

2022-5-10

Example

A mixed sensitivity problem (typically $\mathcal{H}_\infty\text{-norm}$ design):

$$N(s) = \begin{bmatrix} W_{p}(s)S_{o}(s) \\ W_{u}(s)K(s)S_{o}(s) \\ W_{m}(s)T_{o}(s) \end{bmatrix}$$

$$\|N(s)\|_{\mathcal{H}_{\infty}} := \sup_{\omega} \overline{\sigma} \left(N(j\omega) \right)$$

Generalized plant:

$$N(s) = \mathcal{F}_l\left(P(s), K(s)\right)$$

2022-5-10

$$\mathcal{H}_2$$
 synthesis

$$\|N(s)\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{trace} \left(N(j\omega)^* N(j\omega)\right) \, d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \|N(j\omega)\|_F^2 \, d\omega$$
$$= \int_0^{\infty} \operatorname{trace} \left(n(\tau)^T n(\tau)\right) \, d\tau$$

($n(\tau)$ is the impulse response of N(s))

2022-5-10

\mathcal{H}_2 synthesis

$||N(s)||_{\mathcal{H}_2} < 1$ implies:

- If $w(t) = \delta(t)$, then $||e(t)||_2 < 1$.
- If $||w(t)||_2 < 1$, then $\max_t |e(t)| < 1$.
- If w(t) is unit variance white noise, the var(e(t)) < 1.

For state-space representations:

$$\|N(s)\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{trace} \left(N(j\omega)^* N(j\omega)\right) d\omega$$
$$= \int_0^{\infty} \operatorname{trace} \left(B^T e^{A^T \tau} C^T C e^{A\tau} B\right) d\tau$$
$$= \operatorname{trace}(B^T W_o B) = \operatorname{trace}(C W_c C^T)$$

2022-5-10

LQG control

Plant G(s):

 $\dot{x}(t) = Ax(t) + Bu(t) + w_d$ $y_m(t) = Cx(t) + w_n$

Process disturbance and measurement noise covariances:

$$E\left\{\begin{bmatrix}w_d(t)\\w_n(t)\end{bmatrix}\begin{bmatrix}w_d(\tau)^T & w_n(\tau)^T\end{bmatrix}\right\} = \begin{bmatrix}W & 0\\0 & V\end{bmatrix}\delta(t-\tau)$$

LQG control design problem:

Find $u(s) = K(s)y_m(s)$ to minimize,

$$J = E\left\{\lim_{T \to \infty} \frac{1}{T} \int_0^T \left(x(t)^T Q x(t) + u(t)^T R u(t)\right) dt\right\},$$
 with $Q = Q^T \ge 0$ and $R = R^T > 0$.

2022-5-10

LQG control

Generalized plant P(s):

$$e = \begin{bmatrix} Q^{1/2} & 0 \\ 0 & R^{1/2} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}, \text{ and } \begin{bmatrix} w_d \\ w_n \end{bmatrix} = \begin{bmatrix} W^{1/2} & 0 \\ 0 & V^{1/2} \end{bmatrix} w$$

With w(t) unit variance white noise.

LQG cost function:

$$J = E \left\{ \lim_{T \to \infty} \frac{1}{T} \int_0^T e(t)^T e(t) dt \right\}$$

$$= \|\mathcal{F}_l \left(P(s), K(s) \right) \|_{\mathcal{H}_2}^2$$

2022-5-10

2022-5-10

\mathcal{H}_∞ synthesis

$$P(s) = \begin{bmatrix} A & B_w & B_u \\ \hline C_e & D_{ew} & D_{eu} \\ C_y & D_{yw} & D_{yu} \end{bmatrix}$$

Assumptions on P(s):

1. (A, B_u , C_y) are stabilizable and detectable.

2022-5-10

$$\mathcal{H}_{\infty} \text{ synthesis}$$

$$P(s) = \begin{bmatrix} A & B_w & B_u \\ C_e & D_{ew} & D_{eu} \\ C_y & D_{yw} & D_{yu} \end{bmatrix}$$

$$u = \frac{e}{C_e} + \frac{e}{P(s)} + \frac{e}{P(s)} + \frac{e}{V(s)} + \frac{e}$$

 \mathcal{H}_∞ synthesis

2022-5-10

$$P(s) = \begin{bmatrix} A & B_w & B_u \\ \hline C_e & D_{ew} & D_{eu} \\ C_y & D_{yw} & D_{yu} \end{bmatrix}$$

Assumptions on P(s):

- 1. (A, B_u , C_y) are stabilizable and detectable.
- 2. D_{eu} and D_{yw} are full rank.
- 3. $\begin{bmatrix} A j\omega I & B_u \\ C_e & D_{eu} \end{bmatrix}$ has full column rank for all ω . 4. $\begin{bmatrix} A - j\omega I & B_w \\ C_y & D_{yw} \end{bmatrix}$ has full row rank for all ω .

2022-5-10

11.16

\mathcal{H}_∞ synthesis

Suboptimal problem: Given $\gamma > 0$, find a stabilising K(s) such that,

 $\|\mathcal{F}_l(P(s), K(s))\|_{\mathcal{H}_{\infty}} \leq \gamma$ (feasible solution)

\mathcal{H}_∞ synthesis

Find the smallest $\gamma > 0$, for which there exists a feasible K(s) satisfying,

 $\|\mathcal{F}_l(P(s), K(s))\|_{\mathcal{H}_{\infty}} \leq \gamma$

MATLAB command:

>> [K,N,gamma] = hinfsyn(P,ny,nu)

2022-5-10

D-K iteration:

 \mathcal{H}_∞ synthesis:

D-K iteration

 μ test for robust performance

$$N(s) = \mathcal{F}_l(P(s), K(s))$$

 $\text{ Is } \mu_{\tilde{\boldsymbol{\Delta}}}(N(j\omega)) \leq 1 \quad \text{for all } \omega?$

μ upper bound calculation

As
$$\mu_{\tilde{\Delta}}(N(j\omega)) \leq \inf_{D(\omega)\in\mathcal{D}} \overline{\sigma} \left(D(\omega)N(j\omega)D^{-1}(\omega) \right),$$

If for every ω there exists $D(\omega)\in \mathcal{D}$ such that,

 $\overline{\sigma}\left(D(\omega)N(j\omega)D^{-1}(\omega)\right) \leq 1, \qquad \text{then RP is satisfied}.$

2022-5-10

Robust performance sysnthesis:

D-K iteration

- 1. Initialize procedure with $K_0(s)$ (nominal \mathcal{H}_∞ controller)
- 2. Calculate closed-loop: $N(s) = \mathcal{F}_l(P(s), K_0(s))$
- 3. Calculate upper bound D scalings (for a grid, ω): $\inf_{D(\omega)\in\mathcal{D}} \overline{\sigma} \left(D(\omega)N(j\omega)D(\omega)^{-1} \right)$
- 4. Approximate $D(\omega)$ with stable, invertible system $\hat{D}(s)$, such that $|\hat{D}(j\omega)| \approx D(\omega)$.
- 5. Design \mathcal{H}_{∞} controller for $\hat{D}(s)P(s)\hat{D}^{-1}(s)$.
- 6. If $\mu_{\tilde{\Delta}}(N(j\omega)) \ge 1$, for any ω , go to step 3.

Plant model (Tank 1)

flow out of Tank 1, $f_1 \in [0, 1]$ f_1 water height in Tank 1, $h_1 \in [0.15, 0.75]$ h_1 \leftarrow output #1 A_1 cross-sectional area of Tank 1, $A_1 = 91.4$ t_1 temperature in Tank 1, $t_1 \in [0, 1]$ \leftarrow output #2 hot water flow rate, $f_h \in [0, 1]$ \leftarrow input #1 f_h cold water flow rate, $f_c \in [0, 1]$ \leftarrow input #2 f_c t_h hot supply temperature, $t_h = 1.0$ cold supply temperature, $t_c = 0.0$ t_c height/flow model gain, $\alpha = 1.34$ α β height/flow model bias, $\beta = 0.6$ E_1 ("energy" variable, defined as $E_1 = h_1 t_1$ $\dot{f}_1 = \frac{-1}{A_1 \alpha} f_1 + \frac{1}{A_1 \alpha} f_h + \frac{1}{A_1 \alpha} f_c,$ $h_1 = \alpha f_1 - \beta,$ $\dot{E}_{1} = \frac{-1}{A_{1}\alpha} \left(1 + \frac{\beta}{h_{1}} \right) E_{1} + \frac{t_{h}}{A_{1}} f_{h} + \frac{t_{c}}{A_{1}} f_{c},$ $t_1 \quad = \quad \frac{E_1}{h_1}.$ 2022-5-10

ProductionProduction
$$\mu(N_{inf},w(j\omega)) \leq \overline{\sigma} (D_o(j\omega) N_{inf},w(j\omega) D_o^{-1}(j\omega)).$$
 $D_o(j\omega) = \begin{bmatrix} D_0(1,1) & 0 & \cdots & \cdots & 0 \\ 0 & D_0(2,2) & & \vdots \\ \vdots & D_0(3,3) & & \vdots \\ \vdots & & D_0(4,4) & 0 \\ 0 & \cdots & & 0 & D_0(5,5)I_4 \end{bmatrix}.$

Robustness analysis: normalised
$$\mu$$
 upper bound

$$\mu(N_{inf_w}(j\omega)) \leq \overline{\sigma} (D_o(j\omega) N_{inf_w}(j\omega) D_o^{-1}(j\omega))$$

$$D_o(j\omega) = \begin{bmatrix} D_0(1,1)/D_0(5,5) & 0 & \cdots & \cdots & 0 \\ 0 & D_0(2,2)/D_0(5,5) & \vdots \\ \vdots & D_0(3,3)/D_0(5,5) & \vdots \\ \vdots & D_0(4,4)/D_0(5,5) & 0 \\ 0 & \cdots & \cdots & 0 & I_4 \end{bmatrix}.$$
[D10,Dr0] = mussvunwrap(muinfo0); % extract D-scales
D0_perf = D10(5,5);
D0.1 = D10(1,1)/D0_perf; % normalize w.r.t. perf. D-scale
D0.2 = D10(2,2)/D0_perf;
D0.3 = D10(3,3)/D0_perf;
D0.4 = D10(4,4)/D0_perf;

μ upper bound: Fitting <i>D</i> -scales: $\hat{D}_0(s)$			
$\hat{D}_0(i,i)(s)\mid_{s=j\omega}$ \approx L	$\mathcal{D}_0(i,i)(j\omega),$	<i>i</i> =	$=1,\ldots,4.$
frequency response	calculated D-scale		
D0_1a = fitfrd(genphase(D0_1 D0_1b = fitfrd(genphase(D0_1 D0_1c = fitfrd(genphase(D0_1 D0_1d = fitfrd(genphase(D0_1	.),0); 1),1); 1),2); 1),3);	% Oth % 1st % 2nd % 3rd	order fit order fit order fit order fit

2022-5-10

$$\mu \text{ iteration } \#1 \text{ accuracy: } D_0(1,1) \text{ fit} \\ \text{Check } \hat{D}_0(1,1)(s)|_{s=j\omega} \approx D_0(1,1)(j\omega) \text{ w.r.t. max. singular value} \\ \overline{\sigma} \left(\begin{bmatrix} \hat{D}_0(1,1) & D_0(2,2) & 0 \\ 0 & \ddots & I_4 \end{bmatrix} \mathbf{N}_{\text{inf}_{-}\mathbf{w}}(j\omega) \begin{bmatrix} \hat{D}_0^{-1}(1,1) & D_0^{-1}(2,2) & 0 \\ 0 & \ddots & I_4 \end{bmatrix} \right) \\ \vdots \\ \overline{\sigma} \left(\begin{bmatrix} D_0(1,1) & D_0(2,2) & 0 \\ 0 & \ddots & I_4 \end{bmatrix} \mathbf{N}_{\text{inf}_{-}\mathbf{w}}(j\omega) \begin{bmatrix} D_0^{-1}(1,1) & D_0^{-1}(2,2) & 0 \\ 0 & \ddots & I_4 \end{bmatrix} \right)$$


```
µ design iteration #1: Robustness analysis for Kmu1

Nmu1 = lft(P,Kmu1); % repeat the robustness analysis
Nmu1_w = frd(Nmu1,omega);

muRS1 = mussv(Nmu1_w(Iz,Iv),RS_blk);
muNP1 = svd(Nmu1_w(Ie,Iw));
[muRP1,muinfo1] = mussv(Nmu1_w,RP_blk);
```

2022-5-10

11.52


```
Perturbed plant: extracting a "worst-case" perturbation

% Find the peak of the mu plot for the initial controller.

mudata = frdata(muRP); % extract data
maxmu = max(mudata); % find the peak
maxidx = find(maxmu == max(maxmu)); % find index for max over omega
maxidx = maxidx(1); % Delta from Khinf analysis
Delta0 = mussvunwrap(muinfo0); % Delta from Khinf analysis
Delta0data = frdata(Delta0);
Delta0data_w = Delta0data(:,:,maxidx);
```

2022-5-10

```
Perturbed plant: extracting a "worst-case" perturbation
\Delta_0(j0.097) =
 0.08 - 0.37j = 0
                                    0
                                                                                          0
                         0
                                               0
                                                              0
                                                                             0
       0
          0.08 - 0.37j
                         0
                                    0
                                               0
                                                              0
                                                                             0
                                                                                          0
                0
       0
                    0.34 + 0.17j
                                    0
                                                              0
                                                                             0
                                                                                          0
                                               0
                              -0.37 - 0.06j
       0
                0
                          0
                                               0
                                                              0
                                                                                           0
                                                                             0
                                         -0.00 - 0.00j - 0.00 + 0.00j - 0.00 - 0.00j 0.00 + 0.00j
       0
                0
                          0
                                    0
       0
                0
                                         -0.00 - 0.00j - 0.01 - 0.01j - 0.01 + 0.02j 0.01 - 0.02j
                          0
                                    0
                0
       0
                          0
                                    0
                                         -0.00 + 0.00j - 0.00 + 0.00j \quad 0.00 + 0.00j - 0.00 - 0.00j
       0
                0
                                    0
                                                                        0.23 - 0.03j - 0.23 + 0.03j
                          0
                                           0.00 + 0.00j 0.01 + 0.14j
       0
                0
                                    0
                                           0.00 + 0.00j \quad 0.00 + 0.00j \quad 0.00 - 0.00j - 0.00 + 0.00j
                          0
       0
                                           0.00 - 0.00j 0.02 - 0.03j -0.06 - 0.03j 0.06 + 0.03j
                0
                          0
                                    0
```

2022-5-10

11.58

```
Perturbed plant: fit a transfer function to the perturbation
    Delta0_wc = ss(zeros(nv,nz));
    for i = 1:4,
      delta_i = DeltaOdata_w(i,i);
      gamma = abs(delta_i);
      if imag(delta_i) > 0,
        delta_i = -1*delta_i;
        gamma = -1*gamma;
      end
      x = real(delta_i)/abs(gamma);
                                                     % fit a Pade with
      tau = 2*omega(maxidx)*(sqrt((1+x)/(1-x)));
                                                     % the same phase
      Delta0_wc(i,i) = gamma*(-s + tau/2)/(s+tau/2);
    end
    nDelta = norm(DeltaOdata_w);
                                    % the size should be 1/mu.
    Delta0_wc = Delta0_wc/nDelta; % scale perturbation to size = 1.
```

2022-5-10

Notes and references

Skogestad & Postlethwaite (2nd Ed.)

General control formulation: section 3.8 System norms: section 4.10 LQG design: section 9.2 \mathcal{H}_2 and \mathcal{H}_∞ synthesis: section 9.3 D-K iteration: section 8.12

MATLAB

hinfsyn, h2syn Robust Control Toolbox documentation

2022-5-10