Building control Lecture 6: Model Predictive Control for Buildings

Roy Smith

2022-3-30 6.:

Model Predictive Control (MPC)

Idea

Exploit our ability to predict the future behaviour of the weather and the building in deciding upon the control input to apply.

Approach

- 1. Use the model to calculate the "best" input plan for the next ${\cal M}$ hours;
 - such that:
 - ► The input (heating/cooling) satisfies its constraints (power limits);
 - ▶ The state (room temperature) satisfies its constraints (comfort).
- 2. Apply the first control input of the plan.
- 3. At the next time step:
 - Measure our building states (room temperature);
 - ▶ and go back to step 1.

Minimising a cost function

 $\underset{u}{\operatorname{minimise}}\,J(u)$

Constrained minimisation

$$\underset{u}{\text{minimise}} \quad J(u)$$

subject to $u_{\min} \le u \le u_{\max}$

Cost: J(u) u_{\min} u_{\max} decision variable: u

2022-3-30

6.4

Mathematical formulation

Cost function

$$J(u) = c^T u$$

Energy cost, CO₂ cost, etc.

or

$$J(u) = c^T u + J_{\mathsf{temp}}(x)$$

Temperature violation penalty

Constraints

$$u_{\min} \le u_k \le u_{\max}$$

$$k = 0, \dots, M$$

$$x_{k+1} = A x_k + B u_k + B_d T_{amb,k}$$
 $k = 0, ..., M-1.$

$$k = 0, \dots, M - 1.$$

2022-3-30

Equality constraint formulation: $F \begin{vmatrix} x \\ u \end{vmatrix} + g = 0$

Dynamic constraint

$$x_{k+1} = Ax_k + Bu_k + B_d d_k \implies \begin{cases} x_1 = Ax_0 + Bu_0 + B_d d_0 \\ x_2 = Ax_1 + Bu_1 + B_d d_1 \\ \vdots \\ x_M = Ax_{M-1} + Bu_{M-1} + B_d d_{M-1} \end{cases}$$

$$\begin{bmatrix} -I & 0 & 0 & B & & & 0 \\ A & -I & & & & B & & \\ & \ddots & \ddots & & & & \ddots & \\ 0 & & A & -I & 0 & & & B \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_M \\ u_0 \\ \vdots \\ u_{M-1} \end{bmatrix} + \begin{bmatrix} A & B_d & & & 0 \\ & & B_d & & \\ & & & \ddots & \\ 0 & & & & B_d \end{bmatrix} \begin{bmatrix} x_0 \\ d_0 \\ \vdots \\ d_{M-1} \end{bmatrix}$$

= 0

2022-3-30

6.5

MPC example

Plant: single zone temperature dynamics

actuation input: $u_k = q$ heat flux

disturbance: $d_k = T_{\text{amb}}$ ambient temperature

output/measurement: $y_k = T_{\text{zone}}$ zone temperature

MPC optimisation formulation

Sampling period: 1 hour

 $Prediction \ horizon \qquad M=12 \ hours$

2022-3-30 6.7

Temperature bounds

2022-3-30

6.8

Introduction

Motivation: energy

- ▶ In Europe, 41% of energy is used within buildings;
- ► Also accounts for 36% of CO₂ emissions;
- Large thermal energy storage gives energy shifting options.

EU Energy Consumption

2022-3-30

6.15

Introduction

Building sector

- ▶ The refurbishing rate in Switzerland is approx. 2% per annum;
- ▶ As much as 25% of the total energy is in the concrete;
- Control and commissioning occurs at building project end;
- Lack of integrated design and control;
- ► Currently little expertise in advanced control.

Potential MPC capabilities

- Potential use of weather forecasts;
- Potential use of occupancy forecasts;
- Dynamic electricity prices;
- Potential peak power reduction;
- Flexibility in upgrade modeling.

Introduction

Model predictive control

- Constraints determine operational modes;
- ▶ Most of the disturbances can be forecast:
 - Ambient temperature (typ. 3 days ahead);
 - Solar radiation;
 - Occupancy and energy use patterns.
- ► The dynamics are slow and relatively benign (time constants: 30 minutes to days);
- ► The sampling rate is also slow (typ. 15 minutes);
- ► Adequate computational power is readily available;
- Sensing is (relatively) inexpensive;

2022-3-30 6.17

Introduction

Model predictive control

- Constraints determine operational modes:
- Most of the disturbances can be forecast:
 - Ambient temperature (typ. 3 days ahead);
 - Solar radiation;
 - Occupancy and energy use patterns.
- ► The dynamics are slow and relatively benign (time constants: 30 minutes to days);
- ► The sampling rate is also slow (typ. 15 minutes);
- Adequate computational power is readily available;
- Sensing is (relatively) inexpensive;
- Actuation is typically expensive;
- Modeling can be time-consuming.

MPC for buildings

Objectives

- ▶ Minimisation of energy (NRPE) or cost.
- Potentially time-varying energy/operational costs.

Constraints

- ► Comfort:
 - Room temperatures within limits;
 - ► CO₂ level limit;
- ► HVAC:
 - ► TABS water supply temperature limits;
 - Minimum ventilation airflow;
 - Ventilation operational limits;
 - Air heating/cooling temperature limits;
 - Energy recovery system operational bounds.

2022-3-30 6.19

MPC for buildings

Modeling

- Building thermal dynamics;
 - Room node dynamics;
 - Solar radiation;
 - Ambient air and heat exchange;
 - Energy exchange within the building;
- ► HVAC dynamics;
- Forecasting error dynamics.

Disturbances (partially predictable)

- Ambient temperature;
- ► Solar radiation:
- Occupancy and use.

Opticontrol II

Key contributors:

D. Sturzenegger, D. Gyalistras, M. Gwerder, C. Sagerschnig, M. Morari, R. Smith.

Demonstrator building

Located in Basel.
6 storeys + 2 underground.
Offices in upper 5 floors.
2nd floor instrumented.
Siemens building control system.

2022-3-30 6.21

Actuation

TABS for heating/cooling

Water piping within floor.

Using building thermal storage.

Heat: gas boiler.

Cooling: dry tower.

Cooling restricted to night.

Efficiency depends on ambient humidity and temperature.

Actuation

Ventilation

Heater on incoming air.

Cooling on return air.

Energy recovery via heat exchanger.

Minimum air flow requirements.

Significant losses in ducting.

2022-3-30 6.23

Actuation

Blinds

Control only by façade.

Limited settings: open, closed, shaded (2 levels).

Operation limited to 3 times per day for user acceptance.

Manual override possible (and undetectable).

Sensing

Additional sensors installed in 22 rooms on the 2nd floor.

Window sensor

Room temperature

Illumination/presence

6.25

Sensing

Weather station on roof

Measurements:

Ambient temperature; Solar radiation (4 directions);

Additional radiation sensor on each façade;

Existing building control sensing (HVAC, cooling tower, etc.).

Modeling

RC modeling

Thermal dynamics model:

$$x_{k+1} = Ax_k + B_q q_k(x, u_k, v_k)$$
 (linear thermal dynamics)

External heatflux model:

$$q_k(x_k, u_k, v_k) = A_q x_k + B_{q,u} u_k + B_{q,v} v_k + \sum_{i=1}^{n_u} (B_{q,vu} v_k + B_{q,xu} x_k) u_{i,k}$$

Bilinear actuation/heatflux dynamics.

Thermal model reduced to approximately 25 states in total.

Another 10 states are used in modeling the actuation.

MPC building operation structure

6.29

MPC algorithm

2022-3-30

Problem framework

- Sampling period is 15 minutes.
- Prediction horizon is 54 hours.
- ▶ Three weather forecasts per day (each valid for 72 hours).

Optimisation

- ► Mixed integer problem (quantized blind positions)
- Two step sub-optimal solution:
 - Solve with continuous blind positions.
 - Round blind controls to allowed values.
 - Resolve over remaining control variables.

Demand reduction experiments

MPC can use constraints and/or price signals to shift electrical load or gas consumption

Measured average hourly power consumption. (18 Nov 2012 - 01 Feb 2013)

Measured average hourly power consumption.
05 Feb 2013 - 14 Feb 2013)

2022-3-30

6.39

Conclusions

- ▶ MPC is effective at managing energy and thermal comfort in the building.
- ▶ MPC gives approximately 15% reduction in heating/cooling energy.
- ▶ Thermal comfort is significantly improved over original building RBC.
- ► Tuning is relatively straightforward.
- ► Good user acceptance (6 months of operation).
- Modeling is a significant effort.
- ▶ Potential for load shifting within the grid.
- ▶ Flexibility is one of the most significant benefits.

References	
There are many	
See http://www.opticontrol.ethz.ch.	
2022-3-30	6.41
	0.41