ETHzürich

A few notes on l_{1}-norm regularization

Mingzhou Yin

March 16, 2023, IfA Coffee Talk

The variable selection problem

Consider linear regression model

$$
y_{i}=\sum_{j=1}^{p} \beta_{j} x_{i}^{j}+\epsilon_{i}=\mathbf{x}_{i} \beta+\epsilon_{i}
$$

- Data: $\left(Z_{i}\right)_{i=1}^{n}=\left(\mathbf{x}_{i} \in \mathbb{R}^{1 \times p}, y_{i} \in \mathbb{R}\right)_{i=1}^{n} \rightarrow \mathbf{y}=\Phi \beta=\sum_{j=1}^{p} \beta_{j} \phi_{j}$
- High-dimensional regime: $p \gg n$
- Sparse problem: only a few covariates are relevant, i.e., β is sparse.

$$
S=\left\{j \mid \beta_{j} \neq 0\right\} \sim \text { active set, } \quad \log p \cdot|S| \ll n
$$

- Sparsity: $\|\beta\|_{0}:=|S|$ (pseudo-norm)

Examples

- Pole location identification:

$$
\mathbf{y}=\sum_{j=1}^{p} c_{j}\left(G_{j} * \mathbf{u}\right)+\epsilon_{i}, \quad c_{j}: \text { sparse }, \quad G_{j}: \text { first-order systems }
$$

- Network identification:

$$
\mathbf{x}^{t+1}=\sum_{j=1}^{p}\left(A_{j} x_{j}^{t}+B_{j} u_{j}^{t}\right), \quad A_{j}, B_{j}: \text { sparse }
$$

- Switched system identification:

$$
\mathbf{x}^{t+1}=A_{t} \mathbf{x}^{t}+B_{t} \mathbf{u}^{t}, \quad\left(A_{t+1}-A_{t}\right),\left(B_{t+1}-B_{t}\right): \text { sparse }
$$

Variable selection as convex optimization

Sparsity-constrained least squares problem:

$$
\operatorname{minimize}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2} \quad \text { subject to } \quad\|\beta\|_{0} \leq m
$$

- NP-hard combinatorial problem ($\beta=V \nu, \nu \in \mathbb{R}^{m}, V$: binary matrix)
- The best convex surrogate of the sparsity function: $\|\beta\|_{0} \leq m \rightarrow\|\beta\|_{1} \leq \zeta$
- ζ loses its physical meaning \rightarrow equivalent to the Lagrangian form:

$$
\begin{equation*}
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}} J(\beta)=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda(\zeta)\|\beta\|_{1} \tag{LASSO}
\end{equation*}
$$

- Least Absolute Shrinkage and Selection Operator

Regression for different regimes

Classical statistics $(p \ll n)$

- Theory: maximum likelihood estimation
- Main issue: modeling

Non-parametric statistics ($p \approx n$)

- Prior assumption: β is smooth
- Theory: reproducing kernel Hilbert space, Gaussian process
- Main issue: kernel design, hyperparameter selection

High-dimensional statistics $(p \gg n)$

- Prior assumption: β is sparse
- Theory: lasso, compressive sensing
- Main issue: non-convexity, variable selection

Note 1

Lasso shrinks too much - almost always use the adaptive lasso

Least Absolute Shrinkage and Selection Operator

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda\|\beta\|_{1}
$$

The bias problem

- The 'best' convex surrogate?
- ... is still quite bad

A trivial example:
Consider identity regressor:

$$
\Phi=\left[\begin{array}{llll}
\mathbf{x}_{1}^{\top} & \mathbf{x}_{2}^{\top} & \ldots & \mathbf{x}_{n}^{\top}
\end{array}\right]^{\top}=\rrbracket_{n}, n=p
$$

The optimal solution is soft thresholding:

$$
\beta_{j}^{\star}=\operatorname{sgn}\left(y_{j}\right)\left(\left|y_{j}\right|-\lambda / 2\right)_{+}
$$

The adaptive lasso

Intuition: Penalize less for large coe's
\rightarrow find large coe's from an initial estimate

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}} \quad \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\beta_{j}^{\star}\right|^{\gamma}+\epsilon}
$$

β_{j}^{\star} : initial estimate from ordinary lasso, $\gamma>0$

- Weighted lasso with $\lambda_{j}=\frac{\lambda}{\left|\beta_{j}^{\star}\right|^{\gamma}+\epsilon}$

An optimization PoV

$$
\text { Let } g_{q}(\beta)=\|\beta\|_{1}-h_{q}(\beta)
$$

Consider non-convex problem

$$
\operatorname{minimize}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda \cdot g_{q}(\beta)
$$

$$
\Rightarrow \operatorname{minimize}_{\beta \in \mathbb{R}^{p}} \quad J(\beta)-\lambda \cdot h_{q}(\beta)
$$

$h_{q}(\beta)$: convex on $(-\infty, 0)$ and $(0, \infty)$
\sim Difference of convex programming
with pseudo-norm

$$
g_{q}(\beta)= \begin{cases}\sum_{j=1}^{p}\left|\beta_{j}\right|^{q}, & 0<q<1 \\ \sum_{j=1}^{p} \ln \frac{\left|\beta_{j}\right|+\epsilon}{\epsilon}, & q=0\end{cases}
$$

Skipping the details...

Apply the DC algorithm on the DCP (by writing $\beta=\beta_{+}-\beta_{-}$):

$$
\beta^{k+1}=\arg \min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\beta_{j}^{k}\right|^{1-q}+\epsilon}
$$

- Adaptive lasso: 2-step DCA initialized at $\beta^{0}=\mathbf{1}_{p}$ with $\gamma=1-q$
- Converging solution is discontinuous w.r.t. $y \sim$ so not necessarily good

Note 2

Lasso can't select stably use subsampling when selection is desired

Least Absolute Shrinkage and Selection Operator

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda\|\beta\|_{1}
$$

Lasso theory (very informal...)

By choosing $\lambda=O(\log p)$,

- under mild conditions, prediction error $\frac{\left\|\hat{\mathbf{y}}-\mathbf{y}^{0}\right\|_{2}^{2}}{n} \rightarrow 0$ at rate $\frac{\log p \cdot|S|}{n}$
- ... estimation error $\|\hat{\beta}-\beta\|_{1} \rightarrow 0$ at rate $\frac{\sqrt{\log p} \cdot|S|}{\sqrt{n}}$
- if non-zero β_{j} 's are significant: $\min _{j \in S}\left|\beta_{j}\right| \gg \frac{\sqrt{\log p} \cdot|S|}{\sqrt{n}}$, there are no false negatives asymptotically: $\mathbb{P}(\hat{S} \supseteq S) \rightarrow 1$
- very hard to control false positives: $\hat{S} \neq S$ in general

Finite-sample simulation

$$
\begin{array}{cl}
n=80, & p=1000 \\
|S|=10, & \beta=\left[\begin{array}{c}
\mathbf{1}_{10} \\
\mathbf{0}_{990}
\end{array}\right] \\
x_{i}^{j} \sim \mathcal{N}(0,1), & \epsilon_{i} \sim \mathcal{N}(0,0.1)
\end{array}
$$

- 1000 simulations
- λ selected by cross-validation

Pole location identification example

$$
n=100, \quad p=500
$$

- 4th-order systems $(|S|=4)$
- Unit Gaussian input design
- 20 dB SNR, 100 simulations
- λ selected by cross-validation

If we have more experiments...

- Calculate the empirical probability of $j \in \hat{S}$ from 1000 experiments
- Active set is very clear from the empirical probability

Stability selection

- Generate more experiments artificially by subsampling for $i=1, \ldots, n_{s}$ do

Generate a random subsample with $\lfloor n / 2\rfloor$ elements $B_{i} \subset\{1,2, \ldots, n\}$ Estimate active set $\hat{S}_{B_{i}}$ by applying adaptive lasso on subsample B_{i} end for
$\hat{S} \leftarrow\left\{k \left\lvert\, \frac{1}{n_{s}} \sum_{i=1}^{n_{s}}\left(\mathbb{1}_{\hat{S}_{B_{i}}}(k)\right) \geq \tau\right.\right\}, \mathbb{1}$: indicator function.

Output: \hat{S}

- Number of false positives V is controlled for $\tau>0.5$

$$
\mathbb{E}(V) \leq \frac{\mathbb{E}^{2}\left(\left|\hat{S}_{B_{i}}\right|\right)}{(2 \tau-1) p}
$$

Stability selection examples

$$
n_{s}=50, \quad \tau=0.9, \quad \text { fixed } \lambda
$$

Note 3

Don't solve lasso as an optimization problem least angle regression is more efficient and useful

Least Absolute Shrinkage and Selection Operator

$$
\underset{\beta \in \mathbb{R}^{\mathcal{P}}}{\operatorname{minimize}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \beta\right)^{2}+\lambda\|\beta\|_{1}
$$

Solving lasso

- As one of the simplest non-differentiable convex problems, many algorithms derived in literature
- Coordinate descent

$$
\hat{\beta}_{j}^{k+1}=\left\{\begin{array}{ll}
0, & \left|2 \phi_{j}^{\top}\left(\mathbf{y}-\Phi \alpha^{j}(0)\right)\right| \leq \lambda \\
\operatorname{argmin} \beta_{\beta_{j}} J\left(\alpha^{j}\left(\beta_{j}\right)\right), & \text { otherwise }
\end{array}, \alpha_{i}^{j}(x)= \begin{cases}\hat{\beta}_{i}^{k}, & i \neq j \\
x, & i=j\end{cases}\right.
$$

- ADMM

$$
\left\{\begin{array}{l}
\hat{\beta}^{k+1}=\left(\Phi^{\top} \Phi+\rho \rrbracket\right)^{-1}\left(\Phi^{\top} \mathbf{y}+\rho\left(z^{k}-u^{k}\right)\right) \\
z^{k+1}=S_{\lambda / \rho}\left(\hat{\beta}^{k+1}+u^{k}\right) \\
u^{k+1}=u^{k}+\hat{\beta}^{k+1}-z^{k+1}
\end{array}, S_{\kappa}(\cdot):\right. \text { soft thresholding fun. }
$$

... not just ONE optimization problem

- $\hat{\beta}$ is a function of $\lambda: \hat{\beta}=\hat{\beta}(\lambda)$
- Theories on optimal λ are typically asymptotic with ambiguous constants
- In practice: solve lasso on a grid of $\lambda \&$ tune by cross-validation
- Trade-off between λ selection accuracy and computational complexity

More importantly...

- Not all $\lambda: \hat{\beta}(\lambda)$ are useful
- Only critical points with a sparsity change are of interest
- ... intermediate points only induce unnecessary bias

One algorithm for all

- What if... an algorithm automatically detects all the critical λ 's and solves lasso for these λ 's in one go \rightarrow Least angle regression (LARS)
- (away from optimization) The initial idea: forward selection
- Iterates between 1) select ϕ_{j} that correlates the most with the model residual \& 2) solves the least-squares problem with selected ϕ_{j} 's
- LS coe's are often too greedy
- Select ϕ_{2} instead of ϕ_{3} should be more reasonable

Reducing the step size

- Stop when a new covariate correlates with the residual as much as selected covariates (graphically, equiangular)

$\hat{\mathbf{y}}^{i}$: prediction, S^{i} : active set
for $i=0, \ldots, n-1$ do
Correlations on the residual: $\mathbf{c}=\Phi^{\top}\left(\mathbf{y}-\hat{\mathbf{y}}^{i}\right)$
Equiangular vector: $\mathbf{u}=\Phi_{S^{i}}\left(\Phi_{S^{i}}^{\top} \Phi_{S^{i}}\right)^{-1} \mathbf{1}, \Phi_{S^{i}}=\left(\operatorname{sgn}\left(c_{j}\right) \phi_{j}\right)_{j \in S^{i}}$
Next covariate: $j^{+}=\underset{j \in \bar{S}^{i}}{\operatorname{argmin}} \frac{\max (|\mathbf{c}|) \pm c_{j}}{1 \pm a_{j}}, \mathbf{a}=\Phi^{\top} \mathbf{u}, \eta$: minimum value $S^{i+1}=S^{i} \cup\left\{j^{+}\right\}, \hat{\mathbf{y}}^{i+1}=\hat{\mathbf{y}}^{i}+\eta \mathbf{u}$
end for

Magically close to lasso

- The LARS solution path almost gives all critical lasso solutions $\{\hat{\beta}(\lambda) \mid$ sparsity changes at $\lambda\}$
- The only modification: anytime coefficients change sign, remove it from the active set

Remarks:

- The whole LARS-lasso algorithm up to $|\hat{S}|=m$ is $O\left(m^{3}+n m^{2}\right)$, as fast as least-squares on $\Phi \in \mathbb{R}^{n \times m}$
- Do we need the lasso modification? $|\hat{S}|$ is not monotonic along the regularization path
- The critical λ-values not obtained (do we need them?)
- Trivial extension to adaptive lasso (scaling ϕ_{j}); harder to extend to group lasso

ETHzürich

- Lasso shrinks too much - almost always use the adaptive lasso
- Lasso can't select stably - use subsampling when selection is desired
- Don't solve lasso as an optimization problem - least angle regression is more efficient and useful

References:

[1] Bühlmann, P., \& Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer.
[2] Gasso, G., Rakotomamonjy, A., \& Canu, S. (2009). Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Transactions on Signal Processing, 57(12), 4686-4698.
[3] Efron, B., Hastie, T., Johnstone, I., \& Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407-451.

