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Identification objectives

§ Simple approximation to the system.

§ Model for prediction purposes.

§ Clearer understanding of system behaviour.

§ Model for use in control design.
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Fundamental issues: identifying dynamical systems

§ Purpose of the model.

§ Open- or closed-loop experiments.

§ Linearity of the system. Linear model assumptions.

§ Choice of sample period, T .

§ Finite data records.

§ Constraints on the input excitation.

§ Noise on the measurements.

§ Experiment time constraints.

§ Data efficiency (how big is the data?)
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Identification framework: open-loop configuration

Experimental system

Physical
system

`
output
ypkq

noise
vpkq input: upkq

disturbances: dpkq

Identified model

G`

H

vpkq
ypkq upkq

epkq
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Fundamental concepts

Physical
system

`
output
ypkq

noise
vpkq input: upkq

disturbances: dpkq

An Identification Procedure: from data to a model

1. Choose an input of length K: upkq, k “ 0, . . . ,K ´ 1.

2. Apply upkq to the plant, G.

3. Measure ypkq, k “ 0, . . . ,K ´ 1.

4. Use tupkq, ypkqu, k “ 0, . . . ,K ´ 1 to get a model, Ĝ, for the plant G.

Basic idea:

y “ Gu, so Ĝ « y{u.
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Models

First principles (from the physics)

Derived from physical principles.

f “ m:x ùñ Gpsq “ 1{m
s2

, where y “ x, and u “ f.

“Black-box” models
Response estimated from experimental data (measurements of fptq and xptq).

“Grey-box” models

A combination of first principles and experimentally derived parameters.

Gpsq “ θ

s2
, where θ is to be estimated from data.
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Modeling philosophy

Applicability

“All models are wrong, but some are useful.” George Box,

1978

George Box (1919–2013)

Parsimony

Make the model as simple as possible.

Occam’s razor - remove extraneous assumptions.

Simplier models are more easily falsified.

Fewer parameters require less data for identification.
William of Ockham (1285–1347)2023-10-10 1.7

Model purpose

Open-loop prediction Closed-loop design

Ĝ
uŷ Ĝ C `y u r

´

ŷ “ Ĝu. y

r
“ ĜC

1 ` ĜC

Criterion: }y ´ ŷ} Criteria:
GC

I ` GC
stable

›››››
GC

1 ` GC
´ ĜC

1 ` ĜC

›››››
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Model purpose

Model comparison: frequency domain

Magnitude
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Model purpose

Step responses

Model outputs

yptq “
ż t

0

gpτqupt ´ τqdτ

y1ptq “
ż t

0

g1pτqupt ´ τqdτ

y2ptq “
ż t

0

g2pτqupt ´ τqdτ
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2023-10-10 1.10



Model purpose

Closed-loop responses

Magnitude

|GpjωqCpjωq|
|1 ` GpjωqCpjωq|

|G1pjωqCpjωq|
|1 ` G1pjωqCpjωq|

|G2pjωqCpjωq|
|1 ` G2pjωqCpjωq|
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Controller:

Cpsq “ 0.01p10s ` 1q
0.1s

Closed-loop stability:

G1 stable
G2 unstable
G unstable
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Model purpose

Relative errors

Magnitude
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Open-loop identification

Discrete-time model:

G`

H

vpkq
ypkq upkq

epkq

Main assumptions

§ G is linear.

§ epkq is zero-mean white noise (with known variance).

§ H may be known approximately.

2023-10-10 1.13

Closed-loop identification

G+

H

` C `

epkq

vpkq
ypkq upkq

r2pkq
r1pkq

´

Key features

§ Closed-loop operation can set the operating point of the plant.

§ For many plants closed-loop operation is required.

§ For unstable plants, closed-loop experiments are essential.

§ A well designed controller masks variations in the plant.

§ We can now measure ypkq, upkq, r1pkq and r2pkq.
§ All of these signals are now correlated.
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Example: energy flows in buildings

OptiControl Phase II – Demonstrator Gebäude 

Gebäudedaten 

 Neubau 2007 

 Büro (1.-5. OG), Restaurant (EG), Einstellhalle (1.-2. UG) 

 6000 m2 klimatisierte Fläche 

 Gemessener Wärmeverbrauch 46 kWh/m2 pro Jahr 

 Gemessener Elektrizitätsverbrauch 83 kWh/m2 pro Jahr 

Gebäudetechnik 

 TABS (Heizen/Kühlen) 

 Ventilation mit Wärmerückgewinnung,  
adiabater Kühlung und Heizung 

 Radiatoren in Eckbüros 

 Wärmegenerierung: Gasboiler 

 Kältegenerierung TABS: Kühlturm  

 Storen 

 Inputs: Air supply temperatures
In-floor water system temperatures
Blind settings
Solar radiation
Outside temperature

Outputs: Room temperatures
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Example: energy flows in buildings

Room temperatures (controlled operation)

Temperature (˝C)

Lower comfort bound

Upper comfort bound

Maximum

Minimum

Average

20

22

24

26

28

Date
1 May 8 May 15 May 22 May 29 May 4 Jun 11 Jun 18 Jun
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Step (or doublet) excitation

Step changes in TABS heating setpoint

Excitation plan: 16 ˝C for 5 days
30 ˝C for 5 days

Temperature (˝C)

16

20

24

28

Date
24 Dec. 28 Dec. 01 Jan. 05 Jan.
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Example: energy flows in buildings

Things to consider:

§ The building is occupied and (usually) controlled.

§ The dynamics can be (very) slow.

§ It takes a year to see a reasonably complete range of weather conditions.
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Example: vibration in flexible structures

u1
u2
u3

w

»
–
y1
y2
y3

fi
fl

Inputs: Forces in structural members. (ui)
Shaker disturbance (w)

Outputs: Accelerations in 3 dimensions (yi)
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Example: vibration in flexible structures

Magnitude
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Example: vibration in flexible structures

Magnitude
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Example: vibration in flexible structures

Things to consider:

§ Extremely fine frequency resolution is needed to resolve the modes.

§ Long data records are required.

§ There is noise and drift on the accelerometer measurements.

§ Experiments are very sensitive to environmental disturbances.
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Example: process control

height:
h1

output flow: f1

temperature: t1

hot
actuator

cold
actuator

fh

fc

Inputs: Hot and cold water flows (fh and fc)

Outputs: Tank height and temperature (h1 and t1)
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Example: process control

Height response: fh ` fc to h1

Magnitude
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Example: process control

Temperature response: fh ´ fc to t1
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2023-10-10 1.25

Example: process control

Things to consider:

§ Temperature and pressure (height) measurements are noisy.

§ A wide range of frequencies were identified (multiple experiments).

§ Nonlinear mixing dynamics are significant in the temperature response.

§ The temperature response is a strong function of the height.

§ Closed-loop control was used for one variable (h1 or t1), while the other was excited in open-loop.
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Identification: static open-loop case

Experimental system

Physical
system

`
output
ypkq

noise
vpkq input: upkq

disturbances: dpkq

Experiment:

Length K data record: Z “ t pypkq, upkqq u k “ 0, . . . ,K ´ 1.

We may have multiple experiments, Zr, r “ 1, . . . , R.
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Identification: static open-loop case

Experiment:

Length K data record: Z “ t pypkq, upkqq u k “ 0, . . . ,K ´ 1.

Model framework

G`ypkq upkq

vpkq

Model set

§ Static, scalar map: G P R.

§ Linear system: ypkq “ Gupkq ` vpkq, k “ 0, . . . ,K ´ 1.

§ No disturbances: dpkq “ 0, k “ 0, . . . ,K ´ 1.

§ All of the uncertainty is to be described by vpkq.
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Fitting the data

Identification procedure

Given Z, find an estimate for G (denoted by Ĝ).

We would like to pick the “best” estimate Ĝ.

Fitting the experimental data

Our estimate would give a predicted output:

ŷpkq “ Ĝ upkq, k “ 0, . . . ,K ´ 1.

Define

ŷ “

»
—–

ŷp0q
...

ŷpK ´ 1q

fi
ffifl , u “

»
—–

up0q
...

upK ´ 1q

fi
ffifl , so ŷ “ Ĝ u.

minimise
ĜPR

›››y ´ Ĝu
›››
2

2
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Fitting criteria

More than just fitting the data . . .

Minimising the error in the fit addresses the fitting of the past data.

What about the predictive capabilities of the model (future data).

Would Ĝ still be a good model?

An additional assumption . . .

The “true plant” is an element of the model set.

This implies that there exists an optimal model: G0

So all input-output data (future and unmeasured past) are described by G0.
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Model class

Static, linear model with zero-mean noise

G`ypkq upkq

vpkq

ypkq “ G0 upkq ` vpkq, for all k, Assumptions:

$
’’&
’’%

G0 P R,

Etvpkqu “ 0

E
␣|vpkq|2( “ σ2

v

Statistical statements about the model quality

§ Quantify (in expectation) to ability of an estimate Ĝ to predict future outputs.

§ Quantify (in expectation) the accuracy of the model with respect to the experiment length.
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Identification objectives

Mean square error criterion

minimise
ĜPR

E
!

}y ´ Ĝ u}22
)

MSE

Note that the expectation allows us to make statements about the expected square-error when a
different (future) input is applied.
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Identification objectives

Statistical criteria

Every identification procedure is a mapping: Z ÝÑ Ĝ.

The data record Z is a random variable ùñ Ĝ is a random variable.

Statistical criteria on Ĝ:

§ Bias: E
!
Ĝ
)

´ G.

§ Asymptotic bias:

lim
KÝÑ8 E

!
Ĝ
)

´ G.

§ Variance: E
"ˇ̌
ˇĜ ´ E

!
Ĝ
)ˇ̌
ˇ
2
*
.

§ Consistency:

lim
KÝÑ8 ĜK

pÝÑ G, or equivalently, lim
KÝÑ8 Prob

!ˇ̌
ˇĜK ´ G

ˇ̌
ˇ ą ϵ

)
“ 0.
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Bias-variance trade-offs

Bias-variance relationship

Relationship: MSE “ bias2 ` variance.
This is easily shown by multiplying out:

MSEpĜq “ E
!

|G ´ Ĝ|2
)

“ E
"ˇ̌
ˇpG ´ E

!
Ĝ
)

q ´ pĜ ´ E
!
Ĝ
)

q
ˇ̌
ˇ
2
*

“ E
!

|G ´ E
!
Ĝ
)

|2
)

` E
!

|Ĝ ´ E
!
Ĝ
)

|2
)

´ E
!
2 real

´
pG ´ E

!
Ĝ
)

qpĜ ´ E
!
Ĝ
)

q˚
¯)

“ bias2
´
Ĝ
¯

` var
´
Ĝ
¯

´ E
!
2 real

´
pG ´ E

!
Ĝ
)

qpĜ ´ E
!
Ĝ
)

q˚
¯)

The final step involves showing that the last term is zero.
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