =0, E{ee"} = o°1I.

LS estimator properties

Assume that ® is fixed, but consider € as a stochastic variable.

E{0} = 6, (unbiased estimator)

cov{fy = E{(0—00)(0 — 00)"} = o <¢T¢>*1 .
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Statistical properties of the LS estimates

Bias and variance of the estimates
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Least square estimation statistics

Model with correlated noise
Y =®0+¢,  with Efee’} =R.

LS estimator properties

Assume that ® is fixed, but consider € as a stochastic variable.

E{0} = 6o (unbiased estimator)
cov(d) = B{(0 - 000 —00)"} = (@70) " @" Re (¢70)

Note the simplification to the white noise case if R = 1.
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Best linear unbiased estimator (BLUE or Markov estimate)

Model with correlated noise

Y =®0+¢,  with Efee’} =R

Best linear estimator

Linear estimators: 0 = ZTY
1 T 1 -1
The linear estimator: Z =R & (q) R~ <I>>
satisfies:
E{0z} = 0y,  (unbiased)
. -1 R
cov{fz} = (@TR_I@) < cov{f} for any unbiased estimate.

Note that the BLUE requires knowledge of the error covariance, R.
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