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Lecture 1: Introduction to System ldentification

System lIdentification

Roy Smith

1.1

|dentification objectives
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Simple approximation to the system.

Model for prediction purposes.

Clearer understanding of system behaviour.

Model for use in control design.
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Fundamental issues: identifying dynamical systems

» Purpose of the model.

» Open- or closed-loop experiments.

> Linearity of the system. Linear model assumptions.

> Choice of sample period, T

» Finite data records.

» Constraints on the input excitation.
» Noise on the measurements.

» Experiment time constraints.

» Data efficiency (how big is the data?)
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|dentification framework: open-loop configuration

Experimental system

noise
output v(k)
?‘J(k) Physical

- < system

Identified model
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input: u(k)

disturbances: d(k)
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Fundamental concepts

y(k) Physical
system

noise
output l v(k) input: u(k)
)
disturbances: d(k)

An ldentification Procedure: from data to a model

. Choose an input of length K: wu(k), k=0,...,K —1.

. Apply u(k) to the plant, G.

. Measure y(k), k=0,..., K — 1.

. Use {u(k),y(k)}, k=0,...,K —1 to get a model, G, for the plant G.

A W N =

Basic idea:

y = Gu, so G~ y/lu.
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Models

First principles (from the physics)
Derived from physical principles.

f=mi = G(5)=1£—2m, where y = z, and u = f.

“Black-box" models
Response estimated from experimental data (measurements of f(¢) and x(t)).

“Grey-box" models
A combination of first principles and experimentally derived parameters.

G(s) = %, where 6 is to be estimated from data.
s
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Modeling philosophy
Applicability

“All models are wrong, but some are useful.” George Box,
1978

George Box (1919-2013)

Parsimony

Make the model as simple as possible.
Occam'’s razor - remove extraneous assumptions.

Simplier models are more easily falsified.

Fewer parameters require less data for identification.
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Model purpose
Open-loop prediction Closed-loop design
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Model purpose

Model comparison: frequency domain
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Model purpose
Step responses
Model outputs
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Model purpose

Closed-loop responses

Controller:
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Model purpose
Relative errors
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Open-loop identification

Discrete-time model:

Main assumptions

» G is linear.
> e(k) is zero-mean white noise (with known variance).

» H may be known approximately.
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Closed-loop identification

y(k) u(k) ry (k)

Key features

v

Closed-loop operation can set the operating point of the plant.

» For many plants closed-loop operation is required.

v

For unstable plants, closed-loop experiments are essential.

v

A well designed controller masks variations in the plant.

> We can now measure y(k), u(k), r1(k) and r2(k).

v

All of these signals are now correlated.
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Example: energy flows in buildings

Inputs: Air supply temperatures
In-floor water system temperatures
Blind settings
Solar radiation
Outside temperature

Outputs: Room temperatures
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Example: energy flows in buildings

Room temperatures (controlled operation)

Temperature (°C)
28 1
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Step (or doublet) excitation

Step changes in TABS heating setpoint

Excitation plan: 16 °C for 5 days
30 °C for 5 days

Temperature (°C)

B //gk

20

16

> Date

24 Dec. 28 Dec. 01 Jan. 05 Jan.
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Example: energy flows in buildings

Things to consider:

» The building is occupied and (usually) controlled.

> The dynamics can be (very) slow.

> |t takes a year to see a reasonably complete range of weather conditions.
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Example: vibration in flexible structures

Inputs: Forces in structural members. (u;)
Shaker disturbance (w)

Outputs:  Accelerations in 3 dimensions (v;)
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Example: vibration in flexible structures
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Example: vibration in flexible structures

Magnitude
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Frequency, w
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Example: vibration in flexible structures

Things to consider:

v

Extremely fine frequency resolution is needed to resolve the modes.

v

Long data records are required.
» There is noise and drift on the accelerometer measurements.

» Experiments are very sensitive to environmental disturbances.
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Example: process control

Inputs: Hot and cold water flows (f;, and f.)

Outputs:  Tank height and temperature (hq and t1)
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hot
actuator

cold
actuator

;—~ temperature: t1
o

|

l output flow: fi
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Example: process control

Height response:  fr + f. to My
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Example: process control

Temperature response:  fp, — f. to t;
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Example: process control

Things to consider:

» Temperature and pressure (height) measurements are noisy.
> A wide range of frequencies were identified (multiple experiments).
» Nonlinear mixing dynamics are significant in the temperature response.

» The temperature response is a strong function of the height.

v

Closed-loop control was used for one variable (h1 or ¢1), while the other was excited in open-loop.
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|dentification: static open-loop case

Experimental system

noise

output v(k)
y(k)

<
<

input: u(k)

D—

A

Physical
system

disturbances: d(k)

Experiment:

Length K data record: Z = {(y(k),u(k))} k=0,...,K —1.

We may have multiple experiments, Z., r=1,..., R.
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Identification: static open-loop case

Experiment:

Length K data record: Z = {(y(k),u(k))} k=0,...,K —1.

o(k)
y(k) l u(k)
), G

Model framework

Model set

» Static, scalar map: G € R.

> Linear system: y(k) = Gu(k) + v(k), k=0,...,K —1.
No disturbances: d(k) =0, k=0,...,K —1.
All of the uncertainty is to be described by v(k).

v

v
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Fitting the data

Identification procedure

Given Z, find an estimate for G (denoted by G).

We would like to pick the “best” estimate G.
Fitting the experimental data
Our estimate would give a predicted output:
g(k) = Gu(k), k=0,...,K—1.
Define
4(0) u(0)

<
[
Iy
I
0
o

<
I
o
e

)

gk — 1) (K —1)

.2
minimise Hy — GuH

GeR 2
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Fitting criteria

More than just fitting the data ...

Minimising the error in the fit addresses the fitting of the past data.
What about the predictive capabilities of the model (future data).
Would @ still be a good model?

An additional assumption ...
The “true plant” is an element of the model set.
This implies that there exists an optimal model: G

So all input-output data (future and unmeasured past) are described by Go.
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Model class

Static, linear model with zero-mean noise

y(k) u(k)

«——

O
=z
Q

( Go € R,
y(k) = Gou(k) + v(k), forallk, Assumptions: < E{v(k)} =0
E{l(k)[*} = o3

\

Statistical statements about the model quality

» Quantify (in expectation) to ability of an estimate G to predict future outputs.

» Quantify (in expectation) the accuracy of the model with respect to the experiment length.
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|dentification objectives

Mean square error criterion

mir}imisec‘:{uy - Guﬂg} MSE
GeR

Note that the expectation allows us to make statements about the expected square-error when a
different (future) input is applied.
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|dentification objectives
Statistical criteria
Every identification procedure is a mapping: Z —> G.

The data record Z is a random variable - (G is a random variable.

Statistical criteria on G-
» Bias: S{G’} - G.
» Asymptotic bias:

lim 8{@} - G.

K—00

» Variance: 5{’@ — E{G}

|

Klim Gk & G, or equivalently, lim Prob{‘éK —G‘ > e} = 0.

—>0 K—0

» Consistency:
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Bias-variance trade-offs

Bias-variance relationship

Relationship: MSE = bias® + variance.
This is easily shown by multiplying out:

efo - o)
- efj-efeh - o<}
-y o

MSE(G) =

bias® <@) + V&l"(@)

- S{Qreal ((G . 5{@})(@ . 5{G})*)}

The final step involves showing that the last term is zero.
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