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The variable selection problem

Consider linear regression model

yi =
p∑

j=1
βjxj

i + ϵi = xiβ + ϵi

• Data: (Zi)n
i=1 =

(
xi ∈ R1×p, yi ∈ R

)n
i=1 → y = Φβ =

∑p
j=1 βjϕj

• High-dimensional regime: p≫ n

• Sparse problem: only a few covariates are relevant, i.e., β is sparse.

S = {j |βj ̸= 0} ∼ active set, log p · |S| ≪ n

• Sparsity: ∥β∥0 := |S| (pseudo-norm)
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Examples

• Pole location identification:

y =
p∑

j=1
cj (Gj ∗ u) + ϵi, cj : sparse, Gj : first-order systems

• Network identification:

xt+1 =
p∑

j=1

(
Ajxt

j + Bjut
j

)
, Aj , Bj : sparse

• Switched system identification:

xt+1 = Atxt + Btut, (At+1 −At) , (Bt+1 −Bt) : sparse
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Variable selection as convex optimization

Sparsity-constrained least squares problem:

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 subject to ∥β∥0 ≤ m

• NP-hard combinatorial problem (β = V ν, ν ∈ Rm, V : binary matrix)
• The best convex surrogate of the sparsity function: ∥β∥0 ≤ m→ ∥β∥1 ≤ ζ

• ζ loses its physical meaning→ equivalent to the Lagrangian form:

minimize
β∈Rp

J(β) =
n∑

i=1
(yi − xiβ)2 + λ(ζ) ∥β∥1 (LASSO)

• Least Absolute Shrinkage and Selection Operator
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Regression for different regimes
Classical statistics (p≪ n)
• Theory: maximum likelihood estimation
• Main issue: modeling

Non-parametric statistics (p ≈ n)
• Prior assumption: β is smooth
• Theory: reproducing kernel Hilbert space, Gaussian process
• Main issue: kernel design, hyperparameter selection

High-dimensional statistics (p≫ n)
• Prior assumption: β is sparse
• Theory: lasso, compressive sensing
• Main issue: non-convexity, variable selection
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Note 1

Lasso shrinks too much — almost always use the adaptive lasso

Least Absolute Shrinkage and Selection Operator

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ ∥β∥1
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The bias problem

• The ‘best’ convex surrogate?
• ... is still quite bad

A trivial example:
Consider identity regressor:

Φ =
[
x⊤

1 x⊤
2 . . . x⊤

n

]⊤
= In, n = p

The optimal solution is soft thresholding:

β⋆
j = sgn(yj)(|yj | − λ/2)+
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The adaptive lasso

Intuition: Penalize less for large coe’s
→ find large coe’s from an initial estimate

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ
p∑

j=1

|βj |
|β⋆

j |γ + ϵ

β⋆
j : initial estimate from ordinary lasso, γ > 0

• Weighted lasso with λj = λ

|β⋆
j |γ + ϵ
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An optimization PoV

Consider non-convex problem

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ · gq(β)

with pseudo-norm

gq(β) =


∑p

j=1 |βj |q, 0 < q < 1∑p
j=1 ln |βj |+ ϵ

ϵ
, q = 0

Let gq(β) = ∥β∥1 − hq(β)

⇒ minimize
β∈Rp

J(β)− λ · hq(β)

hq(β): convex on (−∞, 0) and (0,∞)
∼ Difference of convex programming
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Skipping the details...

Apply the DC algorithm on the DCP (by writing β = β+ − β−):

βk+1 = argmin
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ
p∑

j=1

|βj |∣∣∣βk
j

∣∣∣1−q
+ ϵ

• Adaptive lasso: 2-step DCA initialized
at β0 = 1p with γ = 1− q

• Converging solution is discontinuous
w.r.t. y ∼ so not necessarily good
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Note 2

Lasso can’t select stably —
use subsampling when selection is desired

Least Absolute Shrinkage and Selection Operator

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ ∥β∥1
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Lasso theory (very informal...)

By choosing λ = O(log p),

• under mild conditions, prediction error
∥∥ŷ− y0∥∥2

2
n

→ 0 at rate log p · |S|
n

• ... estimation error
∥∥∥β̂ − β

∥∥∥
1
→ 0 at rate

√
log p · |S|√

n

• if non-zero βj ’s are significant: minj∈S |βj | ≫
√

log p · |S|√
n

, there are no false

negatives asymptotically: P
(
Ŝ ⊇ S

)
→ 1

• very hard to control false positives: Ŝ ̸= S in general
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Finite-sample simulation

n = 80, p = 1000

|S| = 10, β =
[

110
0990

]

xj
i ∼ N (0, 1), ϵi ∼ N (0, 0.1)

• 1000 simulations
• λ selected by cross-validation

|S| estimate # false pos # false neg
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Pole location identification example

n = 100, p = 500

• 4th-order systems (|S| = 4)
• Unit Gaussian input design
• 20 dB SNR, 100 simulations
• λ selected by cross-validation
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If we have more experiments...

• Calculate the empirical probability of
j ∈ Ŝ from 1000 experiments

• Active set is very clear from the
empirical probability
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Stability selection

• Generate more experiments artificially by subsampling
for i = 1, . . . , ns do

Generate a random subsample with ⌊n/2⌋ elements Bi ⊂ {1, 2, . . . , n}
Estimate active set ŜBi by applying adaptive lasso on subsample Bi

end for
Ŝ ←

{
k

∣∣∣ 1
ns

∑ns
i=1

(
1ŜBi

(k)
)
≥ τ

}
, 1: indicator function.

Output: Ŝ

• Number of false positives V is controlled for τ > 0.5

E(V ) ≤
E2

(∣∣∣ŜBi

∣∣∣)
(2τ − 1)p
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Stability selection examples

ns = 1000, E
(∣∣∣ŜBi

∣∣∣) = 75
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Note 3

Don’t solve lasso as an optimization problem —
least angle regression is more efficient and useful

Least Absolute Shrinkage and Selection Operator

minimize
β∈Rp

n∑
i=1

(yi − xiβ)2 + λ ∥β∥1
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Solving lasso

• As one of the simplest non-differentiable convex problems, many algorithms
derived in literature

• Coordinate descent

β̂k+1
j =


0,

∣∣∣2ϕ⊤
j

(
y− Φαj(0)

)∣∣∣ ≤ λ

argmin
βj

J
(
αj(βj)

)
, otherwise , αj

i (x) =
{

β̂k
i , i ̸= j

x, i = j

• ADMM
β̂k+1 =

(
Φ⊤Φ + ρI

)−1 (
Φ⊤y + ρ

(
zk − uk

))
zk+1 = Sλ/ρ

(
β̂k+1 + uk

)
uk+1 = uk + β̂k+1 − zk+1

, Sκ(·): soft thresholding fun.
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... not just ONE optimization problem

• β̂ is a function of λ: β̂ = β̂(λ)
• Theories on optimal λ are typically asymptotic with ambiguous constants

• In practice: solve lasso on a grid of λ & tune by cross-validation
• Trade-off between λ selection accuracy and computational complexity

More importantly...
• Not all λ : β̂(λ) are useful
• Only critical points with a sparsity

change are of interest
• ... intermediate points only

induce unnecessary bias
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One algorithm for all

• What if... an algorithm automatically detects all the critical λ’s and solves lasso
for these λ’s in one go→ Least angle regression (LARS)

• (away from optimization) The initial idea: forward selection
• Iterates between 1) select ϕj that correlates the most with the model residual &

2) solves the least-squares problem with selected ϕj ’s

• LS coe’s are often too greedy
• Select ϕ2 instead of ϕ3 should

be more reasonable
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Reducing the step size

• Stop when a new covariate correlates
with the residual as much as selected
covariates (graphically, equiangular)
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ŷi: prediction, Si: active set
for i = 0, . . . , n− 1 do

Correlations on the residual: c = Φ⊤ (
y− ŷi

)
Equiangular vector: u = ΦSi

(
Φ⊤

SiΦSi

)−1
1, ΦSi = (sgn(cj)ϕj)j∈Si

Next covariate: j+ = argmin
j∈S̄i

+ max(|c|)± cj

1± aj
, a = Φ⊤u, η: minimum value

Si+1 = Si ∪
{
j+}

, ŷi+1 = ŷi + ηu
end for
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Magically close to lasso

• The LARS solution path almost gives all critical lasso solutions{
β̂(λ)

∣∣∣ sparsity changes at λ
}

• The only modification: anytime coefficients change sign, remove it from the
active set

Remarks:
• The whole LARS-lasso algorithm up to

∣∣∣Ŝ∣∣∣ = m is O(m3 + nm2), as fast as
least-squares on Φ ∈ Rn×m

• Do we need the lasso modification?
∣∣∣Ŝ∣∣∣ is not monotonic along the

regularization path
• The critical λ-values not obtained (do we need them?)
• Trivial extension to adaptive lasso (scaling ϕj); harder to extend to group lasso
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• Lasso shrinks too much — almost always use the adaptive lasso
• Lasso can’t select stably — use subsampling when selection is desired
• Don’t solve lasso as an optimization problem — least angle regression is more

efficient and useful
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