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Abstract—Ultrasound imaging is one of the most important
medical diagnostic methods. The bulkiness of state-of-the-art
high-quality ultrasound devices, however, drastically limits their
usability in important application scenarios. In this paper, we
show how a portable medical ultrasound device can be built
using many-core technology and programmable logic, combining
low power consumption with high flexibility. We discuss a typical
ultrasound image reconstruction algorithm and how it can be
parallelized using a pipelined design that efficiently partitions the
workload among heterogeneous processing elements. A special
focus lies on the limited memory resources and data bandwidth
between components. To tackle both problems, we use floating
window buffers and approximate computations, and we minimize
lookup table sizes using on-the-fly calculations. We evaluate the
design on the Adapteva Parallella platform, which contains a
power-efficient 16-core Epiphany coprocessor and a Zynq SoC
including a dual-core ARM A9 processor and programmable
logic. Experimental results show that parallel beamforming of
128 input channels to a 288x128 pixel ultrasound image can be
achieved on the Parallella at a rate of 5.3 frames per second
consuming only 2 watt of dynamic power.

I. INTRODUCTION
One of the most important medical diagnostic methods is

ultrasound imaging. It is non-invasive and free of possibly
harmful radiation and allows, at low cost, an instant-feedback ex-
amination performed directly by the practitioner. Unfortunately,
state-of-the-art high-quality ultrasound devices – as used in
hospitals or doctor’s offices – are at least comparable to desktop
PCs in size and have a significantly higher power consumption.
This limits their action radius to the room they are located in,
whereas it would often be desirable to have them available on
site, e.g., in emergency situations, in rural areas (particularly
so in developing countries), or for military applications.

This bulkiness does not come from ultrasound imaging
itself – the function principle is simple and ultrasound probes
are small and handy. The problem is the high amount of
data (gigabytes per second) that needs to be processed in
real-time, which means high computational costs on top of
a high data exchange bandwidth. Meeting these demanding
requirements on a mobile low-power platform can only work
with a sophisticated design that is carefully optimized on many
different levels, such as algorithm, hardware components, task
parallelization, scheduling, and data exchange.

How can such a design look like if the goal is to build a
mobile ultrasound device that needs to run on battery power
for several hours? And if, according to the utilization scenario
for developing countries, this device should be financially
affordable and flexible enough to support many different
imaging methods and algorithms?

The last decades have seen ultrasound systems based on
many different hardware platforms, such as ASICs, FPGAs,
multi-core DSPs, or even high-end GPUs. The recent trend
shows many innovations especially in the area of software-
based ultrasound imaging on commodity hardware, which

not only reduces cost, but also gives access to cutting-edge
technologies that would not be affordable in custom designs
produced at low quantities. Meeting power saving demands,
however, is difficult with these solutions.

In the past years, new interesting hardware architectures
for embedded computing have emerged: Homogeneous and
heterogeneous multi- and many-core systems provide high
compute efficiency and have been extended with co-integrated
programmable logic to provide in-system configurable
hardware acceleration. Yet, until now, it has not been discussed
how both many-core technology and programmable logic can
be used simultaneously for accelerating computations.

In this paper, we evaluate the opportunities of combining
multi-core with programmable logic accelerators. The focus
will be on future mobile ultrasound systems, but most of the
ideas and techniques we present are also applicable or can
be generalized to other application domains.

We will discuss the challenges that lie in programming these
systems and in taking advantage of their heterogeneity. For
instance, distributing tasks among the different components
is not only a question of efficient execution on the target
resource type, but also of dependencies between the tasks, of
task synchronization, and of data transport. Other problems
that need to be tackled are the memory limitations of
embedded multi-core systems, the limited bandwidth on the
connection between the different components, and execution
sequentialization due to inappropriate task synchronization.

We will describe a toolset of three methods that address
these problems. This involves how an ultrasound imaging
algorithm can be parallelized and distributed between multiple
RISC cores and programmable logic in a pipelined fashion,
such that parallelism can be optimally exploited at a minimal
synchronization overhead. It involves different methods for
reducing memory and bandwidth requirements, which actually
make this mapping possible, such as online and on-demand
calculation of coefficients. Furthermore, it involves approx-
imation during image reconstruction to achieve significant
speed-ups at the cost of only minimal quality deterioration.

Finally, as a proof of concept, we will show an
implementation of our design on the ADAPTEVA PARALLELLA
platform, which features both a XILINX ZYNQ system-on-chip
(SoC), combining an ARM host processor with programmable
logic, and an energy-efficient 16-core coprocessor.

This paper is structured as follows: Section III presents the
function principle and implementation details of ultrasound
imaging. Section IV shows our target architecture model.
Section V fully discusses the challenges that lie in ultrasound
image processing on that architecture. In Section VI, we
present the methods we applied to solve those problems. We
show the concrete results on the PARALLELLA platform in
Section VII, together with calculations on how to scale this
system to a real-time implementation. To start, the next section
compares our contribution to existing work.



II. RELATED WORK
Full-fledged high-end ultrasound systems are generally built

using multiple field-programmable gate arrays (FPGAs) or
application-specific integrated circuits (ASICs): One of the most
powerful and flexible ultrasound systems is the SARUS [1], [2]
research system, which is designed for maximal flexibility. It
features 320 XILINX VIRTEX-4 FPGAs and more than 320 GB
of memory to implement most advanced imaging algorithms in
real time using data from 256 fully independent receivers. This
system uses FPGAs for maximum flexibility and processing
power. Low costs, power efficiency, or high integration are
not the target. Even when flexibility is not required, multiple
FPGAs are necessary to provide sufficient compute power: In
[3], an ultrasound system using 4 XILINX VIRTEX-5 FPGAs
is presented. While ASICs would provide the same compute
power, FPGAs are often chosen since they are simply cheaper
for the low product volumes in which ultrasound systems are
generally sold. When size matters and maximal power efficiency
is required, ASICs are used. With a clear focus on miniatur-
ization and power-efficiency, [4] presents a fully-integrated
ultrasound image processor supporting real-time imaging of
100 receivers, while consuming only 303 mW at a silicon area
of 1.675 mm2 in an advanced 22 nm technology. Even though
this system provides some reconfigurability and superior power
efficiency, it relies on single-purpose hardware with complex
economical dependencies on market volume and pricing.

Recently, a shift towards more software-based processing
can be observed in ultrasound systems: In [5], ultrasound
image processing of 64 receivers is implemented using a 8-core
TI TMS320C6678 KEYSTONE digital signal processor (DSP).
In both commercial [6] and research [7] systems, graphics
processing units (GPUs) are used for processing. The latter uses
two NVIDIA GTX 480 to support 32 receivers. Regarding
many-core processors, [8] demonstrates ultrasound imaging for
63 receivers on the INTEL XEON PHI 5110P with 60 cores.

This shift to software processing is partially owed to
the advent of powerful and efficient parallel processing
architectures including large-scale streaming processors and
multi- and many-core systems [9]–[12]. The other, equally
important reasons are recent innovations on the software
side providing programming models [13]–[15] that greatly
simplify the programming of these complex systems. As
such general-purpose processing devices can be used in many
applications, they profit from economy of scale and are thus
relatively cheap, which makes them ideal for our intended
application. Nevertheless, current software implementations
are based on platforms that are not suitable for mobile devices.

Our implementation differs from the aforementioned in
two ways: First, we use a combination of programmable
logic and a multi-core coprocessor. Second, we leverage
the heterogeneity of the platform to bring a software-based
implementation to the domain of low-power mobile devices.

As one of the two central components, we use the EPIPHANY
[12] low-power multi-core processor. [16] gives an in-depth
overview of EPIPHANY and discusses two different benchmarks
to show how to effectively optimize code for that processor. That
work focusses on execution optimization within the EPIPHANY
and discusses only some general considerations on how to use it
in a bigger system. In contrast to that work, we integrate the EPI-
PHANY in a processing system, discuss the challenges that arise
and present methods to tackle them, and prove the concept with
results on the overall performance of the processing system.

In the area of computation acceleration, [17] and [18]
describe how to offload computations to programmable logic,
and [19] describes offloading to a multi-core coprocessor.
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Figure 1: Geometric setup of synthetic aperture imaging.

However, to the best of our knowledge, there is no previous
work on how to use both types of accelerators simultaneously
for application speed-up.

III. ULTRASOUND IMAGING
This section gives a brief introduction to medical ultrasound

imaging. First, the general principle of operation is explained,
followed by the imaging method. Then, after a system
overview, the implemented image processing algorithm is
described in detail.

A. Principle of Operation
Ultrasound imaging is based on the principle of acoustic

reflection. A sound wave incident on an acoustic impedance
boundary is partially reflected back to the emitter. Piezoelectric
crystals called transducers are used to emit sound waves as well
as to record the reflections. A single such emit-receive cycle is
called a shot. Assuming a constant wave propagation speed in
the tissue, the distance between transducer and object boundary
depends linearly on the arrival time of the reflected wave. A sim-
ple reflectivity chart can thus be constructed by plotting the am-
plitude of the received signal over time (amplitude or A mode).

By performing multiple such shots while sweeping the
transducer sideways, one obtains an array of scanlines. It can
be displayed as a gray-scale image by representing the echo
amplitude as the brightness of a pixel (brightness or B mode).
This image type is the most widespread in medical ultrasound.
Modern ultrasound probes, however, do not mechanically sweep
a single transducer; instead, they send different signals to an
array of fixed transducers in order to emulate the same effect.

A drawback of B mode scanning is that many shots are
required to compose one image. Emitting a sound wave comes
at considerable energy costs. In mobile applications, the number
of emissions should thus be minimized. In order to do so, we
use an imaging method technique called synthetic aperture.

B. Synthetic Aperture Imaging
In synthetic aperture imaging [20], an unfocused wave is

emitted into the tissue and the entire image is reconstructed
at once from the recorded echo traces. As one emission
yields only poor image quality, the reconstructed images from
multiple shots using different unfocused waves are combined.

The unfocused emission is generated by exciting a single
transducer, which we call the signal source S (Fig. 1). Let us
now consider one particular point in the tissue, which we call
a focal point F . The wave travels from S to F . If there is a
change of acoustic impedance at F , the wave is scattered and
the reflection travels back to the transducers, which now act as
receivers. Let us pick one of them and denote it as R. When
the reflection arrives at R, the distance covered by the outgoing
and the reflected wave is SF+FR. Following the assumption
of constant wave propagation speed, the time at which the
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Figure 2: Components (top) and signal processing steps (bottom) in
a parallel beamforming system.

reflection arrives at R can be computed and the corresponding
sample index k in the trace of R can be determined:

kS,R(F)=

⌊(
SF+FR

)
· fs

v0

⌉
, (1)

where v0 is the sound speed in the tissue and fs the sampling fre-
quency of the traces. b·e denotes rounding to the nearest integer.

If a reflection occurred at F , the signal amplitude will be
high at sample k in the trace of R. Yet, if no reflection occurred
at F , the amplitude could still be high due to a reflection at
some other point. This ambiguity, however, can be eliminated
by superposing the contributions of all receivers. The presence
of a scatterer at F leads to constructive interference of
the echoes; the absence of a scatterer leads to destructive
interference of noise. Performing this calculation for each
point in a grid of focal points finally yields the reconstructed
image. We refer to this entire process as beamforming.

As one such image may still contain noise, the reconstructed
images from multiple shots are combined (i.e., averaged) into
one frame. The different unfocused waves for these shots are
generated by selecting a different transducer as source for each
shot. We assume that each transducer can act as a signal source.

C. Technical specifications and system overview
This section details the specific imaging system that we

implement in this work. It is illustrated in Fig. 2 and comprises
three major parts: First, a probe (with an integrated front end)
that emits acoustic pulses and captures the echo traces. Second,
a beamformer that processes each shot as described previously,
thereby creating reflectivity maps. Third, a back end that com-
bines the reflectivity maps from multiple shots and transforms
them into a grayscale image targeted at human perception.

In this work, a probe with N = 128 transducers is used.
Each transducer output is processed into a digital trace of
K=3080 complex-valued samples per shot.

To save transmission bandwidth between the probe and the
ultrasound device, the traces are demodulated and decimated
(DD) with a factor of Q=8. This process is reversed on the
beamformer by a corresponding interpolation and modulation
(IM) step. In the following, we refer to these operations as
compression and decompression.

In the remaining two steps of the beamformer, the traces
are transformed into still complex-valued reflectivity maps that
consist of 128 scanlines with 288 focal points each. For each

focal point, sample selection ( ) finds the corresponding
samples according to (1) and apodization and accumulation
( ) combine the contributions of multiple receivers.

Finally, the back end sums up the reflectivity maps of 4
shots from different transducers into one frame. This frame is
then converted into a grayscale image in which the brightness
of each pixel is computed from the logarithm of the absolute
value of the corresponding complex frame value. This simple
post-processing is sufficient for basic B mode imaging and
requires little processing effort. To avoid motion blur and to
achieve a smooth display, we assume that a frame rate of 20
frames, i.e. 80 shots, per second is necessary.

Relative to the whole imaging system, most of the signal
processing workload is incurred in the beamformer. Therefore,
we will concentrate on that part in the rest of this paper.

D. Beamforming Algorithm
This section details the beamformer part. As discussed

before, the individual computation steps for one shot consist of
the beamforming process itself and the preceding interpolation
and modulation. They are shown in Fig. 3.

In the interpolation and modulation step, the incoming 128
compressed traces rcompr

n are represented as complex values.
First, they are decompressed, i.e., interpolated and modulated,
to 3080 samples per trace: The interpolated traces rinterp

n
are obtained from the rcompr

n by zero-stuffing (i.e., adding
(Q−1) zero samples between each compressed sample) and
convolving with a low-pass filter of order 6. Then, rinterp

n is
modulated to restore the original traces rn by multiplying each
sample with a complex unity factor:

rn[k]=exp
(

2πi· k
Q

)
·rinterp

n [k], 1≤k≤K. (2)
The next step is sample selection. In this step, for each focal

point F in a grid of dimension 288×128, the corresponding
sample is retrieved from each trace according to (1). We use the
coordinate system shown in Fig. 1: The x-axis runs parallel to
the transducers and the z-axis goes into the tissue. To simplify
the calculations, we set the unit length for the axes to v0

fs
. With

the location S(xS,0) of the signal source and of the n-th receiver
Rn(xRn ,0) given, the sample for each focal point F(x,z) is

pn(F)=rn

[⌊√
(x−xS)2+z2+

√
(x−xR)2+z2

⌉]
, 1≤n≤N. (3)

We refer to the different pn(F) as partial values, since all these
values are later needed to calculate the reflectivity value for F .

In the last step, the reflectivity map I is formed by summing
up the partial shot data of all receivers. To suppress side lobes
caused by the aperture shape [4], the different partial values
need to be weighted:

I(F)=
N

∑
n=1

wn(F)·pn(F), (4)

where wn are the weighting factors. This weighting is called
apodization.

The partial values in (3) are independent of each other and
can be computed in parallel. This makes beamforming feasible
and attractive for implementation on parallel processing
platforms.

rcompr∈C128×385

compressed traces

IM r∈C128×3080

traces

p∈C128×128×288

partial shot data

I∈C128×288

reflectivity map

spatial domaintime domain

Figure 3: Overview of the individual beamforming steps and results.
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IV. HETEROGENEOUS MULTI-CORE PLATFORM
This section gives details about the considered target archi-

tecture for the algorithm that was previously introduced. After
a brief overview of the components and the general structure,
the EPIPHANY E16G301 is presented as a prototype for an
energy-efficient multi-core coprocessor. Finally, as an example
for a possible target platform, the PARALLELLA is shown.

A. System Overview
Figure 4 outlines the general architecture of the target

platforms we consider. It contains a host processor that runs an
operating system and manages all resources and interfaces. The
host does not participate in handling the ultrasound workload
and therefore is not required to scale with the problem size. This
is particularly important with respect to power consumption:
The host processor is typically not optimized purely for energy
efficiency, but instead should be both sufficiently powerful
to accommodate an operating system and flexible to support
various interfaces to connect, e.g., network links, storage
devices, or displays, depending on the application needs.

A multi-core coprocessor and a programmable logic (PL)
component perform the computationally intensive tasks. The
different tasks are divided among both components; as a rule
of thumb, tasks with regular control flow are implemented as
custom logic in the PL while those with irregular control flow
are executed on (some cores of) the coprocessor.

Input streams, e.g., from the probe, can be directly connected
to the PL via input/output (I/O) interfaces. High-bandwidth
connections for efficient data transfer are established between
PL and coprocessor as well as between PL and memory. The
host controls PL and coprocessor through low-bandwidth
connections as data transfers happen via shared memory.
Coprocessors usually do not include a memory controller to
maximize silicon area for processing elements; instead, they
access the system memory through the PL.

B. EPIPHANY Multi-Core Coprocessor
In the rest of this paper, we will use the EPIPHANY [12] by

ADAPTEVA as a concrete example of the multi-core coprocessor
in the abstract architecture described above. Specifically, we will
use the E16G301 model featuring 16 cores. The EPIPHANY
architecture suits our low-power requirements since it was
designed with a clear focus on energy efficiency (i.e., maximum
floating-point operations per second (FLOPS) per Watt). Addi-
tionally, the architecture was designed for scalability of compute
capacity with problem size through scaling the number of cores.

The EPIPHANY E16G301 chip contains 16 cores arranged in
a 4×4 grid. Each core is equipped with an ALU, a load-store
unit, and a floating-point unit (FPU) that can work in parallel to
the other two units in a superscalar fashion. As cores are opti-
mized for area and energy efficiency, only a small set of instruc-
tions corresponding to the typical signal processing operations
are supported. 32 KiB of local on-chip memory are available per
core, together with a DMA controller. The memory of each core
is divided into 4 banks, allowing multiple simultaneous accesses
like instruction fetching, data load/store, and DMA operations.
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Figure 5: Simplified high-level architecture overview of PARALLELLA.

Active Component A Passive Component P Connection Bandwidth
A→P P→A

Host Memory 92.4 MiB/s 138.3 MiB/s
PL Memory 284.2 MiB/s 274.9 MiB/s
Coprocessor PL 121.1 MiB/s 88.6 MiB/s

Table I: Effective bandwidth for different connections on the
PARALLELLA platform.

The cores are connected through a network-on-chip (NoC)
arranged in a two-dimensional mesh topology with only
nearest-neighbor direct connections. 64-bit packets are routed
through the NoC at one hop per cycle. Communication takes
place via memory accesses: All memory banks are part of one
single address space and each core can access the memory of
any other core. Store operations on remote memory banks are
implemented as packet transmissions without flow control. As
such, they take only one cycle to execute but may have a much
longer latency. Therefore, a core can continue its computations
after a store operation, while the data is travelling to the
destination memory block. As a result, streaming applications
without cyclic data dependencies can be executed efficiently
by storing calculation results directly in the memory of the
core that requires the results.

C. Evaluation Platform
We use PARALLELLA P1602, a heterogeneous open-source

hardware platform by ADAPTEVA, to evaluate our project. Its
architecture is illustrated in Fig. 5. The platform corresponds
to our model from Section IV-A: Both the host processor and
the PL are contained in a XILINX ZYNQ-7020 SoC, the former
as a dual-core ARM CORTEX-A9, the latter as 85000 logic
cells, 4.9 Mbit of block RAM (BRAM), and 220 DSP slices.
An EPIPHANY E16G301, as described above, is available as
a coprocessor. The ARM host is clocked at 667 MHz, the
EPIPHANY chip is clocked at 600 MHz.

The ARM host and the PL share a DDR3 controller
that provides access to 1 GiB of external SDRAM. The
EPIPHANY coprocessor is connected to the ZYNQ through an
interface implemented in the PL of the ZYNQ. The maximum
effective data rates of the platform, which we have determined
empirically, are listed in Table I.

V. CHALLENGES
This paper discusses design principles and methods to

implement the beamforming algorithm from Section III on the
type of platform described in Section IV. This task is far from
trivial and has many challenges and difficulties to overcome,
as we will show in the following.

The first question we address is: How can the application
be mapped to the available computation resources? There are
two classic, antipodal approaches: exploiting data parallelism
or pipelining.
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The pure data parallelism approach uses the fact that each out-
put pixel can be calculated independently. In particular, this also
holds for the partial values for each pixel (which are afterwards
apodized and accumulated). Each computational resource could
therefore calculate a distinct set of output pixels (e.g., a row or
a column). This approach is typically adopted in GPU program-
ming or hardware design. Such a solution does not profit from
the different, complementing types of computational resources.

In the pipelining approach, the algorithm is divided into steps
and each step is executed on a different computational element
(i.e., PL block or single core). This allows to respect task affinity,
i.e., the concept of mapping tasks with regular control flow, like
interpolation, modulation, or apodization, to the PL (which can
efficiently handle this kind of operations) and the less regular
tasks, such as delay computation and sample selection, to the
multi-core coprocessor. This is the approach taken by software
frameworks targeting streaming applications, like STREAMIT
[21], DAL [22], or MAPS [23]. Apart from the fact that pipelin-
ing alone cannot create enough parallelism, it also enforces
inter-core and cross-chip data exchange even where the data
rate is highest. Moreover, as the tasks have different execution
times and cannot be partitioned arbitrarily, load balancing is
hampered and thus the resources are not used optimally.

The second question we address is: How to cope with the
limited memory capacities and the limited communication band-
width? Figure 6 illustrates this problem by means of the beam-
forming algorithm and the imaging parameters introduced in
Section III. As we will pinpoint in this section, sample selection
and apodization and accumulation, as well as their interaction,
seriously challenge the available memory and bandwidth.

In sample selection, one sample is selected for each of the
128×288 image points of the partial reflectivity map for each
of the 128 receivers; i.e., 4.72×106 sample indices are used in
every shot. Assuming 80 shots per second, 378×106 sample
indices are used per second. There are two possibilities for ob-
taining these indices: On the one hand, each index could be cal-
culated when required. The computation of one index involves
the calculation of two distances, i.e., two square root operations.
As a result, 755×106 square roots would have to be calculated
per second. Given that hardware support for square root calcu-
lation is available neither on the EPIPHANY nor on the PL, it is
not clear how to the required computation performance can be
achieved. On the other hand, all indices could be pre-calculated
and each index could be loaded when required. Pre-computing
and storing the indices would take 1.21 GB of memory in total,
assuming 128 different signal sources and 16-bit integers for
storing the indices. Furthermore, fetching the indices for 80
shots per second would contribute a data rate of 755 MB/s.
This would not only hit the limitations of available memory
size and bandwidth, but also lead to a high power consumption.

Apodization and accumulation (henceforth treated as
two separate tasks to increase mapping flexibility) jointly
calculate the weighted sum of indexed samples in (4): every
complex-valued partial value is multiplied with a real-valued
weight and the results of all receivers are accumulated. Thus,

these two tasks involve two floating-point multiplications
and additions per partial value, totaling to 9.44×106 or
755×106 multiplications and additions per shot or per second,
respectively. As one weight is unique to image point and
receiver (cf. the indices of w in (4)), a table holding all weights
occupies 18.9 MB of memory. In every shot, the data from the
entire table is read, which amounts to a data rate of 1.51 GB/s.

The high number of computations and the memory size
and bandwidth requirements of both the sample selection
task individually and the apodization and accumulation tasks
together strongly suggest to map the former task to a different
component than the latter two tasks. However, partial shot data
(cf. Fig. 3) has to be transferred from the former task to the
latter two tasks at a rate of 3.02 GB/s. Such a high data rate
would clearly hit a bottleneck if this data was to be exchanged
between coprocessor and PL.

In summary, implementing the beamforming algorithm
on a heterogeneous platform with low-power commodity
components poses two general challenges: First, due to the
limited computation and memory resources of the individual
components, the implementation must exploit all available re-
sources simultaneously by efficiently distributing the workload
among all components. Second, the hence required cooperative
solution challenges the capabilities of heterogeneous platforms
due to the limited available communication bandwidth and the
necessity to optimally use the available heterogeneous com-
puting components. Smart trade-offs alone do not solve these
problems; instead, more sophisticated methods are required.

VI. METHODS
A single design technique is not sufficient to tackle the

diverse challenges shown in the last section. In this section, we
explain three methods which we apply and which together lead
to a feasible solution. First, we show a heterogeneous parallel
pipeline – a data processing pipeline whose different stages,
which internally are parallel, are mapped to different heteroge-
neous processing elements – as our approach to the mapping
problem. Then, we present how we reduce memory require-
ments to deal with the fact that EPIPHANY and PL provide very
little on-chip memory compared to the problem size. Finally, we
introduce two forms of approximate computing to decrease com-
putational complexity and to reduce inter-chip data exchanges.

A. Heterogeneous Parallel Pipelining
As discussed previously, mapping the tasks to the different

computation resources is non-trivial: even when neglecting
constraints like bandwidth or local memory for a moment,
we still have to strike a balance between task affinity (i.e.,
the concept of mapping a task to a resource that has been
designed to execute it efficiently) and potential parallelization.

Methodologically, we begin on the coarse-grained level, i.e.,
on the level of the different resource types. For reasons of effi-
ciency, the top-level design structure should allow us to use the
heterogeneous resources concurrently. The two ways to achieve
this are functional parallelism and pipelining. The beamforming
algorithm does not feature functional parallelism; consequently,
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the top-level structure of the mapping is a pipeline. In our case,
we decide to map the sample selection (3) to the coprocessor
since the data flow of this task is less regular, thus favoring a
processor core over PL. The modulation and interpolation step
(2) is then also mapped to the coprocessor, since this reduces
the input bandwidth of the coprocessor by the interpolation
factor. The two remaining tasks, apodization and accumulation
(4), feature a highly regular data flow. Thus, they can be
implemented very efficiently on PL. Moreover, apodization is
the task with the highest data rate, and the connection between
PL and memory has a high effective bandwidth (cf. Table I). As
a result, both apodization and accumulation are mapped to PL.

Within the coprocessor, many parallel homogeneous
processing elements are available. Two options for distributing
the workload on parallel processors are pipelining and data
parallelism. In order to exploit the high number of parallel
data paths in the beamforming algorithm, as well as to avoid
synchronization and load balancing issues among cores, we
choose data parallelism within the coprocessor. In particular,
parallel processing of the different traces offers the highest
independence between the cores.

These considerations lead to the heterogeneous parallel
pipeline presented in Fig. 7: Each coprocessor core interpolates
and modulates one transducer trace at a time. It then selects
all the samples that are needed from the interpolated trace,
resulting in one partial reflectivity map. All these partial
reflectivity maps are then sent to the PL, where they are
apodized and accumulated. The 128 transducers are split
into 8 groups of 16 transducers each and are, within a shot,
processed sequentially by the 16 coprocessor cores.

B. Buffering, Data Transactions, and Synchronization
To operate the heterogeneous parallel pipeline at its full

capacity with minimal stalls, efficient synchronization and
buffering between stages is vital. Our implementation rests on
the following three pillars: double buffering, burst transactions
executed in background by DMA engines, and fine-grained
producer-consumer synchronization with locally-mirrored
synchronization variables.

1) Double Buffering: We use double buffering at the input
and output of pipeline stages to enable the concurrent operation
of all stages. In every pipeline cycle, one buffer at the input is
used to fetch the operands for calculations; the results of the
calculations are then stored in one buffer at the output. The
second input and output buffers are used by DMA engines
to transfer data in and out of the stage.

2) Burst Transactions: We transfer data in bursts with
DMA engines between different chips for three reasons: First,
it allows processing resources to fetch operands from local
memory and write results also to local memory. This avoids
load/store stalls due to bus congestion. Second, transactions
handled by DMA engines leave more clock cycles for
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Figure 8: Correspondence between trace samples and pixels in a
partial reflectivity map.
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Figure 9: Lower and upper bounds on sample index as a function
of imaging depth for different block sizes.

processing elements to actually perform data calculations.
Third, burst transactions maximize bus utilization during a
transaction and minimize total transaction time.

3) Synchronization: We employ producer-consumer
synchronization to govern access to memory shared by two
pipeline stages. For every shared memory section, there are
two synchronization counters: one for the number of bytes
written by the producer and one for the number of bytes read
by the consumer. The difference between these counters yields
the number of bytes that are available for read and, subtracted
from the total buffer capacity, the free space in the buffer. Note
that this mechanism still works if one or both of the counters
overflow. These synchronization variables are mirrored at both
parties; they are read from local memory and written to both
local and remote memory to exploit the properties of data
transfers on the platform. In this way, polling across different
computation resources or elements is avoided.

Data exchanges between different cores of the coprocessor
work in a similar way; however, no burst DMA transfers are
used. Instead, the buffer is located on the destination core and
the source core writes data items directly into this buffer.

In summary, we transfer data in bursts between stages
and employ fine-grained synchronization with locally
mirrored variables to minimize sequentialization stalls at a
low communication and memory overhead. Therefore, as
synchronization between stages comes at minute costs, we can
afford to synchronize often. This, in turn, reduces the size of
buffers between pipeline stages.

C. Minimizing Memory Size and Inter-Chip Data Exchange
On-chip memory of the target platform is very limited; in

particular, each coprocessor core only has 32 KiB of memory.
Therefore, we have to find techniques that reduce the amount
of memory required for buffers as far as possible.

We first address the buffer that holds the decompressed traces.
To minimize its size, we have to understand the correspondence
between the samples in the traces and the image points created



from them. This relationship is illustrated in Fig. 8: One
sample (like a or b in the figure) is required for a particular set
of focal points in a partial reflectivity map. This is the set of
points for which the distance in (1) from the sending transducer
over the focal point to the receiving transducer is constant and
corresponds to the time index of the sample. These sets describe
ellipses, as can be seen in the figure. The row c of points in
the reflexivity map lies between the ellipses corresponding to
a or b, which implies that only the samples between a and
b are needed for calculating all partial values on this row.

Figure 9 shows the upper and lower bounds for each
row (over all possible emitter/receiver combinations) of the
sample indices required to calculate it. We take advantage of
this information by calculating the partial reflectivity maps
row by row, reducing the number of samples that must be
available simultaneously. These samples are interpolated and
modulated as needed and stored in a floating window buffer.
In this way, we do not have to allocate a buffer for the entire
decompressed trace, but only for the largest part of the trace
that is needed for one row. As we can afford to synchronize
often, we choose to calculate and transmit one row at a time,
thereby minimizing not only the size of the buffer holding the
decompressed samples (ca. 15.9 kB), but also the size of the
buffers between stages (1 KiB each).

The second important consideration in terms of buffer size
concerns whether or not to store the required indices for
sample selection. As explained in the previous section, we
could avoid 9.44×106 distance calculations per shot at the
cost of 1.21 GB of memory. As this is not feasible on the
target platform, we instead minimize memory requirements and
inter-chip data exchanges by calculating indices within each
core on demand. With this decision, we have made distance
calculations a very frequent operation. Our decision to make
use of row-wise processing allows us – through geometrical
considerations on the regular grid of focal points (Fig. 1) – to
compute the argument of each square root in the sample index
calculation (3) with only one multiplication-accumulation and
one addition. We tackle the computational complexity of the
square root itself with the approximation shown below.

In summary, we use floating window buffers and on-core
on-demand calculations to minimize both local and global
memory size and reduce inter-chip data exchange. While the
latter comes at the cost of added computations, the former
does not change the computational complexity at all.

D. Approximate Computing
So far, our implementation exactly computes the algorithm

described in Section III. To further increase execution speed
and energy efficiency, we apply two forms of approximate
computing: we approximate the square root (3) with a
piece-wise linear function to reduce the complexity of distance
calculation, and we approximate the apodization in (4) by
group-wise pre-accumulation before apodization to reduce
inter-chip data exchanges. The incurring losses on image
quality are negligible, as we will show in Section VII.

The FPUs in the EPIPHANY cores, which compute the square
roots for sample index calculation (3), do not provide hardware
support for square root computations. Thus, square roots
must be computed in software. Now, the standard C library
implementation for the EPIPHANY architecture uses an iterative
algorithm (described in [24]) that is computationally intensive.
Furthermore, that implementation calculates the square root to
full floating-point precision, which we do not require: as long
as the result of sample index calculation – which rounds the
sum of two square roots to an integer – is precise to within one
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Figure 10: Four ECOREs in one row on EPIPHANY form a group.
Over the entire 4×4 grid, four such groups operate in parallel.

sample [25], we can tolerate an approximation loss. Instead of
approximating the square root iteratively, we use a piece-wise
linear approximation [26] to exploit the fact that both the
required domain of the function and the required precision of
the result are bound and independent of data, thus known at
design time. We use 39 sections over a domain from minimum
to maximum squared distance in the sample index space
(numerically: 62.5×10−3 .. 2.34×106) to keep the error in the
codomain strictly smaller than 0.25 (i.e., precise to within
one sample after the sum of two approximated square roots
is rounded to the next integer). We compute the section index
from the argument of the square root with a binary search tree.

In the mapping presented in Fig. 7, partial values are
transferred between chips from sample selection on EPIPHANY
to apodization on PL. Recalling Fig. 6, this is also the point
where the highest data rates in the beamformer occur. However,
as pointed out in Section IV, the capacity of this interface
is limited. To avoid this data exchange from becoming
a bottleneck, we introduce the group-wise apodization
approximation. The idea is to, instead of apodizing each partial
value with its individual weight, use the same apodization
weights for the partial values of neighboring receivers. We
combine the receivers into groups of four. For each such group,
we calculate the common apodization weights by averaging
over the original weights of its four receivers.

This allows us to significantly reduce the data rate at the
output of EPIPHANY: Using group apodization, a part of the
accumulation can already be performed directly after sample
selection on the EPIPHANY without the need of transmitting
the corresponding apodization weights. On the PL, these
accumulated partial values are then apodized together. Due to
the regular 4×4 structure in which cores are arranged, we form
groups of four cores as shown in Fig. 10. In contrast to the orig-
inal mapping, the three leftmost cores in the group forward their
partial values to the next core instead of the PL, and the three
rightmost cores each add the partial value of the previous core to
their own before forwarding the result. The last core in the group
finally stores the group-wise pre-accumulated partial values in a
local buffer. From that local buffer, the group-wise partial values
are transferred using DMA to the PL, where they are apodized.

This modification of the mapping has the advantage that both
the output data rate from EPIPHANY and the computational
load on the PL are reduced by a factor of four. While the latter
is a side-effect, the former is crucial to prevent the data rate
from the EPIPHANY from becoming a bottleneck, as we show
in Section VII. In the same section, we show that the image
quality losses introduced by this approximation are negligible.

VII. RESULTS
In this section, we present the measurements that we

performed on our implementation of the heterogeneous parallel
pipeline mapping and discuss the results. First, we describe the
tools with relevant configuration options. Second, we verify that
our approximation and implementation loss is imperceptible
by comparing output images to those of a reference
implementation. Third, we examine processing performance
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Figure 11: Visual comparison of the reflectivity map from our implementation to a reference implementation. The images are log-compressed
and have a dynamic range of 60 dB. High absolute values are represented by bright pixels.

and power consumption to ascertain that the heterogeneous
parallel pipeline achieves the aspired energy efficiency. Fourth,
we inspect resource usage and execution time to make sure
that the overhead of synchronization and double buffering is
as low as intended and that the heterogeneous parallel pipeline
operates at its full capacity. Finally, we conclude this section
by extrapolating our implementation to real-time imaging.

A. Evaluation Setup
We evaluate our implementation on a PARALLELLA P1602.

We use the EPIPHANY toolchain version 2015.1 [27], including
ELIB, a library providing low-level APIs for programming
EPIPHANY, and an implementation of the ELINK (the interface
to connect EPIPHANY) on the PL. We have modified ELIB to
support non-blocking DMA transfers, DMA interrupts, copies
on both DMA engines, and access to memory regions outside
the default shared memory regions. On the host processor, we
run a LINUX 3.14.12 kernel.

To program the PL on the ZYNQ Z7020, we employ XILINX
VIVADO 2015.1, along with the following XILINX IP cores:
AXI BRAM Controller 4.0, AXI Central DMA 4.1, AXI
Protocol Converter 2.1, Block Memory Generator 8.2, and
ZYNQ Processing System 5.5.

To compile kernels for EPIPHANY, we use e-gcc 4.8.2 with
flags -O2 -mcmove -mno-soft-cmpsf -mfp-mode=truncate
-mshort-calls -funroll-loops. To link kernels for
EPIPHANY, we wrote a custom linker script that only
places code and constants used in time-critical sections of
the kernel in on-core memory and everything else in a shared
memory region on the SDRAM, to save on-core memory.

B. Image Quality
We use two metrics to compare a reflectivity map computed

by our implementation to one computed by a double-precision
reference implementation in MATLAB: the mean squared
error (MSE) and the peak signal-to-noise ratio (PSNR).

The MSE measures the mean of the squared absolute
point-wise differences of two reflectivity maps:

MSE(A,B) :=10log10

(
1

MN

M−1

∑
i=0

N−1

∑
j=0
|Ai, j−Bi, j|2

)
, (5)

where A,B∈CM×N . A smaller MSE means that two images
are closer to each another. This measure does not respect any
human perception effects [28].

The PSNR relates the MSE to the maximum absolute value
of a single point in the reflectivity map:

PSNR(A,B) :=10log10

(
maxi, j(Ai, j)

2

MSE(A,B)

)
, (6)

Φrm Φfp Φbf Pproc Pproc/Φrm
[1/s] [kFP/s] [MBOP/s] [W] [mJ]

5.27 194 24.8 2.1 399

Table II: Figures of merit for processing rate and energy consumption.

where A,B ∈ CM×N and A is the reference result. A higher
PSNR means that two images are closer to each another. This
measure accommodates the fact that small errors compared
to the (maximum) signal amplitude are less perceptible than
huge errors [29].

In Fig. 11, we visually compare the reflectivity map with the
highest MSE. Receiver traces were captured with an Ultrasonix
SonicTOUCH 128-channel device with a 5 MHz linear array.
We measure a series of 128 shots and obtain an MSE of 1.27 dB
and a PSNR of 41.55 dB. We conclude that the quality of the
resulting images is sufficient, with full details visible on all
images produced by our implementation: First, both MSE and
PSNR are in the usual range for hardware implementations [4].
Second, when displayed on a screen with a contrast depth in the
range of 8 .. 10 bit, the combined influence of our approxima-
tions will mostly be below the threshold of human perception.

C. Image Processing Rate and Energy Consumption
Having verified the output image quality of our

implementation, we measure its processing performance and
energy consumption. Power measurements were performed
using a calibrated wall plug power measurement tool. Timing
measurements were taken using counters on the host processor
that were started just before the algorithm began its execution
(i.e., after memory allocation and initialization, core resets,
and kernel loading, but before any data transactions) and
stopped as soon as the last result transaction was complete.
One measurement consisted of consecutive beamforming of
128 shots; we averaged 10 such measurements.

We measured a power consumption of Pload =7.1W under
full load and a processing time of tproc = 24.35s. When idle,
we measured Pidle = 5.0 W. The figures of merit shown in
Table II are derived as follows.

To specify the image processing rate, we calculated the
reflectivity map rate Φrm = tproc/128, where one reflectivity
map is computed from the 128 × 288 partial maps of 128
receivers. Other common figures of merit of the processing rate
of a beamformer are the focal point rate Φfp =128·288·Φrm
and the beamforming operation rate Φbf = 128 ·Φfp, where
this factor 128 corresponds to the number of receivers.

To specify the energy consumption of our beamformer,
we have measured the idle power of the platform, Pidle, and
the power under full load, Pload. We define the processing



Component Slice LUTs Slice Registers BRAM Tiles DSP Slices
abs. rel. abs. rel. abs. rel. abs. rel.

Available 53200 106400 140 220

ApoAccu incl. CDMA 2394 4.50 % 2586 2.43 % 0 0.00 % 16 7.27 %
Accumulation buffers 735 1.38 % 612 0.58 % 24 17.14 % 0 0.00 %

ELINK 1774 3.33 % 3188 3.00 % 0 0.00 % 0 0.00 %
Input buffers 2094 3.94 % 1652 1.55 % 96 68.57 % 0 0.00 %

Table III: Resource usage of the PL on the ZYNQ Z7020. BRAM
tiles are RAMB36, DSP slices are DSP48E1. Percentage values are
relative to the amount of resources available for a given type.

power Pproc := Pload−Pidle to distinguish the dynamic power
consumption of our implementation from the static power
consumption of the platform, which contains many components
unused in beamforming, e.g., an Ethernet interface, a USB
controller, and an SD card interface. The energy per reflectivity
map then follows from Pproc/Φrm. It is indicative of the energy
efficiency of the system.

Our evaluated implementation computes 5.27 reflectivity
maps per second at 2.1 W of processing power, which
corresponds to 399 mJ per computed reflectivity map. We
conclude that our implementation is suitable to be applied in
a low-power mobile beamforming system. We will address
scaling to real-time imaging in Section VII-E.

D. Component Utilization
Table III shows the resource usage of the PL of the ZYNQ

Z7020 by our apodization and accumulation implementation
(ApoAccu, including a central DMA (CDMA) engine), by the
accumulation buffers, by the ELINK interface implementation,
and by the input buffers. Our implementation uses the DSP
slices of the PL economically, i.e., just enough of them to
reach the computing throughput required in order not to curtail
the previous stage on the EPIPHANY. We clock ApoAccu at
100 MHz. The BRAM slices, on the other hand, are heavily
utilized: one part to buffer intermediate results in accumulation,
the other part to buffer data coming from the EPIPHANY.
The input buffers necessarily are large to cover the latency
of off-chip data transfers through the ELINK implementation
on the PL. The accumulation buffers, on the other hand, are
dimensioned to reduce the number of separate output data
transfers; if more memory were required by other components,
these buffers could be reduced in size at the cost of more output
data transfers. Since, according to the heterogeneous parallel
pipeline architecture, we map only tasks with simple control
flow to the PL, the usage of LUT and register slices is low.

Figure 12 shows our memory layout for the beamforming
kernel running on the coprocessor cores: Instructions use
the majority of the first bank, the buffer for interpolated and
modulated samples uses the majority of the second and the
third bank, and the I/O buffers use the majority of the last
bank; the rest of the last bank is allocated to the stack. Overall,
99.4 % of the memory of each core is used, with only 204 B
of memory distributed over two banks remaining. Furthermore,
our memory layout takes the frequently concurrent accesses by
DMA engines, instruction sequencer, and load/store unit into
account. Indeed, as we show below, there are little load/store
stalls due to memory accessing conflicts.

We profiled our implementation on each ECORE with
integrated timers. For this purpose, we divided the beamforming
kernel into five sections: waiting for receiver data (waitRxData),
interpolation and modulation (InterpMod), waiting for synchro-
nization with consumer (waitWrite) and producer (waitRead),
and sample selection with group-wise accumulation (SelAccu).
We then performed multiple runs of 128 shots each, measuring
clock cycles and different stall events. Table IV shows the
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Figure 12: Memory layout of the beamforming kernel on a coprocessor
core.

Section Clock Cycles Share of Total Clocks Execution Time

waitRxData 1.39×106 0.02 % 2.32 ms
InterpMod 124.04×106 0.86 % 206.73 ms
waitWrite 1.01×106 0.01 % 1.68 ms
waitRead 0.87×106 0.01 % 1.44 ms
SelAccu 14767.91×106 99.10 % 24613.18 ms

Total 14895.22×106 100.00 % 24825.35 ms

Table IV: Execution time of the sections of the beamforming kernel
on EPIPHANY for 128 consecutive shots.

Section Total Clock Register E1 Instruction Load/Store
Cycles Access Stalls Stalls Fetch Stalls Stalls

InterpMod abs. [106] 124 8.86 5.07 5.06 0.01
rel. 7.15 % 4.09 % 4.08 % 0.01 %

SelAccu abs. [106] 14768 2412 952 64.9 5.09
rel. 16.3 % 6.44 % 0.44 % 0.03 %

Table V: Stalls in the RISC pipeline of a coprocessor core in the
compute sections of the beamforming kernel on EPIPHANY for 128
consecutive shots. Percentage values are relative to the number of
clock cycles spent in the section.

amount of clock cycles spent in each section. Execution time is
clearly dominated by SelAccu, taking nearly 120 times longer
than InterpMod. We attribute the fact that waits take only
0.04 % of the total execution time to two design principles: First,
our heterogeneous parallel pipeline allows to efficiently balance
the load among the parallel cores of EPIPHANY. Second, our
synchronization and buffering scheme introduces very little run-
time overhead. Table V shows the reasons for stalls in the RISC
pipeline of the core over the two computational sections. Most
stalls are due to data dependencies, either in the register access
or in the execution (E1) stage of the EPIPHANY core pipeline.
While there are stalls due to conflicting accesses on local mem-
ory banks, their share is small (for instruction fetches) or even
negligible (for data loads). We conclude that the RISC pipeline
in the coprocessor cores is used efficiently and that our on-core
memory layout leads to a low number of conflicting accesses.

In a separate set of measurements, we measured the coproces-
sor DMA engine transfer times. We have found that output data
transfers from the coprocessor consume approximately 45 % of
the time they could maximally take without stalling calculations.
Thus, there is leeway, e.g., for chaining two EPIPHANY chips
together or for using an EPIPHANY with more cores to obtain
higher compound performance, as we discuss next.



E. Extrapolation to Real-Time Imaging
Our results demonstrate that the implementation is efficient

in terms of resource usage and power consumption. However,
we also showed that a 16-core EPIPHANY together with PL
on another chip is not sufficient to perform real-time imaging.
Using a 16-core EPIPHANY chip, our implementation achieves
5.27 reflectivity maps per second, whereas 80 such maps are
required per second to meet our target frame rate, as discussed
in Section III. However, the EPIPHANY architecture is available
as scalable intellectual property block (IP block), and one
possible configuration is the EPIPHANY E256G4 with 256
cores. A future platform could thus co-integrate the E256G4 IP
block and programmable logic in a system-on-chip (SoC). Such
a design is in line with those multiprocessor SoCs (MPSoCs)
that co-integrate multi-core processors with programmable
logic [30] and GPU IP blocks [17]. With the linear performance
scaling the EPIPHANY architecture was designed for, we would
be able to compute 84.23 reflectivity maps per second, which
is sufficient to achieve the target frame rate. Furthermore,
we estimate that, on a co-integrated platform, 16 of our PL
ApoAccu blocks would fit on PL of the size found on a ZYNQ
Z7030, for three reasons: First, the ApoAccu block scales
linearly in the DSP slices to 16 instances, occupying about 64 %
of the DSP slices of the Z7030, and the accumulation BRAMs
can be shared by all accumulation units. Second, the ELINK
interface, which would be replicated four times to connect
16×16 instead of 4×4 cores on one side of the grid, would
consume about 10 % of the slices of the Z7030. Third, the large
input BRAMs, which we use to cover the latency of transferring
data from off-chip cores, could be massively reduced in a
co-integrated solution to fit into the remaining BRAM slices.

VIII. CONCLUSION
In this work, we showed how to use heterogeneous

multi-core platforms (particularly, platforms with multi-core
coprocessors and programmable logic accelerators) to
efficiently implement an ultrasound beamforming algorithm.
The clear focus was on achieving sufficient performance with
minimal power consumption. The main challenges lay in the
severely limited on-chip memory capacities of the coprocessor
in combination with the data bandwidth limitations between
the coprocessor and the programmable logic but also to the
external memory. Also, the question of how to map individual
tasks to different computation resources was discussed.

We showed three methods to tackle these problems: First, we
introduced a pipeline with internally parallel stages that are dis-
tributed across heterogeneous processing components to guaran-
tee successful exploitation of all different computation resources
with their individual capabilities at the cost of only small over-
head. Second, we demonstrated various techniques for reducing
the memory requirements on the coprocessor chip based both on
live, on-demand computation of coefficients and on algorithmic
considerations. Third, we reduced the effective computation
workload by applying appropriate approximation techniques.

Experimental results on the ADAPTEVA PARALLELLA
platform show that with only one EPIPHANY 16-core
coprocessor chip and a small amount of programmable logic,
5.27 reflectivity maps of 128×288 pixels can be reconstructed
per second. The dynamic power consumption is as low as
2 Watt, and synchronization overheads are below 0.05 %.
Approximation errors are virtually not visible on the generated
images. Scaling the architecture to a 256-core EPIPHANY IP
block co-integrated on a single SoC with the programmable
logic resources found on a ZYNQ Z7030 would allow real-time
mobile ultrasound imaging.
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