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This document is meant to be an informal note summarising some controllability limitations
in SISO systems that arise because of the plant open loop characteristics, i.e. RHP poles or zeros,
delays, or because of particular disturbance rejection or input saturation requirements.

RHP Zeros and Poles

The limitations in the presence of RHP zeros and poles arise from the maximum modulus principle

Theorem 1 (Maximum modulus priciple). Given a function H : C → C analytic on the RHP,
then

sup
s∈RHP

|H(s)| = sup
ω∈R
|H(jω)|

In other words, if a complex function has no poles in the RHP, then the maximum modulus on
the RHP is attained on the jω axis. We use this to derive the limitations for RHP zeros and poles.

RHP Zeros [Skogestad sec. 5.7]

IF z is a RHP zero of G, then S(z) := 1
1+K(z)G(z) = 1. This is because we cannot cancel the RHP

zero of G with a pole in K. Furthermore, if K is stabilising, then S is analytic in the RHP (i.e.
stable). To obtain good performance we want

‖wPS‖∞ ≤ 1. (1)

for some wP that captures our performance specifications. Then we have:

1 ≥ |wP (jω)S(jω)| ≥ |wP (z)S(z)| ≥ |wP (z)|,

where the second inequality follows from the maximum modulus principle and the third from
S(z) = 1. We therefore get that in order to satisfy (1), we must have that |wP (z)| ≤ 1.

If we take a typical choice for wP as:

wP :=
s/M + ωB

s + ωBA

with A = 0 and M = 2 (zero steady state error and maximum peak = 2), then we get the familiar
condition on the cutoff frequency.∣∣∣∣z/2 + ωB

z

∣∣∣∣ ≤ 1 ⇐⇒ ωB ≤
z

2
.
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RHP Poles [Skogestad sec. 5.9]

If p is a RHP pole of G, then T (p) := K(p)G(p)
1+K(p)G(p) = 1 (in a limit sense). This is because we cannot

cancel the RHP pole of G with a zero in K. Furthermore, if K is stabilising, then T is analytic in
the RHP (i.e. stable). To obtain noise rejection and robust stability we normally specify that

‖wIT‖∞ ≤ 1. (2)

for some wI that encompasses our design needs. Then, similarly as before, we have:

1 ≥ |wi(jω)T (jω)| ≥ |wI(p)T (p)| ≥ |wI(p)|,

where the second inequality follows from the maximum modulus principle and the third from
T (p) = 1. We therefore get that in order to satisfy (2), we must have that |wI(p)| ≤ 1.

If we take a typical choice for wI as:

wI :=
s

ωBT
+

1

MT
,

with MT = 2, then we get the familiar condition on the cutoff frequency.

wI :=
p

ωBT
+

1

2
≤ 1 ⇐⇒ ωBT ≥ 2p.

Disturbance Rejection and Reference Tracking with no Input Saturations [Sko-
gestad sec. 5.10]

The following limitations concern reference tracking and disturbance rejection requirements. They
appear as hard constraints on S and thus limit the possible design choices.

Disturbance Rejection

We want to have |e(ω)| ≤ 1 for all disturbance |d(ω)| ≤ 1 (no requirements on input saturation).
For a typical feedback loop with additive disturbance and disturbance transfer function Gd we have
that:

e =
1

1 + L
Gdd = SGdd.

Then we have disturbance rejection if and only if ‖SGd‖∞ ≤ 1.

Reference Tracking

We want to have |e(ω)| ≤ 1 for all references |r(ω)| ≤ 1 (no requirements on input saturation). For
a typical feedback loop with additive disturbance and reference transfer function R we have that:

e =
1

1 + L
Rr = SRr.

Then we have reference tracking rejection if and only if ‖SR‖∞ ≤ 1.
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Disturbance Rejection and Reference Tracking + Input Saturation [Skogestad
sec. 5.11]

The following limitations concern the possibility of satisfying a disturbance rejection/reference
tracking requirement while maintaining the input “small”. We derive necessary conditions that,
if violated, guarantee that there exist not controller that achieves such goals.

Disturbance Rejection + Input Saturation

We want to have |e(ω)| ≤ 1 for all disturbance |d(ω)| ≤ 1, while keeping |u(ω)| ≤ 1. To derive the
limitations we assume perfect control, i.e. we assume that we have perfect knowledge of d and
we can directly manipulate the input. In that case e = y = Gdd + Gu. If |Gd(jω)| ≤ 1 by setting
u = 0 we satisfy the specification. If |Gd(jω)| > 1, since Since we cannot control d, the best we
can do is to chose u such that there is a 180◦ in the complex plane between Gdd and Gu so that
we keep |e| as small as possible. In that case we get

|e| = |Gdd| − |Gu| ≤ 1,

since |d| ≤ 1 we get that
|e| ≤ |Gd| − |Gu| ≤ 1,

which implies that
|u| ≥ |G|−1(|Gd| − 1).

Which means that, unless |G| ≥ |Gd| − 1 for all ω such that |Gd(jω)| > 1, in order to satisfy the
disturbance requirement, we need |u| > 1 even with perfect control. Note: This does not mean
that if |G| ≥ |Gd|−1 for all ω such that |Gd(jω)| > 1 there exist a controller that achieves
the requirement. This test can only give a negative result in case it is violated.

Reference Tracking + Input Saturation

We want to have |e(ω)| ≤ 1 for all references |r(ω)| ≤ 1, while keeping |u(ω)| ≤ 1. Again, to derive
the limitations we assume perfect control, i.e. we assume that we have perfect knowledge of r
and we can directly manipulate the input. In that case e = Rr − y = Rr −Gu. If |R(jω)| ≤ 1 by
setting u = 0 we satisfy the specification. If |R(jω)| > 1, since we cannot control r, the best we
can do is to chose u such that there is a 180◦ in the complex plane between −Rr and Gu so that
we keep |e| as small as possible. In that case we get

|e| = |Rr| − |Gu| ≤ 1,

since |r| ≤ 1 we get that
|e| ≤ |R| − |Gu| ≤ 1,

which implies that
|u| ≥ |G|−1(|R| − 1).

Which means that, unless |G| ≥ |R| − 1 for all ω such that |R(jω)| > 1, in order to satisfy the
tracking requirement, we need |u| > 1 even with perfect control. Note: This does not mean
that if |G| ≥ |R| − 1 for all ω such that |R(jω)| > 1 there exist a controller that achieves
the requirement. This test can only give a negative result in case it is violated.
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