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The variable selection problem

Consider linear regression model

p .
yi=y Bir] +e=xif+e
=1

e Data: (Z;);_, = (x; eRVP,yi €R)} | —y =3 =", Bi¢;
¢ High-dimensional regime: p > n
e Sparse problem: only a few covariates are relevant, i.e., 3 is sparse.

S ={j|B; # 0} ~ active set, logp-|S|<n

e Sparsity: ||5]|, := |S| (pseudo-norm)
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Examples

e Pole location identification:

p
Z (Gj*u)+e¢, cjsparse, Gj: first-order systems

¢ Network identification:
p
=3 (ij§~ + Bjuz) ., Aj,Bj: sparse
j=1

e Switched system identification:

= Ax' + Bpa',  (App1 — Ar), (Bey1 — By): sparse
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Variable selection as convex optimization

Sparsity-constrained least squares problem:

minimize ; (y; —x;8)° subjectto |8, <m
¢ NP-hard combinatorial problem (5 = Vv, v € R™, V: binary matrix)
* The best convex surrogate of the sparsity function: ||5||, < m — ||8]|; < ¢
® ( loses its physical meaning — equivalent to the Lagrangian form:

minimize J(8) =Y (yi — x:8)* + A(Q) 18l (LASSO)

P
BeR =1

¢ |east Absolute Shrinkage and Selection Operator
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Regression for different regimes

Classical statistics (p < n)
e Theory: maximum likelihood estimation
* Main issue: modeling

Non-parametric statistics (p ~ n)
e Prior assumption: 3 is smooth
e Theory: reproducing kernel Hilbert space, Gaussian process
* Main issue: kernel design, hyperparameter selection

High-dimensional statistics (p > n)
® Prior assumption: g is sparse
® Theory: lasso, compressive sensing
e Main issue: non-convexity, variable selection
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Note 1

Lasso shrinks too much — almost always use the adaptive lasso

Least Absolute Shrinkage and Selection Operator

n
. a2
minimize ;(yl x;3)" + M8l
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The bias problem

® The ‘best’ convex surrogate?
e ... is still quite bad

A trivial example:
Consider identity regressor:

-
q):[xlTXQT Xﬂ =, n=p

The optimal solution is soft thresholding:

B85 =san(y;)(lyj| — A/2)+
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The adaptive lasso

Intuition: Penalize less for large coe’s
— find large coe’s from an initial estimate

n p
2 |ﬁﬂ
minimize i — X + A _—
e LA T

3+ initial estimate from ordinary lasso, v > 0

* Weighted lasso with \; = Iﬁ*\i\+€
J
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An optimization PoV

Consider non-convex problem

P -  w.R)2 .
minimize ;(yz xiB)° + X g4(B)
with pseudo-norm

> 18517,
94(B) = { Z; 1 j‘ﬂj|+6

j—11n pa— q=0

0<gxl1
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Let g4(8) = lIBlly — hq(B)

= migiergg;ize J(B) — X hy(B)

hq(B): convex on (—oo,0) and (0, co)
~ Difference of convex programming

5
l;-norm

4r = = = Sparsity
3t 905(8)

_huﬁ(ﬁ)
ofF
1= = DD O L -~ - - A
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1
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Skipping the details...

Apply the DC algorithm on the DCP (by writing 8 = 8+ — £-):

6k+1—argm|n Zn:( —x;3) +)\Zp: ’ﬂj‘

BERP

i=1 j=1 ‘5] ’ + €
5
e Adaptive lasso: 2-step DCA initialized 3:
atp’=1,withy=1—¢ 2r
1,
or =
¢ Converging solution is discontinuous At
W.r.t. y ~ S0 not necessarily good 2 A
M - = =g =2)
.......... LS
_5_ a
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Note 2

Lasso can’t select stably —
use subsampling when selection is desired

Least Absolute Shrinkage and Selection Operator

n
N a2
minimize ;(yl x;3)" + M8l
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Lasso theory (very informal...)

By choosing A = O(log p),

Iy —¥°|l> logp - |S|

" — 0 at rate
Viogp -S|
Vi

Viogp -S|

e if non-zero ;s are significant: mincg|3;| > ——=—, there are no false

NG

¢ under mild conditions, prediction error
n

e .. estimation error HB — 5”1 — 0 at rate

negatives asymptotically: P (S’ ) S) —1

e very hard to control false positives: S # S in general
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Finite-sample simulation

n =80, p= 1000
S| =10, §= [1]

0990

wl ~ N(0,1), €& ~N(0,0.1)

¢ 1000 simulations
¢ )\ selected by cross-validation
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Pole location identification example

[}
n =100, p=>500
0.8r
0.61
e 4th-order systems (|S| = 4)
e Unit Gaussian input design o4 _
e 20 dB SNR, 100 simulations 02 o el
® ) selected by cross-validation 0 ‘ ‘ ‘
-1 -0.5 0 0.5
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If we have more experiments...

¢ Calculate the empirical probability of
j € S from 1000 experiments

¢ Active set is very clear from the
empirical probability
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Stability selection

e Generate more experiments artificially by subsampling
fori=1,...,n,do
Generate a random subsample with |n/2] elements B; € {1,2,...,n}
Estimate active set S, by applying adaptive lasso on subsample B;
end for
S {k: ’ni S <]153i(k)) > r}, 1: indicator function.
Output: S

¢ Number of false positives V' is controlled for = > 0.5

e (5
E(V) < m
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Stability selection examples

ng=1000, E(|Sp,|) =15

1

jes
o
%

o
2}

Adaptive lasso
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Note 3

Don't solve lasso as an optimization problem —
least angle regression is more efficient and useful

Least Absolute Shrinkage and Selection Operator

n
N a2
minimize ;(yl x;3)" + M8l
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Solving lasso

¢ As one of the simplest non-differentiable convex problems, many algorithms
derived in literature

e Coordinate descent

Akl 0, ‘MJ (y—(baj(o))‘g)\ G BE, i
B = argrrgin J (a?(B;)), otherwise o (@) = T, Q=]
J
e ADMM
A —1
B+ — ((I,T(I,+p|) <@Ty+p(2k _uk))
# =5 (3k+1 +uk) . S,.(-): soft thresholding fun.

ukHL = b g GEHL ket
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... nhot just ONE optimization problem

e (is afunction of X: 3 = ()
® Theories on optimal X\ are typically asymptotic with ambiguous constants

¢ |n practice: solve lasso on a grid of A & tune by cross-validation
¢ Trade-off between A selection accuracy and computational complexity

More importantly...

e Not all A : 3(\) are useful
¢ Only critical points with a sparsity
change are of interest

e ... intermediate points only
induce unnecessary bias

10° 107" 1072 1073
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One algorithm for all

e What if... an algorithm automatically detects all the critical A’s and solves lasso
for these X's in one go — Least angle regression (LARS)

(away from optimization) The initial idea: forward selection

lterates between 1) select ¢; that correlates the most with the model residual &
2) solves the least-squares problem with selected ¢;’s

e LS coe’s are often too greedy

Select ¢, instead of ¢3 should
be more reasonable @ ====Z ==z ------——--——---3 A
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Reducing the step size

e Stop when a new covariate correlates
with the residual as much as selected
covariates (graphically, equiangular) Ho =Y

y*: prediction, S: active set
fori=0,...,n—1do
Correlations on the residual: c = ' (y — 3*)
Equiangular vector: u = ¢4 ((I)}@Si)_l 1, 4 = (sgn(cj)¢j)jesi

. . +¢j -
Next covariate: j* = argmm*nmcl('i')%, a = ®"u, n: minimum value
jest a;
Sz’+1 — Sz U {j+}’ yiJrl — yz + nu

end for
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Magically close to lasso

¢ The LARS solution path almost gives all critical lasso solutions
{B()\) ‘ sparsity changes at A}

¢ The only modification: anytime coefficients change sign, remove it from the
active set

Remarks:
¢ The whole LARS-lasso algorithm up to ‘S‘ =mis O(m3 +nm?), as fast as
least-squares on ® € R™*™
¢ Do we need the lasso modification? ’S‘ is not monotonic along the
regularization path
¢ The critical A-values not obtained (do we need them?)
e Trivial extension to adaptive lasso (scaling ¢;); harder to extend to group lasso
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ETH:irich

e [ asso shrinks too much — almost always use the adaptive lasso
® [ asso can't select stably — use subsampling when selection is desired

e Don'’t solve lasso as an optimization problem — least angle regression is more
efficient and useful
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