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Abstract

Binary linear codes are well known to be ‘matched’ to binary signaling
on a Gaussian channel. Recently, linear codes over Zps (the ring of
integers modulo M) have been presented which are similarly matched
to M-ary phase modulation. Motivated by these new codes, the general
problem of matching signal sets to generalized linear algebraic codes is
addressed. A definition is given for the notion of matching. It is shown
that any signal set in N-dimensional Euclidean space that is matched to
an abstract group is essentially what Slepian has called a ‘group code for
the Gaussian channel’. If the group is commutative, this further implies,
by a result of Ingemarsson, that any such signal set is equivalent to coded
phase modulation with linear codes over Zjs.

It 1s well known that, for high signal-to-noise ratio, phase modulation
does not effectively exploit the capacity of the bandlimited Gaussian
channel. The above result, however, implies that all signal sets that
are matched to commutative groups are subject to these same limits on
performance. This motivates the investigation of signal sets matched
to noncommutative groups, and of ‘linear’ codes over such groups. A
general construction for large noncommutative signal sets is presented
that is based on linear codes and their automorphism group.

Convolutional codes over groups, as recently introduced by Forney
and Trott, are an attractive alternative to linear block codes over groups.
A careful definition of such codes is proposed together with the basic
system theory. A major problem of convolutional codes over arbitrary
groups is that there is no obvious equivalent to the familiar linear shift-
register encoders of convolutional codes over fields. A solution to this
problem is presented in the form of a canonical feedforward encoder
structure that contains nonlinear, i.e., nonhomomorphic, mappings.



Zusammenfassung

Lineare Binarcodes passen auf natiirliche Weise mit binarer Modu-
lation zusammen. Vor kurzem wurden nun auch lineare Codes uber
dem Ring Zas der ganzen Zahlen modulo M vorgestellt, die in gleicher
Weise mit M-wertiger Phasenumtastmodulation zusammenpassen. Der
Versuch, dieses Zusammenpassen zu verallgemeinern, fuhrt zunachst zur
mathematischen Definition einer Signalkonstellation, die an eine Gruppe
angepasst ist. Es wird sodann gezeigt, dass solche Signalkonstellationen
im Wesentlichen identisch sind mit ‘Gruppencodes fur den Gausskanal’,
einem von Slepian gepragten Begriff. Aus einem Ergebnis von Ingemars-
son folgt daher, dass Signalkonstellationen, die an eine abelsche Gruppe
angepasst sind, einer Kombination von M-wertiger Phasenumtastmo -
dulation mit einem linearen Code tiber Z3; aquivalent sind.

Es ist eine wohlbekannte Tatsache, dass Phasenmodulation die Ka-
pazitat eines bandbegrenzten Gauss’schen Kanals mit grossem Rausch-
abstand nur schlecht ausniitzt. Das erwahnte Ergebnis bedeutet aber,
dass alle Signalkonstellationen, die an eine abelsche Gruppe angepasst,
sind, der gleichen Beschrankung unterworfen sind. Dies regt die Er-
forschung von Signalkonstellationen an, die an nicht-abelsche Gruppen
angepasst sind, und zur Suche nach ‘linearen’ Codes iiber solche Grup-
pen. Ein Ergebnis in dieser Richtung ist ein Verfahren zur Konstruktion
grosser nicht-abelscher Gruppen, welches von linearen Codes und ihrer
Automorphismengruppe ausgeht.

In diesem Zusammenhang liegt es nahe, den Begriff des Faltungscodes
auf Gruppen zu erweitern, wie dies Forney und Trott vor kurzem vor-
geschlagen haben. Der zweite Teil dieser Arbeit befasst sich daher mit
solchen Faltungscodes iiber Gruppen. Aufbauend auf einer sorgfaltig
begrundeten Definition solcher Codes werden die Grundziige einer ent-
sprechenden Systemtheorie iiber Gruppen hergeleitet. Ferner wird ein
zentrales Problem solcher Codes angegangen, namlich das Fehlen einer
offensichtlichen Entsprechung fiir die wohlbekannten linearen Schiebe-
register-Encoder, und eine Losung in Form einer kanonischen Encoder-
struktur mit nicht-linearen, d.h. nicht-homomorphen Abbildungen an-
gegeben.
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Chapter 1

Introduction

This dissertation deals with one of the most basic problems of commu-
nications, viz., reliable transmission of digital data over the bandlimited
AWGN (additive white Gaussian noise) channel. This is a classical topic,
central in Shannon’s theory of communication [1],[2]. Shannon proved
that, for all transmission rates R (in bits per second) below the capacity
C of this channel, signaling waveforms do exist such that the error prob-
ability of an optimal receiver is arbitrarily close to zero, and conversely,
that reliable transmission is not possible at rates above capacity. Shan-
non also showed that C = Wlog,(1+ P/N), where W is the bandwidth
(in cycles per second) and P/N is the signal-to-noise ratio.

The design of signaling waveforms (or ‘codes’) and of the correspond-
ing receivers whose performance would come close to Shannon’s limit has
since been a challenge for many researchers. While impressive and prac-
tically useful results have been achieved, the problem is still far from
being solved completely.

The present dissertation, rather than presenting new codes or decod-
ing techniques, deals instead with the general mathematical framework
for the construction of such codes. More specifically, it applies group-
theoretic ideas from the early days of coding theory to the type of ‘coded
modulation’ that has become popular in the last ten years. These ideas
are best put into perspective by a brief historical review.

Shannon’s pioneering work led within a short time to the formation
of the mathematical discipline of coding theory. The research in coding
theory, however, soon concentrated on the study of linear codes over
fields with respect to Hamming distance, which is of little relevance to

9



10 1. INTRODUCTION

the bandlimited AWGN channel except for the case where the signal-to-
noise ratio is so low that binary signaling is adequate to achieve capacity.
Consequently, some thirty years after Shannon’s 1948 paper, for moder-
ate and high signal-to-noise ratio there was still no practical means to
achieve a significant fraction of the considerable improvement over tra-
ditional ‘uncoded’ modulation that was promised by Shannon’s formula
for capacity.

This changed in the early eighties. It was mainly the paper [4] (fol-
lowing an earlier presentation [3]) by Ungerboeck that started the still
continuing reasearch activity on coding for bandlimited channels, which
within short time led to many applications.

The main reason for the success of Ungerboeck’s approach is that, in
contrast to the few earlier contributions in this field (such as, e.g., [24],
[25], [5], [26]), his problem formulation immediately led to very practical
systems. Let us discuss this in more detail.

The mentioned early researchers knew from Shannon’s theory [2] that
an efficient communication system for the bandlimited AWGN channel
consists essentially of a finite set of points in a high-dimensional Eu-
clidean space and, consequently, they designed such signal sets. However,
this task proved difficult. Either the performance of such designs was
rather disappointing, as, e.g., for Slepian’s permutation modulation [24],
or the scheme was too complex or too difficult to understand to attract
the attention of communications engineers.

Ungerboeck’s approach, however, was based on the view of a com-
munication system as shown in Fig. 1.1, consisting of separate coding
and modulation, which is much closer to engineering practice. Fig. 1.1,
innocent as it looks, was at that time understood by most communi-
cation engineers to mean that the purpose of the coding system is to
correct the errors made by the demodulator — a gross misunderstand-
ing, which, however, was confirmed by typical introductions to texts on
algebraic coding theory. (Note, however, that the classical communica-
tions text [6] did not make that mistake.)

Since Fig. 1.1 is also the starting point of the present dissertation,
we interrupt here the historical account in order to discuss some funda-
mental aspects of modulation. We begin with a formulation of the role
of the modulation system that is inspired by [7] and [8].
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Figure 1.1: Communication system with separate coding and modu-
lation.

The purpose of the modulation system is to convert the given
waveform channel into a discrete channel (from the modula-
tor input to the demodulator output) such that

o the loss in capacity is small and

o the discrete channel is convenient for coding.

On our level of abstraction, the operation of the demodulator, 1.e., the
matched filtering and the discretization, are of minor importance. The
central property of a modulation system is the set of waveforms that are
at the disposal of the modulator. In the case of the AWGN channel,
these waveform are commonly represented as points in Euclidean space
of appropriate dimension [6, Chap. 4] and called the signal set.

As far as the error probability at the demodulator output is con-
cerned (in which, however, we decided above to have no interest), the
modulation system is completely determined by the geometry of the sig-
nal set. More importantly, the discrete-input continuous-output channel
determined by the signal set and our AWGN noise model has a well de-
fined capacity, which we call the capacity of the signal set. This capacity
1s an upper bound to the capacity of the discrete channel created by the
modulation system that is tight for any well-designed demodulator.

The crucial step in Ungerboeck’s work was perhaps the calculation of
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the capacity of some well-known one and two-dimensional signal sets!,
viz., phase-shift keying (PSK), pulse-amplitude modulation (AM), and
quadrature pulse-amplitude modulation (QAM). Plots of these capacities
vs. signal-to-noise ration (SNR) (cf. Fig. 2.4 on page 33) immediately lead
to the conclusion that, in order to exploit the capacity of the waveform
channel, the signal set must have more points than the error-probability-
oriented engineers of the time would have taken into consideration. An
example of this ‘expansion’ of the signal set is the use of 8-PSK at an
SNR where traditionally only 4-PSK would have been used. Note that
expansions of this type do not expand bandwidth.

We recall at this point that, according to the sampling theorem [2], a
bandwidth of W Hz allows the transmission of at most 2W signal-space
dimensions per second, and this limit is achievable. For communication
systems of the type shown in Fig. 1.1, however, this is only a guide-
line. On the one hand, the usual convention that the signals of the
modulator have finite length and that signals corresponding to differ-
ent modulation intervals do not overlap is very restrictive in comparison
to the infinite time signals assumed by the sampling theorem. On the
other hand, the usual definitions of bandwidth (e.g., 20 dB bandwidth)
are far less restrictive than the bandwidth notion of the sampling the-
orem. Consequently, depending on the precise definition of bandwidth
and the specific waveforms used, a well-designed modulation system for
the AWGN channel with bandwidth W Hz may offer slightly more or
less than 2W signal-space dimensions per second.

The number of signal-space dimensions per second is more funda-
mental and less dependent on implementation details than any specific
definition of bandwidth. With the usual normalization to the duration
of a data bit, we arrive at the number of signal-space dimensions per
data bit as the measure of ‘bandwidth’ that will be used in this disser-
tation. In fact, we will usually consider the reciprocal of this ratio, viz.,
the number of data bits per signal-space dimension. This measure al-
lows relatively fair comparisons between very different communication
systems at a rather abstract level. (While this measure is routinely used
in the literature, the connection to the ‘real’ bandwidth is often stated
misleadingly.)

We now finish our historical summary. Once the key step of selecting
larger than usual signal sets had been made, the next step of combining
these modulation schemes with convolutional codes was a quite natural

11t seems, however, that Ungerboeck did these calculations only after he had found
his first codes.
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one (cf. [7]). The resulting systems, now called trellis-coded modulation,
are easily implemented, and remarkable coding gains were achieved with
systems of moderate complexity. These developments are summarized
in [9], [10].

Trellis-coded modulation has matured to the point where the achieve-
ment of further major gains seems less likely [9], [10]. Nevertheless, there
is still room for improvement; in particular, Shannon’s promise of arbi-
trarily small error probability at transmission rates arbitrarily close to
capacity is still far from being a practical reality.

This dissertation is based on the premise that practical ‘Shannon’
codes, if they exist — in fact, the majority of researchers nowadays
seems to believe that they don’t — will be based on fundamental al-
gebraic principles. In the case of Hamming-space codes, this belief in
an algebraic approach has been the unquestioned basis of almost all re-
search since Shannon. Ungerboeck’s approach, on the other hand, lacks
(or rather hides) algebraic structure. Consequently, much current re-
search on Euclidean-space codes is still non- or only semi-algebraic. (A
very notable exception are codes based on lattices [27], [28].)

Ungerboeck himself, however, underlined the many symmetries of his
codes. The study of such symmetries, carried out by many researchers,
led naturally to the re-introduction of group theory and, consequently,
to the rediscovery of Slepian’s work. This line of research culminated
in Forney’s concept of ‘geometrically uniform codes’ [29], [30] which in-
cludes most good known Euclidean space codes.

The topics addressed in this dissertation can now be described as
follows. Chapter 2 deals with the interplay of Slepian’s general concept
of a group code with Fig. 1.1, the basis of Ungerboeck’s approach. In
other words, a two-step approach, with separate modulation and coding,
to Slepian’s group codes for the Gaussian channel is investigated. The
motivating example for this approach are linear codes over the ring Zps
of integers mod M for M-ary phase-shift keying (M-PSK), which will
be reviewed in Section 2.1.

In has been noted before that convolutional codes are a natural choice
for the coding part in Fig. 1.1. The discussions of Chapter 2 thus mo-
tivate the investigation of convolutional codes over groups, as has been
suggested by Forney [30]; such codes generalize the concept of convolu-
tional codes over rings, as introduced by Filho et. al. [47], [48] and inde-
pendently by Massey and Mittelholzer [49], [50], [61], [62], [63]. Chap-
ter 3 is therefore about convolutional codes over groups. A rigorous
definition and some basic structure theory of such codes is presented.
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Chapter 4 gives some concluding remarks and suggestions for further
research.

For both Chapter 2 and Chapter 3, it will be assumed that the reader
is familiar with elementary group theory. Good textbooks are, e.g., [15],
[16], [17].

We conclude this introduction by warning the reader once more that
the material of this dissertation has no immediate practical value; in
particular, no new codes or decoding methods will be presented. The
author hopes, however, that the conceptual considerations of the next
two chapters will eventually contribute to such practical constructions.



Chapter 2

Signal Sets and Group
Codes

It was stated in Chapter 1 that the inner channel created by the modu-
lation system (cf. Fig. 1.1 on page 11) should be convenient for coding;
moreover, this inner channel is essentially determined by the signal set.
In this chapter we pursue the question: What signal sets are convenient
for coding?

Let us first establish some terminology related to Fig. 1.1. The signal
set of the modulator will also be called the ‘inner signal set’. This signal
set 1s assumed to be labeled with some alphabet A. (More precisely,
it 1s assumed that there is a mapping from A onto the signal set, cf.
Section 2.2.) The code (or ‘outer’ code) is either simply a subset of A"
for some positive integer n — the code is then called a block code — or
it is a subset of AZ (as will be discussed in Chapter 3). The signal space
image of the code will be called the outer signal set. However, we will
sometimes use the term ‘code’ also or the outer signal set since this is
usual in the literature.

We should emphasize at this point that, in this chapter, inner signal
sets are finite by definition. In particular, lattice type inner signal sets
are not considered. This restriction implies that all groups of this chapter
are finite, which is an important restriction to be kept in mind.

The discussion of inner and outer signal sets in this chapter revolves
around Slepian’s notion of a group code, which will be reviewed in Sec-
tion 2.3. First, however, linear codes over the ring Zjs of integers mod

15



16 2. SIGNAL SETS AND GROUP CODES

M are reviewed in Section 2.1, and the matching between linear codes
over Zyr and the M-PSK signal set is generalized in Section 2.2 to ‘lin-
ear’ codes over arbitrary groups and correspondingly ‘matched’ signal
sets. It is then shown in Section 2.3 that such signal sets are, in fact,
equivalent to Slepian-type group codes or ‘group signal sets’, as we will
call them, and that the resulting outer signal sets are also of this type.

The performance and the structure of commutative-group signal sets
is investigated in Section 2.4. In particular, it is pointed out that a result
of Ingemarsson on such signal sets has a natural interpretation in the
framework of Fig. 1.1 and attributes an unexpectedly fundamental role to
linear codes over Zs. It is also pointed out that noncommutative-group
signal sets exist whose capacity exceeds that of all commutative-group
signal sets.

In Section 2.5 a construction method for group signal sets is pre-
sented that is based on linear codes (e.g., binary or ring codes) and their
automorphism group. In the framework of Fig. 1.1, this construction al-
lows inner signal sets that are not group signal sets, but the outer signal
set 1s still a group signal set.

2.1 Linear Codes over Rings

The simplest and most popular signal set is certainly the binary antipo-
dal signal set. This signal set is undoubtedly convenient for coding: it
1s perfectly matched to binary linear codes.

A similar ‘matching’ is possible for the M-PSK signal set. If it is
labeled in the obvious (cf. Fig. 2.1) way with the elements of Zps (the ring
of integers mod M), then linear codes over Zjs are a natural choice for
the outer coding. Block codes of this type seem to have been proposed
first by Kschischang et. al. [31]; even earlier, convolutional codes over
Zpr (cf. Chapter 3) have been proposed by Filho et. al. [47], [48], and
later also by Massey and Mittelholzer [49], [50], [51], [52], [63]. All these
groups of researchers seem to have independently discovered the same
basic concept. (Earlier work on linear codes over rings such as, e.g.,
[32] was based on Hamming distance and is therefore not relevant in the
present context.) Constructions for ring codes have since been presented
by Nilsson [33], Khachatrian [34], and Chen and Chen {35].

Since such ring codes will turn out to be fundamental for this chapter,
we will take some time for their description. Following [31], we define a
linear block code of length n over Zps simply as a subgroup of Z,", where
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Figure 2.1: The 8-PSK signal set, labeled with the elements of Zg.

Zy™ 1s the group of n-tuples of elements of Z3; with componentwise
addition. (At other occasions, a linear code over Zjs has been defined
as a free module over Zps [49],[50],[51], [52], which is more restrictive.)

A codeword of such a code is mapped into 2n-dimensional Euclidean
space by mapping every component in the obvious way (see Fig. 2.1)
into the 2-dimensional M-PSK signal set. More precisely, let by, ..., bo,
be an orthonormal basis (i.e., a coordinate system) of R?®, and let C
be a linear code of length n over Zjs. Then a codeword (ay,...,a,),
a; € Zyr, of C is mapped to 21221 B;b; where Ba;_; = Re(rei?7ei/M)
and f,; = Im(re'?"%/M) and r, which is the energy parameter, is a
positive real number that does not depend on the codeword. For later
reference, we call this mapping of a linear code over Z3s into Euclidean
space the standard mapping. Note that if the j-th component of all
codewords of a code C' is either 0 or M/2, then f2;_1 is always either
r or —r and f3; is always 0, i.e., the (27 — 1)-th coordinate is binary
and the 2j-th coordinate is not used and need not be transmitted. We
will not be precise about whether or not unused coordinates are dropped.
Note that binary linear codes in signal space can thus be viewed as linear
codes over Z, with the standard mapping.

The weight of an element of Zps is defined as the squared Euclidean
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distance of its associated element of the M-PSK-signal set to the point
labeled with 0, and the weight of a codeword is defined as the sum of
the weights of its components. Then the squared Euclidean distance
between any two elements of Zps (as induced by the obvious labeling of
the signal set) equals the weight of their difference, and the same is true
for the distance between any two codewords.

For use in Sections 2.4 and 2.5, we remark here that the same rea-
soning works for a generalization of the standard mapping (as defined
above) where we let the energy parameter r depend on j (but not on
the codeword). This simply means that M-PSK signal sets with dif-
ferent radii, i.e., different amounts of energy, are used in the different
components.

We have thus seen that the M-PSK signal sets permit an algebraic
approach to coding that generalizes the matching of binary linear codes
with the binary signal set. The M-PSK signal sets can thus justifiably
be regarded as convenient for coding.

Instead of searching for algebraic code constructions and decoding
methods for ring codes, this dissertation rather aims at generalizing this
type of matching. The main motivation for not staying with ring codes is
the fact that, for signal-to-noise ratios larger than about 5dB, PSK does
not effectively exploit the capacity of the waveform channel (cf. Fig. 2.4);
1.e., our first requirement on the modulation system (cf. page 11) is not
met in this case. In other words, the combination of an outer ring code
with a PSK signal set in the system of Fig. 1.1 is bound to perform
unsatisfactorily at high signal-to-noise ratios.

Our interest in similar matchings between signal sets and a suitable
algebraic approach to coding will thus primarily be focussed on signal
sets whose capacity, for high signal-to-noise ratio, exceeds that of PSK.
We will see in Section 2.4 that this condition will direct our attention
to non-commutative groups. In the following two sections, however, the
‘matching’ problem will be addressed without reference to the capacity
of signal sets.

2.2 Matching Signal Sets to Groups

One of the starting points of this research was the observation (due to
J. L. Massey) that the three-dimensional signal set of Fig. 2.2 is also
‘matched’ to Zg in the sense that, with the labeling shown in Fig. 2.2,
the distance between signal points depends only on the label difference.
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Figure 2.2: A three-dimensional signal set that is also matched to Zs.
Its projection onto the x-y-plane is an 8-PSK signal set,
and the z-coordinates of all points have equal magnitude
and alternating signs.
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Three-dimensional signal sets of the type shown in Fig. 2.2 can, of
course, be constructed for any even number of points. As pointed out to
the author by G. D. Forney, Jr., such signal sets are regular polytopes
and known as ‘anti-prisms’ in geometry [19, p. 4].

Are these anti-prisms the only three-dimensional signal sets that are
matched to Zpr, and do there exist higher-dimensional signal sets that
are also matched to Zps? For the definition of matching given below,
the answer to both questions is ‘yes’. Indeed, a complete classification
of such signal sets (Theorem 2.9) will be given at the end of Section 2.4.

We now collect the essential parts of the ‘matching’ between the
M-PSK signal sets and linear codes over Zps. On the algebraic side, we
have a finite group G which is the alphabet over which we will define
codes. Above, we had, e.g., G = Zjs. Since we will consider both
commutative and noncommutative groups, we write the group operation
as ‘*¢’. (In the examples considered above, G was commutative. We will
see, however, that there is strong motivation for the investigation of
codes over noncommutative groups.) The group operation is extended
in the obvious way (by components) to G™, the set of n-tuples over G,
which is also a group. We define a linear code of length n over G simply
as a subgroup of G™. (This definition has earlier been used, e.g., in [31]
and in {36},[37],[30].)

The connection between the group G and the signal set S is given by
a mapping g from G onto S (which may be considered as an abstract
modulator). Let d(-,-) denote Euclidean distance. In the above exam-
ples (where ‘x’ is addition), the key property of the mapping p is that
d(p(g), u#(g")) is a function only of —g+ ¢’. This motivates the following
definition.

Definition 2.1 A signal set S is matched to a group G if there exists
a mapping p from G onto S such that, for all g and ¢’ in G,

d(u(9),u(g")) = d(u(g™" *¢'), u(e)) (2.1)

where e denotes the neutral element of G. A mapping u satisfying this
condition will be called a matched mapping. If, furthermore, p is one-to-
one then p~! will be called a matched labeling.

If p 1s a matched mapping from a group G onto a signal set S, then
it 1s natural to define further the weight w(g) of an element g of G
as the squared Euclidean distance between p(g) and u(e), ie., w(g) =

d*(u(g), p(e)).
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Concepts similar to Definition 2.1 have been proposed by several
authors. In [37], the subsets resulting from a partitioning of a signal
set were labeled with the elements of a commutative group, and condi-
tion (2.1) for the distances between subsets was called ‘group property’.
The same concept was used in [38] (‘superlinearity’) and [31] (‘transla-
tion invariance’).

In all these cases, the motivation was to introduce some ‘linearity’
into the study of signal space codes, which is also the basic motivation
of this chapter. Note, however, that Definition 2.1 differs from these ear-
lier concepts when the correspondence between signal points and group
elements is not one-to-one.

Firstly, Definition 2.1 does not allow several signal points to be asso-
clated with the same group element, and thus excludes the possibility to
label subsets rather than individual signal points with the elements of a
group. This is, of course, quite restrictive, but it is the explicit intent of
this section to characterize those signal sets that are matched to a group
in this very strict sense.

Secondly, Definition 2.1 allows several group elements to be associ-
ated with the same signal point. While this may seem odd at first sight,
this author has found no really convincing reason for excluding this case
in the setup of this chapter. Note that signal sets that are matched to
a group but for which no matched labeling is possible do actually exist.
‘The main result of the next section (Corollary 2.1) implies that Slepian’s
second counterexample in [39] is matched to a group, but any matching
group must have more elements than the signal set.

Although the admission of noninvertible matched mappings is a rather
peripheral aspect of Definition 2.1, it is perhaps appropriate to look at
this in more detail.

Lemma 2.1 Let 4 be a matched mapping from a group G onto a signal
set S, let s, be the image under u of the neutral element of G, and
let H be defined as p~1(s.). Then H is a subgroup of G; moreover,
p(g) = pu(g’) if and only if gH = ¢'H, i.e., if and only if ¢ and ¢’ are in
the same left coset of H in G.

Proof:

For any two elements g and ¢’ of G, we have pu(g) = p(g') <
d(u(9),1(g") =0 <= d(u(9~' * ¢'),8.) = 0 <> p(g~ ' x¢') = s, <
g lxg' € H.

In particular, if both ¢ and ¢’ are in H, then ¢! *x ¢’ € H, and thus
H is a group. The second claim is proved also since ¢g~! % ¢’ € H <
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gH =¢'H. O

Lemma 2.1 implies that there is a one-to-one correspondence between
signal points and left cosets of H in G. Furthermore, if H is normal in
G, then the set G/H of left cosets is a group, and it is easily verified
that S is matched to G/H. In this case, which includes all commutative
groups G, there is really no point in considering matching groups with
more elements than signal points.

If H is not normal, however, then the set of left cosets is not a group.
Still, we prefer to avoid unnecessarily large matching groups, which can
be done as follows.

Definition 2.2 A matched mapping from a group G onto a signal set S
is effective if H (defined as in Lemma 2.1) contains no normal subgroup of
G other than the trivial subgroup {eg}. If an effective matched mapping
exists, then we will say that S is effectively maiched to G.

The following Theorem shows that we can usually ignore matched map-
pings that are not effective.

Theorem 2.1 Let S be a signal set that is matched to a group G and
let H be defined as above. Then S is effectively matched to the quo-
tient group G/H', where H' is the largest normal subgroup of G that is
contained in H.

Proof: Let p be the matched mapping from G onto S and let s,
be the image under p of the neutral element of G. Then the mapping
:G/H — S : gH — u(g), which is well-defined by Lemma 2.1,
is a matched mapping from G/H’ onto S since d(a(¢H'),m(¢’H')) =
du(g), 1(g") = d(u(g~1¢"),s.) = d(E(gH')™ * o' H'), B(H")). Tt re-
mains to show that 1 is effective. Let ¢ : G — G/H' be the canonical
mapping g — gH’, which gives a one-to-one correspondence between the
normal subgroups of G/H' and those normal subgroups of G that con-
tain H'. Since H' is the largest normal subgroup of G that is contained
in H, y(H') = H' is the largest normal subgroup of ¥(G) = G/H' that
is contained in Y(H) = HH' =1~ 1(s.). 0

After this somewhat lengthy discussion of noninvertible matched

mappings we now proceed to state the more important consequences
of Definition 2.1.

Proposition 2.1 If S is a signal set in RY that is matched to a group
Gandif f: RN - RN isa distance-preserving transformation, i.e., an
isometry, of RN | then f(S) is also matched to G.
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(The proof is obvious.) In particular, if a signal set S in RY is matched to
a group G, then any translate of S, S+« where z € RY¥ is also matched
to G. The generally preferred translate S’ of S is the one satisfying

Z s =0, (2.2)

SIES,

since this choice gives the minimum average signal power T§17T S 18]
[6, p. 247 ff] among all translates.

Let 4 be any mapping from a group G onto a signal set in R, and
let n be a positive integer. We extend p to a mapping G* — R™ in
the obvious way (i.e., by components) as has been described in detail
for G = Zjr above. (This corresponds to the extension of the ‘abstract
modulator’ p to n time slots.) Then we have the following simple, but
essential proposition.

Proposition 2.2 Let g be a matched mapping from a group G onto a
signal set and let C be a linear code over G. Then the extended signal
set (C) (i.e., the signal-space image of C) is matched to C and ¢ — p(c)
1s a matched mapping.

Proof:  For any cand ¢’ in C, ¢ = (c1,...,¢n), ¢ = (cf,...,c}), we
have (denoting squared Euclidean distance by d*(-,-))

(p(e), p(¢)) = Fioy d(ple), p(ch)) = i, d*(uleit * o), ule)) =
d?(u(c=t =), p((e, ..., €))). 0

Proposition 2.2 implies, in particular, that the distance profile from
any codeword of C' is independent of the codeword. Note, however, that
1t 1s not obvious whether this ‘codeword independence’ of the distance
profile implies ‘codeword independence’ of other characteristics such as,
e.g., error probability with maximum-likelihood decoding. We will see in
the next section (as a consequence of Corollary 2.1) that this codeword
independence indeed holds for error probability on an additive white
Gaussian noise channel.

2.3 Group Signal Sets

The groups in this section will mostly be groups of transformations of a
set S, 1.e., the elements of the group are invertible mappings f : § — S,
and the group operation is the composition of mappings, which we denote
by ‘o’.
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If © is a group of transformations of a set S and s is an element
of S, then the orbit of s under © is the set O(s) = {f(s) : f € ©}. The
transformation group O is called transitive if ©(s) = S for some s € S
(and hence for all s € S).

If S is any subset of RV, then an isometry of S is a mapping f : S —
S that preserves distances. The set of isometries of S forms a group
under composition that is called the symmetry group of S and will be
denoted by I'(S).

An orthogonal transformation of RY is a linear transformation of
RY that is also an isometry of RV . (The matrix H of an orthogonal
transformation with respect to an orthonormal basis is characterized by
the property that HHT = Iy, but this fact will not be used here.)

We will make essential use of the well-known fact [20, p. 347] that
any isometry that is defined on a subset of R can be extended to an
isometry of BN . More specifically, we will use the following lemma:

Lemma 2.2 Let S be a finite subset of RY that satisfies }_,.g5 = 0.
If S spans RYN, then every isometry f of S has a unique extension to an
orthogonal transformation of R, i.e., there exists a unique orthogonal
transformation T : RY — RY such that! Tys = f(s) for all s € S and,
moreover, the set I''(S) = {T} : f € I'(S)} is a group under composition
that is isomorphic to I'(S). If S does not span RV, then I'(S) can still be
extended to a group of orthogonal transformations of RV, but in general
the extension is not unique.

Proof: The second claim of the Lemma is obvious once the first claim
is proved. So assume that S spans R and let f be an isometry of S.
It is clear that the extension of f to an orthogonal transformation, if it
exists, is unique. We now claim that ||f(s)[| = ||s|| for all s € S. Note
that, since f is a permutation of S, Y osies IF(sHII2 = Y osies |Is’]|?. But
(using the notation (-, ) for the Euclidean inner product)

0 = 3 () = £GP = lls = <'I?)

s'eS

= D (IF&I7 = 2(f(s), £()) + AP = l1sl)® + 25, 8') = [I11%)
s'eS

= 0 (AP = i) -2 <f(s), 5 f(s’)> 2 < 5 >
s'€S s'eS s'€S

= 18] (FGI* = Nsl1)

!For linear transformations, we write = +— Tz rather than z — T(z).
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which proves the claim. Since (z,y) = —3 (||z — y||* = ||z]|* — [|y||*) and
f preserves both norms and distances, it follows further that (f(s), f(s')) =
(s,s') for all 5,8’ € S, i.e., f preserves inner products.

Let {by,...,b~n} C S be a basis of RN. We define Ty : RV —
RY to be the linear transformation that moves b; to Tyb; = f(b;), 1 =
1,...,N. Since Ty preserves the inner products of elements of the basis
{b1,...,bn}, it preserves the inner product (z,y) for any z,y € R" and
is therefore an orthogonal transformation. It remains to be shown that
Tys = f(s) for all s € S. But, since T} is invertible, {Tyby,...,Tybn} is
also a basis of RY, and thus any point z in R is uniquely determined by
the inner products (x,7%b;), i = 1,..., N. Consequently, the equations
<TfS,be,') = (S,bi> = (f(S),f(b;)) = (f(s),bei), = 1,. .. ,N, imply
Tss = f(s) for all s € S.

Finally, the verification that the mapping f ~— T} is an isomorphism
from I'(S) onto I''(S) is straightforward. O

Because of this isomorphism between I'(S) and I'/(.S), one can as well
define the symmetry group of S as the group of isometries of RN (rather
than S) that leave S invariant, as is customary in geometry.

Note that, if g is an isometry of RY, then the symmetry group of
g(S)is {gofog™!: f € I'(S)} and is, in particular, isomorphic to I'(S).
Since g can be chosen to be the translation that centers g(.S) at the origin,
Lemma 2.2 therefore implies that the symmetry group of any finite set
in RV is isomorphic to a finite group of orthogonal transformations.

Slepian defined a class of signal sets that he called ‘group codes for
the Gaussian channel’ [25]. We will call such signal sets simply ‘group
signal sets’.

Definition 2.3 A group signal set in RY is the orbit of a point in RV
under a finite group of orthogonal transformations? of RN .

A recent review of the research on group signal sets is given in [40]. By
definition, group signal sets exhibit very strong symmetry. All points are
completely equivalent in every respect except for their absolute location
in space. Moreover, all points of a group signal set must lie on a sphere
around the origin.

In general, group signal sets do not satisfy condition (2.2). (An
example is the signal set of Fig. 2.3, which is a special case of permutation

2The usual definition requires also that the signal set spans RY. In the frame-
work of this dissertation, however, it seems to be more natural not to impose this
restriction.
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Figure 2.3: An example of a two-dimensional group signal set that is
not centered at the origin (cf. Theorem 2.2). Its defining
group of orthogonal transformations consists of the iden-
tity and the exchange of the axes.

modulation, variant I [24].) Since this condition is of some importance in

Lemma 2.2, we state the following theorem, which appears to be new3.

Theorem 2.2 Let S be a group signal set. Let dim.S denote the di-
mension of the space spanned by S and let dim AS be the dimension of
the space spanned by AS = {s—s': s and s’ in S}. Then ), g5 =0if
and only if dim S = dim AS. Moreover, if 3 s # 0 then the unique
translate S of S satisfying )", 5 s’ = 0 is also a group signal set and
dimS’ = dim S - 1.

For the proof of Theorem 2.2, we need the following elementary fact from
group theory.

Lemma 2.3 (Cf. Lemma 2.1.) If © is a group of transformations of a
set S and if f and f’ are elements of O, then, for any s € S, f(s) = f/(s)
if and only if f and f’ are in the same left coset of H, in ©, where
H, 1s the subgroup of © consisting of those transformations that do not
move s.

Proof: f(s)=f'(s)e [~ (f'(s)=s& (flof)eH,. o

3The author’s original version of this theorem was sharpened by G. D. Forney, Jr.,
into its present form.
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Proof of Theorem 2.2: Let S be any finite set in RV and let span S
denote the vector space spanned by S. Since AS C span.S, we have

dim S > dim AS. (2.3)

If }°,cs5 =0, then any s’ € S can be written as s’ = ]TléTzseS(sl —s),
which implies that S C span AS. We thus have

Y s=0=>dimS =dimAS.
SES

We show next that for group signal sets the converse also holds. Let S be
a group signal set such that dimS = dim AS and let © = {71, ..., T}
be the defining group of orthogonal transformations. We have to show
that ) .5 = 0. Let s’ be an arbitrary element of S and consider the
list 71s',...,Tyrs’. The definition of S implies that every element of S
appears at least once in this list. In fact, it follows from Lemma 2.3
that every element of S appears the same number of times in this list.
It thus suffices to show that ) ;.o T's’ = 0. Let {s; — s},...,s, — 5.},
si, st € S, be a basis of span AS. The assumption dimS = dimAS
implies spanS = span AS and thus we can write s’ in the form s =
D=1 @i(si = i), @ € R But Jogeo Ts' = Yopee T 2 iy @i(si — 57) =
Zgzl o (ZTEG Ts; — ZTEG Ts:-) = 0 because, as we have seen above,
the list T1s;,...,Tars; is a permutation of the list Tys!, ..., Tarst. This
proves

Y s =0<=dimS = dimAS (2.4)
s€S

for group signal sets.

Now let S = {s1,...,sm} be a group signal set such that o =
>.iz1si # 0 and let © be the defining group of orthogonal transfor-
mations. For any T' € O, we have To = Ty 12 s; = Y o Tsi = o
since the list T'sy,...,Ts,, is a permutation of s1,...,5,m. Now let
S’ = {s},...,5:,} be the unique translate of S satisfying 3, s =0,
e, s; =8 —Z But {Ts}) : T € 0} = {Ts; — =Toc : T € O} =
{Tsy —Z:T €0} =85 since {Ts; : T € O} = S by definition. Thus
S’ is the orbit of s{ under © and is therefore a group signal set.

Finally, since AS’ = AS and using (2.4) and (2.3), we have dim S’ =
dimAS’ = dimAS < dim S. This further implies dimS = dim S’ + 1
because S = S5’ + < O

m*
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Theorem 2.2 shows in particular that, for group signal sets, violation of
Condition (2.2) means not only a waste of energy but also a waste of
one dimension. The main result of this section is the following theorem.

Theorem 2.3 If O is a transitive group of isometries of a signal set S,
then S is matched to © and, for any s € S, the mapping p, : © —
S : f — f(s) is a matched mapping. Conversely, if the signal set S is
matched to a group G, then there exists a homomorphism from G onto
a transitive subgroup of I'(S).

Proof: Let © be a transitive group of isometries of S, let eg denote
the neutral element of © (i.e., the identity transformation of S), and let
ps be defined as in the theorem. Since O is transitive, u, is onto. For all
fand J' in ©, d(u.(£), m(f) = d(F(s), £'(s)) = d(s, (f 1 o f')(s)) =
d(ps(ee), s (f~1 o f')), which proves that p, is a matched mapping.

Conversely, let y be a matched mapping from the group G (whose
operation is denoted by ‘*’) onto the signal set S. For every h € G, we
define the mapping

fo:S—=S:pu(g)— u(hx*g),

which is well defined since p(g) = p(g’) implies p(h * g) = p(h x ¢'). If
s = p(g) and s’ = p(g’) for some g and ¢’ in G, then d(fr(s), fa(s')) =
d(pu(h * g),u(h x g')) = d(p(g), u(¢9’)) = d(s,s’), which shows that f; is
an isometry.

Now let © be the set {f, : h € G}, which is a subset of ['(S). But
Sran(8) = fu(far(s)) = (fa o far)(s), which shows that the mapping
h — fy is a homomorphism from G onto ©. Thus © is a group. It
remains to show that © is transitive. Let e be the neutral element of G
and let s = p(e). Let s’ be any element of S and let h € G satisfy
p(h) = s'. Then f(s) = s’ and this shows that O(s) = S. o

Together with Lemma 2.2, Theorem 2.3 implies the following corol-
laries.

Corollary 2.1 A signal set* is matched to a group if and only if it is a
translate of a group signal set.

Corollary 2.2 If a signal set S is effectively matched to a group G,
then G is isomorphic to a transitive subgroup of T'(.S).

*Recall that, in this chapter, signal sets are finite by definition.
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Note, however, that the converse of Corollary 2.2 does not always hold.
If © is a transitive subgroup of I'(S), then S is clearly matched to © but
the matching may not be effective.

Let us illustrate this with the M-PSK signal set (Fig. 2.1). Its sym-
metry group is Dys, the dihedral group with 2M elements [20, p. 336 ff.],
which is transitive on the signal set. The subgroup of rotations of Dyy,
which is isomorphic to Zs, is also transitive on the signal set. If M is
even, Dys/ is another subgroup of Djs that is transitive on the signal
set. The M-PSK signal set is thus effectively matched to groups that are
isomorphic to Zps or (for M even) to Dy 5 but to no other groups. It
is, of course, also matched to its symmetry group Djs, but the matching
is not effective.

Let us review what has been achieved so far. Our main result is
that signal sets matched to groups are essentially equivalent to group
signal sets. Therefore, one could as well have proposed group signal sets
for use with linear codes over groups from the very beginning. This
is, in fact, a central idea of recent work by Forney [36],[37},[30], which
1s, however, primarily concerned with the generalization of group signal
sets to infinite discrete sets with a transitive symmetry group. Note that
Theorem 2.3 still applies to this case. (Furthermore, Forney’s notion of
geometric uniformity includes also infinite-dimensional Euclidean spaces,
which is the proper setting for convolutional codes over groups.)

Our somewhat roundabout approach has, however, clarified the re-
lation between Definition 2.1 and its mentioned predecessors on the one
hand and Slepian’s classical approach and Forney’s recent work on the
other hand. In particular, Corollary 2.1 makes clear that signal sets
matched to groups and linear codes over such groups have not only
codeword independent distance profiles (c.f. Proposition 2.2) but also
codeword independent error probability with maximum-likelihood de-
coding. This answers in the affirmative the question, raised by Benedetto
et al. [38], whether ‘superlinear codes’ possess the ‘uniform error prop-
erty’ and thus complements Forney’s answer [30] to this question.

2.4 Performance and Structure of Group
Signal Sets
The essence of the previous two sections is the combination, in the system

of Fig. 1.1, of an inner group signal set with defining group G and a
‘linear’ code C over G, i.e., a subgroup of G¥; the resulting outer signal
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set u(C) is then also a group signal set.

Two questions arise naturally at this point. Do group signal sets with
capacity close to that of the waveform channel exist for every signal-
to-noise ratio? And is it always possible to achieve the capacity of a
group signal set with linear codes over that group? The answers to
both questions are not known at present. (Some examples suggests that
the answers are ‘yes’ and ‘no’, respectively.) Surprisingly much can be
said, however, for commutative groups. The following theorem is almost
obvious.

Theorem 2.4 If M is a prime then linear codes over Z; achieve the
capacity of the M-PSK signal set for the AWGN channel.

(Note that these codes include binary linear codes with binary signaling.)

Proof: For the AWGN channel at any given signal-to-noise ratio,
restricting the input alphabet to a signal set that is matched to any
group creates a discrete-input, continuous-output symmetric channel [11,
p. 71 ff, p.94] whose capacity-achieving input distribution is the uniform
distribution over all input letters. Now we specialize to M-PSK, M a

prime. Then Zjs is a field and linear codes over Zs achieve capacity by
the standard arguments [11, p. 206, p. 220 ff]. a

The next two theorems are essentially due to Ingemarsson [40],[41].
The first theorem sharply characterizes all commutative-group signal
sets. The concept of linear codes over Z3s, which was not used by Inge-

marsson (except for prime M), permits the following formulation (cf. [41,
Corollary 2.1}).

Theorem 2.5 (Ingemarsson’s Theorem) Let S be a commutative-
group signal set in RY. Then there exist a positive integer M, an or-
thonormal basis by, ...,by of RV, and a linear code C over Z,s such that
S is the image of C under the standard mapping with possibly different
energies in the components (see Section 2.2).

The importance of this result and the fact that Theorem 2.5 is technically
slightly stronger than Ingemarsson’s formulation justify that the proof
is stated here. In fact, Theorem 2.5 is an immediate consequence of a
fundamental theorem in the theory of group representations (see, e.g.,
[21, Theorem 2.5] or [22, pp. 292-293, Theorem 127]), which can be
stated as follows:
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Theorem 2.6 Let {T;} be a finite commutative group of orthogonal
transformations of RN . Then one can choose a coordinate system (i.e.,
an orthonormal basis for RN) B such that, for all ¢, the matrix M; of T;
with respect to B has the form

cos ¢;1  —sin @ coS @iy — SIN Py
.: N 1. 41
M; [( sing;;  cos ¢;1 )’ ’( sing;r  cos @iy )’i ’ ]
(2.5)

where the notation [A, B,...] means a block-diagonal matrix whose di-
agonal blocks are the matrices A, B, ....

The operation of any 7; is thus completely determined by its ‘rotation
vector’ [41]
¢i = (it -y Piry- -, Pin)

where n = N — r. The first » components of ¢; are the angles of the
2-dimensional rotations in (2.5) and the remaining components are 0 or
7. The rotation vector of the product of two matrices is the sum (mod
27) of their rotation vectors. The set {#;} of rotation vectors under
componentwise addition mod 27 thus forms a group which is isomorphic
to {T;}.

Since the group {4} is finite, all components ¢;; are rational fractions
of 2, i.e., ¢;; = (k;ij/mi;) - 2w where k;; and m;; are integers, 0 < k;; <
m;;. Let M be the least common multiple of all m;;. Then the mapping

M M
(dity ..., Pin) — (d’ilga---;gbing)

1s an isomorphism from {¢;} onto a subgroup C of Zp;™. Let 7 be the
corresponding isomorphism C — {T;}.

Now let z be a point in R and let S be the orbit of £ under {T}}.
By rotations in the first r pairs of coordinates, we can obtain a new
coordinate system B’ with respect to which the representation of z has
the form (z1,0,22,0,...,2,,0,2,41,2r42,...,2,) and (2.5) still holds.
But the mapping

C—S:c—71(c)z

is now seen to be the generalized standard mapping with respect to B’
as claimed in Theorem 2.5. 0.

Stated more simply, Theorem 2.5 says that linear codes over Zjs
used with phase modulation are essentially the only commutative-group
signal sets and thus attributes an unexpectedly fundamental role to these
codes. Another important property of commutative-group signal sets is
an immediate consequence of Theorem 2.5.
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Theorem 2.7 For any signal-to-noise ratio, the capacity (in bits per
dimension) of any signal set (with AWGN) that is matched to a commu-
tative group is upper bounded by the limit, for M — oo, of the capacity
of M-PSK.

Proof: If the same energy is used in all components (see Theorem 2.5)
then the statement is obvious since the capacity (in bits per dimension)
of a signal set which is coded M-PSK is clearly upperbounded by the ca-
pacity of M-PSK. But Shannon’s water-filling principle® [1],[11, p. 344]
for the optimal energy distribution on parallel channels implies that the
capacity is maximized by the uniform energy distribution over the com-
ponents. 0

The mentioned limit for M — oo of the capacity of M-PSK is called
the ‘PSK-limit’ and plotted in Fig. 2.4 (cf. [13, Fig. 7.11]). Note that
Theorem 2.4 implies the following converse of Theorem 2.7, which seems
not to have been noticed before (see [40]).

Theorem 2.8 For every signal-to-noise ratio (assuming AWGN), there
exist commutative-group signal sets with arbitrarily small positive error
probability and rate arbitrarily close to the PSK-limit.

It is well known (see Fig. 2.4) that, for large signal-to-noise ratios,
PSK does not effectively exploit the capacity of the bandlimited wave-
form channel. As Ingemarsson [40] has remarked, this motivates the in-
vestigation of noncommutative-group signal sets whose capacity exceeds
the PSK-limit.

In joint work with T. Mittelholzer and J. Arnold, we have found
some such signal sets. Fig. 2.4 shows the capacity of two such signal
sets. The first consists of 60 points in three dimensions and is based on
the symmetry group of the icosahedron. The second signal set consists
of 7200 points in four dimensions and is based on the largest finite group
of rotations in R*. A detailed description of these and many more four-
dimensional signal sets is contained in [42].

We conclude this section by clarifying one of the questions that orig-
inally motivated this research, viz., the characterization of all signal sets
that are matched to Zps (cf. [43] and Fig. 2.2).

Theorem 2.9 A signal set is matched to Zs if and only if it is a trans-
late of the image (under the standard mapping, with possibly different

®The lack of explicit reference to the water-filling principle in [40] (the unpublished
report [12] is cited instead) is the reason for writing out this short proof.
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Figure 2.4:

The capacity of M-PSK for M up to 32, the PSK-limit,
and the capacity of two new higher-dimensional group sig-

nal sets. (These new group signal sets are results of joint
work with T. Mittelholzer.)
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energies in the components) of a linear code over Zps that consists of all
Zn multiples of a single codeword (i.e., the code is a cyclic group).

(The proof is now obvious.) Such signal sets were investigated in [44].

The signal set of Fig. 2.2, e.g., is obtained from the linear code over
Zg consisting of all Zg multiples of the codeword (1,4). By the standard
mapping, this code is mapped into four-dimensional Euclidean space,
but, since the second component of all codewords is either 0 or 4, one
coordinate is unused and can be dropped (cf. Section 2.2). The first
component of the codeword determines the z- and y-coordinates, and
the second component determines the sign of the z-coordinate.

2.5 Group Signal Sets from Linear Codes

Let us go back to the central problem of this chapter, viz., the inter-
play between modulation and algebraic coding in Fig. 1.1. Consider the
problem of representing a given signal set S as the outer signal set in
Fig. 1.1, 1.e., as the Euclidean space image of some code C over some in-
ner signal set of prescribed dimension N. Assuming that the dimension
of S equals Nn for some positive integer n, this can always be done. For
1 =1,...n, the signal set S; of the i-th component of C' consists simply
of the projections of all points in S onto the i-th block of N coordinates,
and the resulting inner signal set is the union of all S;. For arbitrary
signal sets S, the inner signal set S that is obtained in this way is usually
very irregular.

In the previous sections of this chapter, we have tried the converse,
viz., a ‘disciplined’ construction of outer signal sets from algebraic codes
and well-behaved inner signal sets. Moreover, we relied on the strong
condition that the inner signal set is a group signal set.

We will now see that algebraic constructions of outer group signal
sets are possible even if the inner signal set is not a group signal set. To
this end, we will the algebraic code C allow to be a more general group
than just a subgroup of G™, as was assumed in the previous sections.

Let B be a binary linear code of length n. (The extension to lin-
ear codes over Zjs and ‘linear’ codes over arbitrary groups is straight-
forward.) Let Aut(B) denote the automorphism group of B, i.e., the
group of permutations of components that leave B invariant. Let A be
a subgroup of Aut(B). Both A and B can be interpreted as groups of
orthogonal transformations of R™ as will be illustrated by an example
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below. These groups of orthogonal transformations will be denoted by
A and B. The construction is based on the following theorem.

Theorem 2.10 The set AB of orthogonal transformations is a group of
order |A| x |B].

Proof: For every a in A, let 7, be the mapping B — B:bw~
74(b) = a~1ba. Note that the deﬁmtlons of A and B imply that 74(b) is
actually in B. Thus, for any a,a’ in A and any b ¥ in B, (ab)~la't’! =
b~ta~? ’b’—(a"1 ’)(a la')~ 1b Ya=ta )V = a la' m(a-14 :)(b 1)b’ which
shows that AB is a group. Finally, if ab = a’d’ for some a,a’ in A and
some b,b’ in B then a = a’ and b = b, which implies that the order of
AB equals |A| x |B|. O

(In fact, the group AB is isomorphic to a semi-direct product [16], [17] of
A and B.) As far as its mathematical content is concerned, Theorem 2.10
is certainly not new; it seems, however, that it has not appeared before
1in the context of Slepian-type group codes.

Now let S be a one-dimensional signal set that is symmetric with
respect to the origin and let ¢ = (z1,...,2zx) be an element of RY all
whose components z;, ¢ = 1,..., N, are in S. Then the N-dimensional
group signal set S = {abz : a E A,b € B} is a code over S, i.e., all
components of all elements of S are in S.

This construction is easily generalized to n-dimensional inner signal
sets S. The initial vector z is then (n - N)-dimensional, and B is a linear
code over some subgroup G of the symmetry group I'(S) of S.

In general, the group signal set S that is obtained in this way has
less than |A| x |B| elements. However, it is well known [25] that, for any
group O of orthogonal transformations, the initial point = can always be
chosen such that the group signal set {T(z) : T € ©} has |0]| different
points.

Let us explain this construction with a simple example. Let B be
the (2,2) binary linear code (i.e., B consists of all four binary 2-tuples)
and let A =Aut(B), which consists of the identity and the exchange of
the two components. The orthogonal transformations corresponding to
the codewords of B can be represented by the following matrices:

o v Lo 2 [ ) [ 4]

Now let z = (a,b) be the initial point. The group signal set {T'(z) : T €
B} is the usual signal space image of the binary code B where, however,
different energies are used in the first and the second component.
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Now adjoin to B the permutation of the two components, i.e., the
first of the following four matrices:

Dol el PR [A T

The group AB then consists of all eight of the above matrices (or, more
precisely, of the corresponding orthogonal transformations). Since, ac-
cording to Theorem 2.10, these eight matrices form a group, the set
{I'(z) : T € AB} is a group signal set. This signal set is shown in
Fig. 2.5. The projections onto both axes give the same 4-level AM (am-
plitude modulation) signal set, which is also shown in Fig. 2.5. Note
that, if the coordinates a and b of the initial point z are equal, then the
inner signal set reduces to the binary signal set and the outer signal set
reduces to a 4-PSK signal set.

Figure 2.5: The 8-PSK signal set and its projections onto one axis.

Fig. 2.5 illustrates that the inner signal sets of the construction ac-
cording to Theorem 2.10 are in general not group signal sets. This new
construction thus adds considerable freedom for the choice of the inner
signal set that can be used to construct outer group signal sets. On the
other hand, group signal sets that have been constructed in this way can
also be used as inner signal sets for use with linear outer codes, as was
proposed in the previous sections.

It should be pointed out that the construction of group signal sets
according to Theorem 2.10 is closely related to Slepian’s permution mod-
ulation [24], [46], of which it is a generalization, and to the code construc-
tion of [45]. Permutation modulation, variant II, is simply a group signal
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£
5\*:,‘

Figure 2.6: Component signal sets such as this QAM (quadrature am-
plitude modulation) signal set result when linear codes

over Zjr are used in the construction according to Theo-
rem 2.10.

set whose defining group consists of all sign changes and all permutations
of the n coordinates; in mathematics, this group is usually denoted by
An. Subgroups of A,, are promising candidates for good group codes.
The construction according to Theorem 2.10 clearly always yields groups
of this type and thus makes some of the subgroups of A, more easily
accessible.

From a practical point of view, component signal sets such as the
one shown in Fig. 2.6 seem particularly attractive. Such signal sets
result when linear codes over Zjs rather than binary codes are used in
the construction according to Theorem 2.10. A special class of such
codes has been presented in [45] without relating the construction to the
automorphism group of linear codes. By making this relation explicit,
Theorem 2.10 opens a wide range of possibilities for code constructions.
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Chapter 3

Convolutional Codes
over (Groups

The first departure, for Euclidean-space applications, from the standard
concept of convolutional codes over fields were the convolutional codes
over the ring of integers modulo M, which are naturally matched to M-
ary phase shift keying (M-PSK) [47], [48], [49], [50], [51], [52], [63]. The
motivation for such codes is the same as for linear block codes over Z,
which has extensively been discussed in Chapter 2.

The concept of convolutional codes over groups was recently intro-
duced by Forney [29], [30] and Forney and Trott [54], [55] as a result of a
study of the symmetries of Euclidean-space trellis codes. Convolutional
codes over isometry groups of Euclidean space are the natural combina-
tion of three basic concepts, viz., the concept of convolutional codes (due
to Elias [56]), Slepian’s ‘group codes for the Gaussian channel’ [25], and
Ungerboeck’s trellis-coded modulation (3], [4], [10]. In fact, it was shown
in [29] and [30] that most good known Euclidean-space trellis codes are
‘convolutional codes’ of this type and therefore geometrically uniform.

It is therefore obvious to try the step from the analysis of known
convolutional codes over groups to the construction of new ones with
the final goal being algebraic constructions of, and decoding methods
for, good Euclidean-space codes. This program is the motivation for
this chapter. The reader should be warned, however, that despite the
size of this chapter, that program has not been carried out very far. In
particular, no interesting new codes are presented in this chapter. What

39
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is treated here are basic system-theoretic aspects of convolutional codes
over groups. It is hoped that future, more concrete work can be based
on these foundations.

From the algebraic point of view, a convolutional code over a group G
is essentially a shift-invariant subgroup of the group G of all two-sided
infinite sequences over G. (For a complete definition, see Section 3.1.)
This is, however, a rather abstract concept. In particular, it does not
give any hint what encoders for such codes look like. In fact, the lack
of an encoder structure analoguous to the familiar linear-shift-register
encoders of convolutional codes over fields has been one of the major
shortcomings in this new area of research.

Two solutions to this problem are presented in this chapter. Firstly,
1t is shown how the standard matrix description of linear systems gen-
eralizes to the group case; this leads to the concept of homomorphic
encoders. Secondly, an encoder structure is presented that generalizes
the feedforward linear-shift-register encoders and that is canonical in the
sense that every encoder of this type produces a convolutional code and
every convolutional code over a group has a unique minimal encoder of
this type. Interestingly, this new encoder structure contains ‘nonlinear’,
1.e., nonhomomorphic mappings!

As with convolutional codes over fields, minimal encoders are of par-
ticular theoretical and practical importance; e.g., minimal encoders are
never catastrophic, i.e., they always have a feedforward (i.e., sliding-
window) inverse. A simple minimality test (Theorem 3.4) is therefore
presented, which seems to be new even for the familiar linear encoders
over fields.

It is obvious that this chapter is strongly influenced by [55]; however,
it complements [55] rather than builds on it. In particular, no explicit
results of that earlier work will be used. This chapter is also much
influenced by Willems’ inspiring recent reformulation of the basic notions
of system theory [57], which, however, is not concerned with groups.
Among the few papers that have earlier dealt with system theory over
groups are [58], [59], [60], with which the present work has surprisingly
little in common. The topological considerations of Section 3.4 have some
resemblance with Staiger’s approach to convolutional codes [61], [62].
Ideas similar to those of this chapter are treated in greater generality in
the dissertation of Trott [63].

This chapter is structured as follows. In Section 3.1, a careful defini-
tion for convolutional codes over groups is proposed. In Section 3.2, the
concepts of strict-sense and wide-sense homomorphic encoders are intro-
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R(xo) RS(x,)
R°S(x,) "
R?(XO) S(xp)
R’S(x,) R’(X,)

Figure 3.1: The 8-PSK signal set as group signal set from the dihe-
dral group Dy = {1, R, R?* R3,S,RS, R%S, R3S}, where R
1s a rotation by 7/2 and S is the reflection through the
horizontal axis.

duced. The canonical feedforward shift-register encoder is presented in
Section 3.3. The proof that every convolutional code over any group has
a minimal encoder of this type is given at the end of Section 3.4. The
bulk of Section 3.4 consists of the discussion of system-theoretic concepts
that are needed for this proof. Two useful byproducts of this discussion
are the minimality test for encoders (Theorem 3.4) and the proof that
minimal encoders are not catastrophic.

In order to exhibit at least one example of a convolutional code over a
noncommutative group, consider the group signal set of Fig. 3.1. This is
the ordinary 8-PSK signal set obtained from the so-called dihedral group
D4, which is noncommutative. A simple example of a convolutional code
over this noncommutative group for use with the 8-PSK signal set of
Fig. 3.1 is shown in Fig. 3.2. (The ‘linearity’, i.e., the group property,
of this code will become clear in Section 3.1.) Another example of a
convolutional code over this group is Ungerboeck’s 4-state code for 8-

PSK [10], [30].

It should be noted that the concept of codes over groups is also useful
for lattice-type signal sets, since lattices may be considered as generalized
Slepian signal sets where the finite groups of orthogonal transformations
are replaced by infinite translation groups.
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Figure 3.2: Two ways of visualizing the same 2-state code over the
group D4 for use with the signal set of Fig. 3.1. Accord-
ing to Definition 3.1, this is, in fact, a group transition
graph (G, S, B) with G = D4 and S = Z5, and the label
sequences along paths through this transition graph thus
form a convolutional code over Dy.

3.1 Convolutional Codes over Groups,

Rings, and Fields

The basic idea of a convolutional code over a group G is that it is a
shift-invariant subgroup of G#, the group of two-sided infinite sequences
over G under componentwise application of the operation of G [54],[55].
A satisfactory definition can, however, not be based on this property
alone. Consider, e.g., the case G = Z, (the binary group or field) and let
C, C C G?, consist of those sequences whose Hamming weight is finite
and even. It is easily verified that C is a shift-invariant subgroup of GZ.
The minimum Hamming distance of this ‘code’ is clearly two and the
rate is one. Engineers know, however, that this code is pathological and
that its ‘true’ minimum distance is only one. The problem here is that no
‘real’ decoder can, during its finite time of operation, see any difference
between C and all of GZ. A reasonable definition of convolutional codes
over groups should exclude such cases.

The definition that is proposed in this chapter is based on the notion
of a ‘transition graph’, which is simply one way of formalizing the familiar
state-transition diagrams of automata theory or the trellis diagrams of
convolutional codes. (In [66] and [55], the term ‘trellis section’ is used
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instead, while Willems [57] uses the term ‘discrete-time evolution law’.)
The two diagrams of Fig. 3.2 are equivalent visualizations of the same
transition graph.
Definition 3.1 A transition graph is a triple T' = (G, S, B), where the
alphabet G and the set S of vertices (or nodes or states) are arbitrary
nonempty sets, and the edges (or branches) B are a subset of S x G x S
such that the projection onto the first component and the projection
onto the third component are both onto S.

If both G and S are groups and B is a subgroup of S x G x S, then
T is a group transition graph. If both G and S are modules® over some
commutative ring and if B is a submodule of S x G x S then I is a linear
transition graph; this includes, in particular, the case where both G and
S are vector spaces over some field and B is a subspace of S x G x S.

The projections onto the first, second, and third component of B C
Sx G xS will be denoted by my, w2, and 73, respectively. If b = (s,g,s') €
B 1s an edge in some transition graph I' = (G, S, B), then s = m,(b) is
the starting verter of b and s’ = w3(b) is the ending vertez of b; s is a
predecessor of s’ and s’ is a successor of s; and g = wo(b) is the label? of
b.

A transition graph I' = (G, S, B) is thus simply a directed graph
(with possibly parallel edges) whose edges are labeled with elements of
G; and the condition that both 7; and 73 are onto S ensures that every
vertex has both a predecessor and a successor.

A path through a transition graph I' = (G, S, B) is a (finite or infinite)
sequence of edges such that the starting vertex of every edge equals the
ending vertex of the preceding edge. The length of a path is the number
of its edges. The set of two-sided infinite paths through I' will be denoted
by II(T).

For any set A, let AZ be the set of all two-sided infinite sequences
over A. A subset C of AZ is shift-invariant if the shifted version of every
sequence 1n C'is also contained in C. If G is a group, then the elements
of GZ form a group under componentwise application of the operation
of G; this group will also be denoted by GZ. Similarly, if G is a module
over some ring (or a vector space over some field), the module (or space)

1 A module M over a commutative ring R is the natural generalization of a vector
space over a field, i.e., M is an abelian group under addition and the elements of M
can be multiplied with the elements of R.

?Warning: the terms ‘label’ and ‘label code’ are used in [55] in a completely
different sense.
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consisting of the sequences in G% under componentwise application of
the operation of G will also be denoted by GZ.

For any transition graph ' = (G, S, B), II(T") is obviously a shift-
invariant subset of BZ. If I is a group transition graph, then II(I') is
clearly a subgroup of BZ;if I is a linear transition graph, then II(I') is
a submodule (or subspace) of BZ.

The set of label sequences along two-sided infinite paths through a
transition graph ' = (G, S, B) will be denoted by A(T"); A(T') is obviously
a shift-invariant subset of GZ. If I is a group transition graph, then A(T)
is clearly a subgroup of GZ since the mapping that assigns to every path
its label sequence is a homomorphism; if I' is a linear transition graph,
then A(T) is a submodule (or subspace) of GZ.

Such sets of label sequences along paths through finite graphs are
studied in symbolic dynamics, which has recently found applications in
coding for input-constrained channels (cf. [64] and, e.g., [65] and the
references therein). However, the group structure of convolutional codes
makes their theory look more like linear system theory than like symbolic
dynamics.

A transition graph I' = (G, S, B) will be called controllable or irre-
ducible if, for any two vertices s and s’, there exists a path from s to s’.
(The term ‘controllable’ is standard in system theory, while ‘irreducible’
1s used in symbolic dynamics.) We are now ready for the main definition.
(Note that this definition differs slightly from the preliminary one given
in [66].)

Definition 3.2 Let I' = (G, S, B) be a controllable transition graph
with a finite? number of vertices. If T is a group transition graph, then
A(T') is a convolutional code over G; if G is a module over some ring
R or a vector space over some field F' and if T is linear, then A(T) is a
convolutional code over R or over F, respectively.

Note that, according to this definition, convolutional codes are always
time-invariant, i.e., shift-invariant. (The generalization of the theory to
time-variant codes may be found in [63].) Note also that it is not obvious
at this point that this definition actually excludes pathological codes as
the one mentioned at the beginning of this section. However, it will be
shown in Section 3.4 that convolutional codes according to Definition 3.2

3We will, in fact, use only a much weaker finiteness condition for S, viz., the
so-called descending chain condition (cf. Theorem 3.5). For linear transition graphs
over some infinite field F, the theory therefore includes the case where S is a finite-
dimensional vector space over F.
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are always well-behaved. More precisely, it will be shown that every con-
volutional code has a well-defined minimal group (or linear) transition
graph which is essentially unique, and encoders based on such minimal
transition graphs have a feedforward or ‘sliding-window’ inverse. (En-
coders without such an inverse are traditionally called ‘catastrophic’.)

Since Definition 3.2 includes convolutional codes over finite fields and
rings, 1t is certainly appropriate at this point to compare this definition
with earlier ones. The standard definition of a convolutional code over
a field, due to Forney [67], is as the set of possible output sequences of
a linear-shift-register encoder. As we will see, this definition is almost
equivalent to Definition 3.2. The only difference is that, in [67], all
sequences are required to start somewhere in the past (i.e., to be formal
Laurent series), whereas Definition 3.2 is based on two-sided infinite
sequences. This difference is clearly irrelevant for the performance of
convolutional codes in communication systems. For the purpose of this
chapter, it seems mathematically more natural to follow [57] and [55]
and use the two-sided approach.

An alternative definition of convolutional codes was given by Massey
[68], who defined an (n,k) convolutional code over a field F' as a k-
dimensional subspace of the n-dimensional vector space F(z)™ over the
field F'(x) of rational functions (polynomial fractions) over F. This def-
inition is easier to work with than Forney’s, but it is hard to see how it
could be generalized to arbitrary groups. For linear codes over 7z, this
approach is, however, quite useful, cf. [49], [51], [52], [53]. The defini-
tion of convolutional codes over rings that is used in these references is
slightly more restrictive than the present one, since it requires the code
to be a free module.

Yet another definition of convolutional codes was given in [61]. While
the topological framework of that definition may not have been very
lluminating in the field case, Definition 3.2 forces us to discuss some such
aspects (completeness and ¢-completeness) to ensure that convolutional
codes are well-behaved; this will be done in Section 3.4.

Note that, with respect to Definition 3.2, a standard (n,k) binary
convolutional code can be regarded either as a convolutional code over
the binary field or as a convolutional code over the group Z57. More
generally, any convolutional code over a field F (or ring R) is also, for
some positive integer n, a convolutional code over the additive group of
F™ (or R™); if the additive group of F' (or R) is cyclic, then the two
viewpoints are completely equivalent.

We now consider some immediate consequences of Definition 3.2. The
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starting point is one more definition.

Definition 3.3 The forward input group of a group transition graph
I' = (G, S, B) is the subset of B of those edges that start in the neutral
vertex eg of S; it will be denoted by B*. The backward input group of
I’ consists of those edges that end in eg; it will be denoted by B~. For
linear transition graphs, the forward input space and the backward input
space are defined in the same way.

Since BT and B~ are the kernels of the projections m; and 73, respec-
tively, we immediately have the following proposition.

Proposition 3.1 IfT' = (G, S, B) is a group transition graph, then both
the input group Bt and the output group B~ are normal subgroups of
B; if T is linear, then both Bt and B~ are submodules (or subspaces)
of B. Moreover, both B/B* and B/B~ are isomorphic to S.

For the following discussion, we will write all group operations as
“+’) and we will use this same symbol for ‘addition’ in modules or vector
spaces. If b = (s,g,5’) is an edge in some group (or linear) transition
graph I' = (G, S, B), then the coset b + BT contains precisely those
edges that start in the vertex s; similarly, the coset b * B~ consists of
those edges that end in the vertex s’. An immediate consequence is the
following proposition.

Proposition 3.2 Let S be the set of vertices of a group (or linear)
transition graph. Then, for any s and s’ in S, the set of predecessors of
s and the set of predecessors of s’ are either disjoint or they are equal.
The same statement holds also for the sets of successors of s and s'.

This property is certainly familiar from the trellis diagrams of convolu-
tional codes over fields. Proposition 3.1 implies also that |Bt| = |B~|.
In the field case, this further implies that B¥ and B~ are isomorphic.
The obvious conjecture that this isomorphism carries over to arbitrary
groups 1s, however, false. For the simple 2-state group transition graph
of Fig. 3.2, e.g., BY is isomorphic to Zy x Z, while B~ is isomorphic to
Zs.

Another immediate consequence of the above discussion is that the
same number of edges start from (and end in) every vertex. We can
thus easily obtain an ‘encoder’ from any group or linear transition graph
simply by labeling, for every vertex, the outgoing edges with the elements
of some input alphabet U of cardinality |[B*| (=|B~|). This leads us to
the topic of the next section.
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3.2 Homomorphic Encoders

The term ‘encoder’ (with respect to convolutional codes) generally means
some sort of automaton that transforms unrestricted input sequences
into code sequences. Different ways of describing such automata are
routinely used, e.g., shift-register circuits or matrix descriptions. In this
section, we are interested in encoder descriptions of the form

s(t+1) = v(s(t),u(d)) (3.1)
y(t) = w(s(t)’u(t))) (3.2)

where s(t), u(t), and y(t) are the state, input, and output at time ¢,
which are elements of the state set S, the input alphabet U, and the
output alphabet G, respectively; and the next-state mapping v and the
output mapping w map S x U onto S and into G, respectively.

Any such encoder naturally specifies a transition graph I' = (G, S, B)
over G with B = {(s,w(s,u),v(s,u)) : s € S,u € U}, and we will
say that A(T") is the code produced by this encoder. (Contrary to the
standard setup in automata theory, these encoders thus have no initial
and terminal states.) If a transition graph B can be obtained in this
way from some encoder F, then we will say that F is an encoder for B.

An encoder will be said to be proper if, for all states s, any two
different inputs u and u’ result either in a different output or in a different
next state. In other words, if both w(s,u) = w(s,v’) and v(s,u) =
v(s,u’), then u = u’ for proper encoders. Note that a transition graph
has a proper encoder if and only if the same number of edges start in
every vertex. The discussion at the end of the previous section thus
makes clear that every group or linear transition graph has indeed a
proper encoder. Note that improper encoders are not invertible, i.e., the
input sequence cannot be recovered from the output sequence.

It 1s obvious at this point to conjecture that every group (or linear)
transition graph has a proper encoder such that both the next-state map-
ping v and the output mapping w are homomorphisms. Interestingly, it
will turn out that this conjecture touches the central difference between
convolutional codes over groups and those over fields. This topic will be
discussed in the rest of this section.

Definition 3.4 An encoder as described by equations (3.1) and (3.2) is
strict-sense homomorphic or linear if the input alphabet U, the output
alphabet G, and the state set S are groups (or modules or vector spaces)
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and if the next-state map v and the output map w are homomorphisms
from the direct product S x U onto S and into G, respectively.

Using again the symbol ‘¢’ for both group operations and addition
in modules or vector spaces, strict-sense homomorphic encoders can al-
ternatively be characterized as follows.

Proposition 3.3 An encoder as described by (3.1) and (3.2) is strict-
sense homomorphic if and only if it can be described by the equations

s(t+1) = a(s(t)) * Bu(?)) (3.3)
y(t) = (st)) * 8(u(t)), (3-4)

with homomorphisms ¢ : S — S, 8:U —S,vy: 55— G,and 6 : U — G
such that ofs) * B(u) = B(u) x a(s) and y(s) * §(u) = 6(u) * v(s) for all
se€Sandaluel.

The proof follows from the fact that a homomorphism from a direct prod-
uct can always be decomposed into commuting homomorphisms from the
components. Note that, in the field case, the commutativity conditions
are automatically satisfied and (3.3) and (3.4) reduce to the standard
matrix description of linear systems.

It 1s rather obvious that the transition graph of every strict-sense
homomorphic encoder is a group (or linear) transition graph. (For a
formal proof, see Theorem 3.1 below.) The converse conjecture that
every group transition graph has a proper strict-sense homomorphic en-
coder 1s, however, false! In fact, the simple two-state group transition
graph of Fig. 3.2 has no proper strict-sense homomorphic encoder. This
can be seen by noting that the input group of any such encoder has
four elements and thus must be commutative while the code itself is not
commutative. (The closely related fact that a convolutional code over a
group may not have a minimal linear encoder has earlier been observed
by Forney and Trott [55].)

The key concept for an adequate generalization of Definition 3.4 is
that of a group extension or Schreier product. By a Schreier product
(after O. Schreier, who studied such products) of a group G by a group
A, denoted by G « A, we mean the set G x A endowed with a group
structure such that the mappings A - G «x A : a — (eg,a) and G
A — G :(g,a) — g (where the symbol eg denotes the neutral element of
G) are both homomorphisms. Schreier products of modules and vector
spaces are defined in the same way.
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The term ‘Schreier product’ is not standard in mathematics. The
standard concept is that of an extension of G by A, which means any
group E that contains a normal subgroup A’ that is isomorphic to A
such that the quotient group E/A’ is isomorphic to G. Any extension
of G by A is, however, isomorphic to some Schreier product G o< A;
conversely, any Schreier product G o« A is clearly an extension of G' by
A. These concepts are reviewed in the Appendix.

In the field case, every extension of a vector space G by a vector
space A (and thus every Schreier product G o« A) is clearly isomorphic
to the direct sum G @ A. However, not every Schreier product G « A 1s
actually the direct sum! This distinction is important in our context; in
fact, 1t is the main reason for the use of Schreier products in this section.

Definition 3.5 An encoder as described by equations (3.1) and (3.2) is
wide-sense homomorphic if the input alphabet U, the output alphabet
(7, and the state set S are groups (or modules or vector spaces) and if
the next-state map v and the output map w are homomorphisms from
some Schreier product S « U onto S and into G, respectively.

The concept of wide-sense homomorphic encoders is extremely gen-
eral. Even in the field case, a wide-sense homomorphic encoder is, in
general, not linear! Definition 3.5 is, however, justified by the following
theorem, which is the main result of this section.

Theorem 3.1 Every group (or linear) transition graph I' has a proper
wide-sense homomorphic encoder. If T is linear over some field, then it
has a proper strict-sense homomorphic encoder. Conversely, the transi-
tion graph of any wide-sense homomorphic encoder is a group (or linear)
transition graph.

Proof: (Cf. proof of Proposition 3.14 in the Appendix.) Let I' =
(G,S,B) be a group (or linear) transition graph. Let U = Bt ie.,
the input alphabet of the encoder is the input group of the transition
graph. Let p : S — B be a mapping that assigns to every vertex s
of I' one of its outgoing edges p(s), i.e., the coset p(s) * B* is the set
of all edges that start in s. Assume further that p(es) = ep. The
mapping S x U — B : (s,u) — p(s) * u thus establishes a one-to-onc
correspondence between S x U and B. This one-to-one correspondence
induces a group (or module or vector space) structure on the set S x U.
Indeed, this induced group structure is a Schreier product S o U since
both the mapping U — S « U : u — (es,u) and the mapping S «« U —
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S : (s, u) — s are homomorphisms. The next-state map v and the output
map w can thus be chosen as the concatenation of the isomorphism
S o« U — B :(s,u) — p(s)*u and the projection 73 or w3, respectively.

If G is a field and T is linear, then Proposition 3.1 implies that B is
the internal direct sum of Bt and some group S’ that is isomorphic to
S. Let p be the corresponding isomorphism S — S’. Then the mapping
S®U — B :(s,u) — p(s)+ uis an isomorphism. Choosing v and w as
above proves the second claim of the theorem.

For the converse part, consider the transition graph I' = (G, S, B) of
some given wide-sense homomorphic encoder, i.e., B = {(s,w(s, u), v(s,u)) :
s € S,u € U}. We have to show that B is a subgroup of the direct prod-
uct SxGxS. Solet b = (s,w(s,u),v(s,u)) and ¥’ = (s',w(s’, u’), v(s',u'))
be two arbitrary elements of B. Since (s,u)~1(s',u’') = (s71s',u") for
some u" in U, we have

b7 = (sThS (w(s,u)) T rw(s, o), (v(s, u) T (s, u'))
= (s, w((s,u) 7N u)), v((s, ) NS, W)

—_ (3-15/,(4)(8—18/, u//), V(S_IS/, u//))’
which shows that 5~1¥ is in B. O

We have thus seen how the standard matrix description of linear sys-
tems generalizes to the group case. It has turned out that two concepts
are needed, viz., strict-sense and wide-sense homomorphic encoders.
While the former are not general enough for all group transition graphs,
the latter are more general than linear encoders even in the field case.

The encoders of this section are clearly not as useful as the stan-
dard linear-shift-register encoders of convolutional codes over fields. In
particular, they do not exhibit any internal structure of the state space.
This problem is addressed in the next section.

3.3 A canonical encoder structure

In this section, we consider encoder structures based on shift registers
as shown in Fig. 3.3. There are k (=3 in Fig. 3.3) input terminals each
of which accepts elements of some alphabet Uj, 7 =1...k, and there i1s
one output terminal that puts out elements of some alphabet G. Each
of the k input terminals feeds a delay line with m; memory cells. And
there is a mapping w : U™+ x ... x U;n"+1 — G from the current and
stored inputs to the output.
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Figure 3.3: Feedforward encoder structure. (The right-to-left orienta-
tion helps in visualizing the connection to the correspond-
ing transition graph.)

It i1s clear that such an ‘encoder’ specifies an encoder in the sense
of the previous section with input set U; x ... x Up. The edges of the
corresponding transition graph can be identified with the set U{n‘“ X

X U;n""'l of all current and stored inputs.

If we assume that the k input terminals all accept elements of some
finite field F', and further that G = F" and that w is a linear mapping
from F*+mit-+mr jnto F™ then Fig. 3.3 is clearly the general feedfor-
ward encoder structure for an (n, k) convolutional code over F. For the
standard definition of convolutional codes over fields, it is well known [67]
that every convolutional code has a minimal encoder of this type. (For
convolutional codes over fields according to Definition 3.2, this follows
from the specialization to the field case of the general encoder structure
of this section.)

Consider again Fig. 3.3, but assume now that the input alphabets
Ui,...,Ur are groups and that the output alphabet G is also a group. It
1s clear that, if w is a homomorphism from the direct product UI""H X
co. X U,T"'H into G, the resulting encoder is strict-sense homomorphic.
But we have seen in Section 3.2 that strict-sense-homomorphic encoders
are not general enough to generate all convolutional codes. We thus will
have to consider more general mappings w than just homomorphisms
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Figure 3.4: The building blocks of the encoder structure of this chap-
ter are a) delay cells, b) homomorphisms defined on
the subgroup (submodule) of U x U consisting of those
pairs (u,u’) that can appear at the input terminals, and
¢) selection of a coset representative, followed by the mul-
tiplication with (or addition of) an element of the normal
subgroup.

from direct product groups.

Forney and Trott [55] have shown how a minimal encoder of the type
of Fig. 3.3 can be obtained for every convolutional code over a group.
The converse problem of characterizing those mappings w that give con-
volutional codes is, however, not addressed in [55]. We will now present
a canonical structure for the mapping w such that the resulting encoder
always produces a convolutional code and that every convolutional code
over an arbitrary group has a minimal encoder of this type.

There are three types of building blocks in this encoder structure,
which are shown in Fig. 3.4. The first type of building block are delay
cells; they are described by the equation y(¢) = u(t — 1), where u(t) and
y(t) are the input and output, respectively, of the delay cell.

The second type of building blocks are two-input homomorphisms
(in the group case) or linear mappings (in the linear case). They have
two input terminals which accept elements from some group U and an
output terminal whose alphabet is some group G. These blocks represent
homomorphisms of the form B — G, where B is a subgroup of U x U.
In the field case, we could as well define such homomorphisms on all of
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U x U, since any linear mapping that is defined on a subspace of some
vector space V can be extended to all of V. For general groups, however,
this is not possible. Note that, in the circuit diagrams of this section,
the domain B of such homomorphisms will consist simply of all those
pairs (u,u’) € U x U that can actually occur in the particular circuit
under consideration.

The third building block represents the selection of a coset represen-
tative, i.e., mappings of the form p : G/H — G such that p(¢H) € gH,
followed by the ‘multiplication’ with (linear case: addition of) an el-
ement of H. In more abstract terms, these building blocks represent
group extensions. It will be assumed, for any such selector of a coset
representative p : G/H — G, that p(H) is the neutral element of G.
Here again, the field case is very simple: since G is isomorphic to the
direct sum of G/H and H, the selection of a coset representative can al-
ways be chosen to be a linear mapping. For groups (and even for rings),
however, the selection of a coset representative can not always be cho-
sen to be homomorphic. We have thus the interesting situation that a
canonical encoder structure for group codes contains non-homomorphic
mappings!

We are now ready for Fig. 3.5, which illustrates the recursive defi-
nition of the canonical encoder structure of this chapter. This encoder
structure contains two identical ‘inner’ encoders who share their memory
cells in such a way that the output of one of these encoders is delayed
by one time unit with respect to the output of the other. These two
identical inner encoders produce a convolutional code over some group
S (or over some ring or field). Then there is a homomorphism from the
outputs of these two inner encoders into some quotient group (module)
G/H, followed by a coset selector G/H — G and multiplication with
(addition of) an input element of H. The following theorem is the main
result of this chapter.

Theorem 3.2 Let E be any encoder with the structure of Fig. 3.5,
with identical inner encoders that produce a convolutional code over
some finite group S. Then the set of possible output sequences of E is
a convolutional code. Conversely, every convolutional code over a group
(or over a ring or over a field) has a minimal encoder of this type with
the additional property that the inner mapping w in Fig. 3.5 is invertible.

While the direct part of Theorem 3.2 is almost obvious, the proof of
the converse part requires considerable system-theoretic background and
is therefore deferred until the end of the next section. (Even the concept
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Figure 3.5: Recursive construction of encoders. A new encoder over
the group G is obtained from combining two identical en-
coders of the type of Fig. 3.3 over the finite group S. The
outputs of the two inner encoders are identical up to a
delay of one time unit. The subset B of S x S that can
occur at the output of these inner encoders is a group,
and there is a homomorphism from B onto G/H, where
H is the subgroup of G corresponding to parallel edges
in the transition graph of this encoder. (The right-to-left
orientation should help in visualizing the connection to
the corresponding transition graph.)
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G/G,

G

Figure 3.6: The transition from the inner encoder F to the total en-
coder (or vice versa) corresponds to the addition (or re-
moval) of parallel edges (cf. Proposition 3.13).

of a minimal transition graph/encoder has not been defined yet!) The
proof will be based on the notion of the state code of a convolutional
code, which is simply the set of all state sequences (i.e., sequences of
vertices) through any minimal transition graph for the given code. If
the inner encoders in Fig. 3.5 are minimal encoders for the state code,
then the combining homomorphism can be chosen in such a way that the
resulting total encoder is a minimal encoder for the original code. These
ideas are illustrated by Fig. 3.6 and Fig. 3.7. (For a full explanation
of these two figures, see Section 3.4.4.) The basis of induction for this
recursive encoder structure is the fact that the iterated transition from
a code to its state code eventually results in a trivial code.

We consider now the first two steps of recursive encoder construction
according to Theorem 3.2. We start with the trivial inner encoder, which
simply passes the input to the output. With this trivial inner encoder,
the structure of Fig. 3.5 reduces to the structure of Fig. 3.8. It is easily
verified that the code of Fig. 3.2 has an encoder of this type.

For the second step of the recursive encoder construction, the encoder
of Fig. 3.8 is used as inner encoder, which results in the structure of
Fig. 3.9. This new structure could now be used as new inner encoder,
and so on.

Note that, for convolutional codes over fields, the encoder structure
of Fig. 3.5 can always be reduced to a linear mapping that combines the
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Figure 3.7: If the inner encoder £ produces a convolutional code, then
the resulting total encoder produces a convolutional code.
Conversely, every convolutional code C' without parallel
edges has an encoder of this type where the inner code is
the state code of C and is therefore 1-complete (cf. Sec-
tion 3.4.2); the total encoder is, however, in general not
minimal.

N

Figure 3.8: Encoder according to Fig. 3.5 when the inner encoder is
trivial.
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Figure 3.9: Encoder according to Fig. 3.5 when the encoder of Fig. 3.8
1s used as inner encoder.
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outputs of the two inner encoders and the additional (unstored) input.
By recursive application of this principle, the new encoder structure of
this chapter reduces to the structure of Fig. 3.3 with a linear mapping
w as discussed at the beginning of this section, i.e., to the standard
linear-shift-register encoder.

3.4 System Theory

The main purpose of this section is to derive a minimality test (Theo-
rem 3.4) and to prove Theorem 3.2. To this end, it will be necessary to
reverse the order of concepts of Definition 3.2, which defines a convolu-
tional code in terms of a transition graph, and to go in a canonical way
from the set of code sequences to a transition graph.

Such derivations of a realization (i.e., a transition graph) from the
set of possible trajectories of a system is a central feature of Willems’
recent work on system theory [57], by which this section is strongly
influenced. In fact, Willems’ viewpoint of a system as a set of possible
trajectories or ‘behaviours’ is ideally suited for convolutional codes. The
systems considered in [57] are, however, either linear over the reals or
have no ‘linearity’ structure at all; the theory of [57] has therefore to
be adapted to the group case. In fact, most material of this section
1s simply an adaptation to groups of results from [57]. The theory is,
however, presented in a self-contained way; in particular, it will not be
assumed that the reader is familiar with [57].

This section is structured as follows. In Subsection 3.4.1, the con-
cept of ‘completeness’ is introduced, which is a sufficient property of a
code to have a well-defined and unique minimal transition graph that
generates the code. Completeness is, however, not sufficient to prove
that minimal encoders of convolutional codes have a ‘feedforward’ or
‘sliding-window’ inverse. (For obvious good reasons, encoders without
such an inverse are called ‘catastrophic’ in the literature.) Fortunately,
convolutional codes in the sense of Definition 3.2 are always ¢-complete,
which is a stronger property than completeness and suffices to prove that
minimal encoders are not catastrophic (Theorem 3.6); this will be shown
in Subsection 3.4.2.

The set of state sequences along paths through a minimal transition
graph of a convolutional code is again a convolutional code. Such state
codes are analyzed in Subsection 3.4.3. After all these preparations, the
proof of Theorem 3.2 is finally given in Subsection 3.4.4.
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We first fix some notation and make precise some terms that have
been used informally in Section 3.1. For all groups, we will in this
section use the multiplicative notation, i.e., the group operation will be
written as juxtaposition. Since the translation of the group theoretic
arguments of this section to modules or vector spaces is always obvious,
we will not bother to rewrite everything in additive notation for the linear
case. The reader is therefore asked to forgive the use of juxtaposition for
addition and the term ‘normal subgroup’ for submodules (subspaces) in
the simultaneous treatment of group codes and linear codes.

The unit, 1.e., the neutral element of a group G will be denoted by
eg. If the elements of G have special names such as, e.g., edges, vertices,
states, then eg will be called the neutral edge, the neutral vertex, etc..

A two-sided infinite sequence over some alphabet A is a function
Z — A, le., an element of A?. The standard temporal laguage will be
used for such sequences; e.g., if v is in A%, then v(i) will be called the
value of v at time 1.

Several notations are customary for the description of the shift op-
eration. In this chapter, we will (as, e.g., in [567]) use the backwards-
shift operator o: for any v € AZ, the sequence o(v) € A% is de-
fined as o(v)(?) = v(i + 1). A subset C of AZ is shift-invariant if
v€EC & o(v) eC.

For time intervals, the standard notation with parentheses and square
brackets is used; e.g., (a,b] denotes the set {i € Z : a < 1 < b}. We will
often consider the restriction v|; of a sequence v in AZ to some interval
I C Z, 1e., the function I — A : ¢ — v(d). This notation will also be
used for subsets C' of AZ; then C|; is defined in the obvious way as
{c|; € AT : c € C}.

IfT' = (G, S, B) is a transition graph, we define formally the mapping
A : II(T') — GZ that assigns to every two-sided infinite path w € II(T)
its label sequence A(w), i.e., A(w)(i) = mo(w(7)). In particular, A(T') =
A(II(T)). It is clear that, if T is a group transition graph or a linear
transition graph, then A is a homomorphism. For I C Z, the notation
Aly defined by Al (w) = AMw)|; for all w € I(T) will also be used.

For any group (or module) G, the truncation operators T~ and Tt
are defined by

T":GZ——rGZ:CHc'Withc'(i)z{Z(i) if.;;g

G 2

Tt :G% - G? : ¢ ¢ with ¢(d) = (é) ifi20 :
e ifi<0
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i.e.,, T~(c) and T*(c) are the natural embeddings of ¢| _,, _;; and clio,00)
in GZ. Note that ¢ = T~ (c)T*(c) for any ¢ € GZ.

3.4.1 Complete Systems and Minimal Trans. Graphs
Following [57], we start with the following definition.

Definition 3.6 A discrete-time dynamical system is a pair ¥ = (G, C),
where the alphabet G is an arbitrary set and the behavior C' is a subset
of GZ.

We will usually abbreviate ‘discrete-time dynamical system’ to simply
‘system’. For a general discussion of this definition, the reader is referred
to [67].

A system ¥ = (G,C) is shift-invariant if C is shift-invariant. The
system X is a group system if G is a group and C is a subgroup of G%.
Y is linear if G is a module over some commutative ring and C is a
submodule of GZ; this includes, in particular, the case where G is a
vector space over some field and C is a subspace of GZ.

Any transition graph T' = (G, S, B) gives rise to the shift-invariant
systems (B,II(I')) and (G,A(T)). If T is a group or linear, then both
of these systems are group systems or linear systems, respectively. In
particular, convolutional codes over groups (or rings or fields) are of this
type.

Let ¥ = (A,C) be a discrete-time dynamical system. A sequence
V1,V2,..., of elements of C is* said to have a two-sided limit if, for
every nonnegative integer t, there exists a positive integer j such that
Vil = Vil for all i > j; the element v of A% with v(£t) = v;(&t)
will be called the limit of vy,vs,... and will be denoted by lim;_ o v;.
Note that, in general, lim;_, o, v; is not necessarily an element of C.

It should be emphasized that this notion of a limit is adequate only
for discrete alphabets A, which is the only case of interest in this chapter.
For a more general topological setup, the reader is referred to [57], [59],

[60], [63].

Definition 3.7 A discrete-time dynamical system T = (4,C) is com-
plete if C' contains all its two-sided limits.

(In symbolic dynamics, such systems are rather called ‘closed’; ‘com-
plete’ is used in [57].) The set of all binary sequences of finite and even

4Note that vy, v2,... are themselves sequences.
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Figure 3.10: Linear shift-register encoder for an incomplete ‘code’ over
Z. The sequence ...,0,0,1,0,0,...is in the code, but the
sequence ...,1,1,1,... is not. Note that the state group
(= Z) of this encoder does not satisfy the descending chain
condition, cf. Theorem 3.5.

Hamming weight is a simple example of a linear system that is not com-
plete. The following example demonstrates that a linear system (G, C)
may be incomplete even if C' = A(T) for some strongly controllable lin-
ear transition graph I'' Let G = S = Z and let T' = (G, S, B) with
B = {(s,s+2u,u) : s,u € Z}, which corresponds to the linear encoder
of Fig. 3.10. The input sequence (i.e., the u-sequence) ..., —8, +4, —2,
+1, 0,0, ..., produces the output sequence ..., 0, 1, 0, ..., which is thus
in A(T'). The sequence ..., 1,1, 1, ... s, however, not in A(T), since the
corresponding condition s(t + 1) = (1 — 5(¢)) /2 on the state sequence
s(t) cannot be satisfied for all times t. The system £ = (Z,A(T)) is
therefore not complete.

It is well-known in symbolic dynamics that sets of label sequences
along paths through finite graphs are complete. This implies, in par-
ticular, that all convolutional codes are complete®. Instead of relying
on this result, we will prove later that convolutional codes have an even
stronger property, viz., f~-completeness.

For any shift-invariant group system (or linear system) ¥ = (G, C),
we define the two sets

C™ ={ceC:c(i) = eg for i > 0}

®This conclusion is not quite immediate since the transition graph of a convo-
lutional code, although it must have a finite vertex set, can have infinitely many
paralle]l edges; the standard argument of symbolic dynamics works, however, also for
such ‘infinite’ graphs.
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and
Ct={ceC:c(i) =eg for i < 0}.

It is clear that the sets C—, Ct, and C~C* are normal subgroups (or
submodules) of C. (Note, however, that these groups, as C itself, are
in general not normal in GZ.) As in [55], the following definition is
fundamental for this section.

Definition 3.8 The state group (or state space) of X is the quotient
group (or module) Sy = C/(C~C™). The elements of Sy will be called
the states of £, and the notation [c] = cC~C* will be used.

Note that, for the moment, these states are not related to any transition
graph. We will soon see, however, that a canonical transition graph can
be constructed whose vertices are actually these states.

Let ¥ = (G, C) be a shift-invariant group (or linear) system, and let
[' = (G, S, B) be a transition graph such that A(T') = C. (Note that we
do not assume that I' is a group or a linear transition graph.)

Proposition 3.4 If w and «' are paths in II(T') such that the edges
w(0) and w'(0) both start in the same vertex, then A(w) and A(w') are
in the same coset of C~C* in C, i.e., [AM(w)] = [M(w')].

Proof: Let ¢ = A(w) and ¢/ = A(w'). We have to show that
¢c~l¢’ € C~C*. Let w” be the concatenation of w’|(_oo’0) and wl[o,oo),
which is in II(T'), and let ¢” = A(w"). Then T~ (c71c') = T~ (c ") €
T7(C~) = C~. A similar argument gives T*(c"1¢') € C*, and thus
cTld =T (e 1Y TH(c" 1) e C-C*. O

The mapping
Y:S — Sy :s— [A(w)], (3.5)

where w is any path in II(T') such that the edge w(0) starts in s, is
therefore well defined. Note that 1 is surjective, i.e., it maps S onto Sy.

Definition 3.9 The canonical transition graph of a shift-invariant group
(or linear) system £ = (G, C) is the triple 'y = (G, Sg, Bg) with By C
Sz x G x Sy defined as By = {([c], ¢(0),[o(c)]) : c € C}.

It is clear that the projection of By, onto the first component and the pro-
Jection onto the third component are both onto, i.e., I'y; is indeed a tran-
sition graph. Since the mapping C — Sy x G x Sy : ¢ — ([c], ¢(0), [o(c)])
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is a homomorphism, 'y, is, in fact, a group transition graph if ¥ is a group
system and a linear transition graph if X is linear.

Let (G,C) be any shift-invariant group (or linear) system and con-
sider the mapping 7 : C — II(I'y) : ¢ — w(c) with n(c)(?) =
(et (e)], 6%(e)(0), [s"*(c)]). Note that A(w(c)) = ¢ since o*(c)(0) = c(3).
This implies C C A(Tyg), which is the easy part of Theorem 3.3 below.
For the converse part of Theorem 3.3, we need the following technical
lemma.

Lemma 3.1 Let w be an arbitrary element of II(I's) and let ¢ be a
positive integer such that wl_;;y = w(c)|_; ;) for some ¢ in C. Then
wl_; 5 = m(c')|[~; 5 for some ¢’ in C.

Proof: By the definition of II(I'y), we have w(i) =
([¢*(&)], o* (€)(0), [o*1(€)]) for some & in C. Since 7(c)(i —1) = w(i—1),
we have [0(c)] = [0%(€)], which implies ca~#(ct) = éo~*(c™) for some
¢t in Ct and some ¢ in C~. Let ¢ = co~!(ct) = éo*(¢™), which
is clearly in C. Since 7 is a homomorphism, we have w(c")| _ ;) =
7r(c)|(_oo’i) and 7(c")|; oy = T(E)|; o), Which implies w(c")| _;;; =
w|_; ;- A similar extension of ¢” to the left gives ¢’ as claimed. a

For 1 = 1, the condition of Lemma 3.1 is clearly satisfied for all w in
II(I'y). The lemma thus implies that, for every w in II(I'g), there exists
a sequence ¢j, €z, C3, ... of elements of C such that cil(—i,i) = )\(w)l(_i,i),
i.e., A(w) is a limit point of C. We have proved:

Theorem 3.3 Let ¥ = (G,C) be a shift-invariant group (or linear)
system and let 'y be its canonical transition graph. Then C C A(Ty);
if ¥ is complete, then C = A(Tx).

The canonical transition graph of this chapter is the specialization to
group systems of the two-sided canonical realization of [57]. Theorem 3.3
can thus alternatively be obtained as an immediate consequence of the
result by Willems that every complete shift-invariant system is faithfully
represented by its canonical two-sided transition graph [57, Theorems 1.1
and 2.4].

Let I' = (G, S, B) be a transition graph such that ¥ = (G, C) with
C = A(T') is a complete group (or linear) system. The existence of the
mapping ¥ (3.5) from S onto Sy shows that I' has at least as many
vertices as I's. The following definition is therefore natural.

Definition 3.10 T is minimal if 9 is invertible.



64 3. CONVOLUTIONAL CODES OVER GROUPS

It is clear from this definition that the canonical transition graph is min-
imal. This implies, in particular, that every shift-invariant and complete
group (or linear) system has a minimal group (or linear) transition graph.

Proposition 3.5 If I' is a minimal transition graph for some complete
group (or linear) system, then A is invertible, i.e., the correspondence
between two-sided infinite paths and label sequences is one-to-one.

(The proof is obvious.) A much stronger version of this one-to-one cor-
respondence will be given later (Theorem 3.6) for £-complete systems.
Proposition 3.5 suffices, however, to make clear that, for any complete
group (or linear) system ¥ = (G,C) and any ¢ € C, the path w in
I(Txg) with w(i) = ([o%(c)), c(3), [0*+1(c)]) is the only path in II(Ts)
with A(w) = ¢. We next prove that the minimal transition graph is
essentially unique.

Proposition 3.6 Let £ = (G,C) be a complete and shift-invariant
group (or linear) system, let I's = (G, Ss, By) be its canonical tran-
sition graph and let I' = (G, S, B) be any other transition graph such
that A(I') = C. Then there is a mappmg ¥ from B onto By given by
¥ (s,g,8) — (¢(s) 9,%(s")). If T is minimal then ¢ is a one-to-one
correspondence, i.e., I' can be obtained from I'y by a relabeling of the
vertices.

Proof: We first verify that, for any b = (s,g,s') in B, ¥(b) =
(¥(s),9,%(s")) is indeed in By. Let w be an element of II(T') such
that w(0) = b. Then, by the definition of By, (¥(s),g,%(s')) =

((AM(w)], g, [c(A(w))]) € B};‘ To see that 1 is onto, consider an arbitary
element ([c], ¢(0),[o(c)]) of Bg. Let w be a path in II(T") such that
A(w) = ¢. But ¥(w(0)) = ([c],c(0), [0(c)]), which shows that 4 is onto.

Finally, if I is minimal then 1 is one-to-one and so is ¥. a

Let ¥ = (G, C) be a group (or linear) system and let T = (G, S, B)
be a transition graph such that C = A(T'). The state group (state space)
of ¥ was defined (Definition 3.8) as Sy = C/(C~C?), and we had the
mapping % (3.5) from S onto Sx. We now introduce the state groups
(spaces)

Sy =T1t(C)/Ct
and

Sz =T(C)/C-
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and the corresponding mappings

pt: 8 = SE s TH(ANw))CT,
and

Y™ S o S5 s =T (Mw))C™,

where w is any path in II(T') such that w(0) starts (and w(—1) ends) in s.
Note that both ¥* and ¢~ are well defined because of Proposition 3.4.
Consider the mappings

T+ :Sg — SE cC~Ct = TH(c)CF
and
T-:8x — S5 :cC~CT =T (c)C*.

The following fact, given earlier in [55], will be used in the proof of
Theorem 3.4; it is, however, also of considerable interest in its own right

(cf. [57]).

Proposition 3.7 Both T+ and T~ are isomorphisms, and we have the
following mapping diagramm:

A

Se Sy - S
In particular, ¥+ and ¥~ are one-to-one if and only if ¥ is.

The proof is immediate since, for any ¢ € C, the conditions T*(c) € C*
and T~ (c) € C~ are equivalent.

Lemma 3.2 Let I be a group or linear transition graph, let W = II(T),
and let C' = A(T). If (W) # C* then A|_, _; is not invertible.
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Proof:  Note that A(W*) C C* always holds. Let w be an element
of W such that A(w) € Ct but AMw) ¢ A(W+). Then w|_ _y #
epz|(_oo,—1)- But Al(=co,~1] (W) = Al(_co,~1)(eB2), 50 A|(_,_y) Is nOL
invertible. a

The following important theorem is due to Thomas Mittelholzer.

Theorem 3.4 (Minimality Test) Let I' = (G,S, B) be a group (or
linear) transition graph such that the system & = (G, A(T)) is complete®.
Then T is minimal if and only if no vertex other than the neutral vertex
1s the ending or starting point of a semi-infinite path all of whose labels
equal eg, the neutral element of Gj; i.e., if and only if both )\|(_oo’__1]
and ’\l[o,oo) are invertible.

Proof: Assume that I' is minimal, and let w be any path in II(T"). The
invertibility of ¥* (Proposition 3.7) implies that the starting vertex of
w(0) can be determined from A(w)|[0,c0)- By shift-invariance, the start-
ing vertex of w(7) can be determined from /\(w)[[i,oo) for all > 0. Thus
Wl ) can be determined from Aw)li,c0)> 1€ Alg,00) I8 invertible.
The invertibility of ’\l(-oo,—l] follows from an analogous argument.

Conversely, assume that both AI(_OO’_I] and Al .y are invertible.

Let C' = A(T'). Let s be any vertex of I such that ¢¥*(s) = Ct. We
have to show that s = eg, the neutral vertex of T'. Let w € II(T') be any
path such that w(0) starts in s; then T+ (A(w)) € Ct by the definition
of . Since A(W*) = C* by Lemma 3.2, the invertibility of Mio,00)
implies Tt (w) € W1, i.e., w(0) starts in eg. o

Theorem 3.4 is closely related to the well-known fact that a standard
linear-shift-register encoder over a field is catastrophic if and only if there
exists a nontrivial zero loop, i.e., a nontrivial twosided-infinite path all
of whose labels equal zero [14]. The difference between Theorem 3.4 and
that condition for catastrophicity is illustrated by Fig. 3.11 which shows
a binary linear-shift-register encoder with the property that )‘I[O,oo) 1s
invertible but /\|(_oo,0) 1s not; this encoder is neither catastrophic nor
minimal.

6Note that finiteness of S is a sufficient condition for this completeness, cf. Theo-
rem 3.5 in Subsection 3.4.2.
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Figure 3.11: Example for the minimality test (Theorem 3.4). The tran-
sition graph of this binary linear encoder is clearly not
minimal. The semi-infinite input sequence ...,0,0,1 pro-
duces the all-zero output sequence ..., (0,0),(0,0), which
violates the first minimality condition of Theorem 3.4.
The second condition of Theorem 3.4 is, however, sat-
isfied. (Note that this encoder is not catastrophic.)

3.4.2 [{-complete Systems

Let X = (A, C) be a discrete time dynamical system. For any integer £,
£ > 0, consider the set

Co={veA?: Uiivn € C|[i’i+£] for all i € Z},

i.e., Cy consists of those sequences over A that locally (i.e., through
windows of length £ + 1) look like elements of C. It is clear that C is
always contained in C;. Those systems for which the converse is also
true are singled out in the following definition.

Definition 3.11 A system (A4, C) is £-complete if C = Cj.

Instead of ‘4-complete’ as in [57], the term ‘4-observable’ was used in [55].
In symbolic dynamics, essentially the same concept is called ‘subshift of
finite type’.

'The smallest nonnegative integer £ such that a system ¥ = (4,C) is
{-complete will be called the observability indezr of £. It is clear that, if
L is the observability index of ¥, then ¥ is £-complete for all £ > L. The
full justification of the term ‘observability index’ will be Theorem 3.6.

Proposition 3.8 If a system is £-complete, then it is also complete.
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Proof: Let c¢y,cq,..., be a sequence of elements of C' that has a
two-sided limit co,. For every integer ¢, we can find a positive integer
7 such that c; agrees with c, in positions t...t 4 £. Thus ¢, € C by
£-completeness. 0O

We next aim at proving (Theorem 3.5) that every convolutional code
is £-complete for some positive integer £. To this end, we will need
Proposition 3.9 and Lemma 3.3, which will now be discussed.

Let I' = (G, S, B) be a group transition graph. The neutral subgroup
of B consists of those edges of B through which a two-sided infinite paths
exists all of whose labels equal eg (the neutral element of G). For linear
transition graphs, the neutral submodule is defined in the same way.

Proposition 3.9 Let £ be the neutral subgroup (submodule) of B.
Then E' is a normal subgroup (a submodule) of B and the vertex set Sg
of E is a normal subgroup (a submodule) of S. Moreover, if T is the
transition graph obtained from I' by contractlng the vertices in every
coset of Sg in S, ie., [ = (G,S/Sg,B) with B = {(sSg,g,5'SE) :
(s,9,5') € B, then A(F) = A(T).

Proof:  The group property and the normality of E follow from the
group property of II(T') and Sg inherits these properties from E. Since
the relation A(T') C A(T) is obvious, it suffices to show that A(T) C A(T).

Soletv="...,(s-15g,9- 1,8053) (s0SE,90,515E), (515E,91,525E),

. be a path through T. A path w e II(T") such that A(w) = A(v) can
be constructed as follows. By definition of B, there exists, for every i,
an element b; = (s}, gi,s},;) in B such that v( ) = (s} SE,g,, $i415E).
Let w(0) = by. Since the starting vertex of b; and the ending vertex of
w(0) are in the same coset s;Sg of Sg in S, there exists an element e,
in E such that bye; starts in the ending vertex of w(0). Let w(1) = bye;.
Note that w(1) has the same label as v(1) and its ending vertex is in
s25g. Continuing in the same way, w(2), w(3), ...and w(-1), w(-2),
...can be constructed. O

Corollary 3.1 If C = A(T') for some group (or linear) transition graph
= (G, S, B), then there exists a group (or linear) transition graph

= (G, S, B) such that C = A(T') and the neutral subgroup (submodule)
of B contains only the neutral edge.

For the proof of the following lemma, it is worthwhile to remember
that, for any positive integer £, the interval (—£/2,£/2] C Z contains
always precisely £ elements.
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Lemma 3.3 Let I' = (G, S, B) be a group transition graph and let £ be
some positive integer. If, for all w € II(T'), w(0) is uniquely determined
by A(w)l_¢/2,¢/2) then A(T) (more precisely, the system (G, A(T))) is
£-complete.

Proof:  Assume that, for all w € II(T"), w(0) is uniquely determined
by ’\(w)l(—e/z,e/z]- The shift-invariance of II(T') clearly implies that, for
all integers ¢, w(Z) is uniquely determined by A(w)|;_¢/2:4¢/2- Let
C = A(T"). We have to show that C; C C. So let ¢ be an element of C,.
We will construct an element w of II(T') such that A(w) = c.

By the definition of Cy, there exists, for all integers 7, a path w; €
II(T') such that /\(wi)|(i_e/2—1,i+e/2] = Cl(i—£/2—1,i+£/2]' Since wil(i—£/2,i+£/2]
= Wit1l;_¢/2i1¢/2)» We have w;(é) = wiy1(i) by our assumption. In
particular, the starting vertex of w;41(i + 1) equals the ending vertex of

w; (7). The sequence w defined by w(i) = w; (i) is therefore an element
of II(I'), and it is clear that A(w) = c. 0

We are now ready for the proof that all convolutional codes are £-
complete for some positive integer £. Note that, for an arbitrary transi-
tion graph I' = (G, S, B), A(T) is in general not f-complete even if B is
finite; nor is A(T') of a group or linear transition graph necessarily com-
plete (cf. Fig. 3.10). It is thus the combination of the conditions that
[ is a group (or linear) transition graph and that S is finite that forces
convolutional codes to be £-complete. It is interesting, however, that the
argument does not really require that S is finite; a much weaker finite-
ness condition, which allows, e.g., that S is a finite-dimensional vector
space over an arbitrary field, is actually sufficient.

As an exception in this chapter, we first consider the case where S
1s a module over some commutative ring R. Then S is said to satisfy
the descending chain condition [18] if every sequence Sp, S1,Sa,... of
submodules of S such that Sy D S; D S3 D ... eventually becomes
stationary, i.e., S; = S; for some j > 0 and all : > j. If S is a vector
space over some field, then it satisfies the descending chain condition if
and only if it is finite-dimensional. In this sense, the descending chain
condition generalizes the notion of finite dimensionality to modules and
groups.

The descending chain condition for groups is essentially the same as
for modules; i.e., sequences Sp,S;, S, ..., of subgroups of S are consid-
ered such that S; D S;;1. There is, however, the additional requirement
that S;41 be normal in S;. Or, alternatively, one could require that all
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Figure 3.12: Hlustration of proof of Theorem 3.5.

S; are normal in S. Note that the descending chain condition for groups
1s weaker when based on the latter condition that when based on the
former. For the purpose of the following theorem, the weaker form is
sufficient.

Theorem 3.5 Let I' = (G, S, B) be a group (or linear) transition graph
and let ¥ be the system (G, A(T)). If S satisfies the descending chain
condition then ¥ is -complete for some nonnegative integer £.

An essentially equivalent result, in a different framework, is due to

Kitchens and Schmidt [60, Corollary 3.8].

Proof:  As in this whole section, the proof will be stated only for the
group case; the linear case goes the same way. Because of Corollary 3.1
we can assume without loss of generality that the neutral subgroup of B
contains only the neutral edge. For all nonnegative integers j, consider
the set W; = {w € II(T) : wl[_j,j] = erl[_j,j]}, where egz denotes the
neutral element of the group GZ. Let E; = {w(0) € B : w € W;}, which
is clearly a normal subgroup of B. Let A; and B; be the set of starting
and ending vertices, respectively, of E;.

We have the relations (Fig. 3.12) A;+1 C 4, Bj+1 C Bj, Aj+1 C B;,
and Bj;1 C Aj. The descending chain condition implies A4, = A; and
Bji1 = By for all sufficiently large j. But then A;41 C Bj = Bj41 C
Aj = Aj41, from which we conclude A; = Bj since both inclusions must
be equalitites. But every vertex in A; = B; has both a predecessor



3.4. SYSTEM THEORY 71

and a successor in A; = Bj such that the corresponding edge label is
the neutral element. This implies that E; is contained in the neutral
subgroup of B, which by assumption consists only of the neutral edge.
We have thus shown that, for all w € II(T"), w(0) is uniquely determined
by /\('w)l[_j’j], and T is (25 4+ 1)-complete by Lemma 3.3. O

We have thus proved that convolutional codes (according to Defi-
nition 3.2) are always £-complete for some positive integer £. The fol-
lowing theorem gives the ultimate justification for the discussion of £-
completeness in this chapter.

Theorem 3.6 Let I' = (G, S, B) be a minimal transition graph for some
shift-invariant ¢-complete group (or linear) system ¥ = (G,C). Then
’\l[o,e—n is invertible.

Proof: = We assume without loss of generality that I' is the canonical
transition graph of ¥. Let w be an element of II(T") such that ¢ = A(w)
satisfies clg,_1) = egzlo,-1)- It suffices to show that wl,, ;3 =
epzli 1) Let ¢™ =T7(c) and ¢t = T*(c). Since ¢ iivg = Clpivg
for 7 < 0 and ¢, = eg|[i,i+q for ¢+ > 0, we have ¢ € C by
{-completeness; thus ¢~ € C~. Similarly, the relations c+|[i,i+q =
eg|[i i+e] for ¢ < 0 and c+|[l-,i+£] = ¢l i4q for ¢ > 0 imply ¢t € C,
and thus ¢t € 0=¢(C?). For 0 < j < £, the £+1 states along wlfp o1 aT€
therefore [o7(c)] = [o7 (¢~ ¢+)] = [0 (™o ()] = [0 (¢ loT=4(CH)] =
esy. Thus w|[0,£_1] uses only the neutral edge. .

Theorem 3.6 implies, in particular, that every minimal encoder (i.e.,
an encoder whose corresponding transition graph is minimal) for a con-
volutional code has a feedforward, (i.e., sliding-window) inverse and is
thus not catastrophic.

3.4.3 State Systems

The notion of a state code or state system is the key to the proof of
Theorem 3.2. Let ¥ = (G, C) be a shift-invariant and complete group
(or linear) system. Recall that Sy denotes the state group (or space) of
Y. The central object of this subsection is the mapping

der : C — Sg? : ¢+ der(c) with der(c)(i) = [o0*(c)] for all i € Z. (3.6)
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(The name ‘der’ stands for ‘derivative’ since der has some similarity to
formal derivatives.) Note that der(c) is simply the state sequence that
corresponds to c. More precisely, der(c)(7) is the starting state of w(z),
where w is the unique path in II(I'y) such that A(w) = c.

The system X/ = (Sg, der(C)) will be called the state system of X.
(For convolutional codes, we will also use the term state code.) It is
clear that ¥’ is a shift-invariant group (or linear) system. Since der(C)
consists of all possible state sequences through I's, it is clear that X' is 1-
complete. Because of Theorem 3.6 and Lemma 3.3, this can equivalently
be expressed as follows.

Proposition 3.10 If I is the canonical transition graph of a state sys-
tem X', then different edges of I’ have different labels.

Let ¥ = (G,C) be a complete, shift-invariant group (or linear) system
and let ¥’ = (Sg, D) with D = der(C) its state system. Let Wy be the
subset of II(I's) that consists of those paths that use only the neutral
state, i.e., w(¢) starts and ends in eg,, for all i € Z and all w € II(T'y);
and let Co = /\(Wo)

Lemma 3.4

1. The kernel of der is Cj.
2. der(C~)= D~

3. der(C*) = ¢~ 1(D)

4. der(C~o(Ct)) = D-D*

The proof is immediate. We will now consider the relation between
the state group Sy = C/(C~C?*) of ¥ and the state group Syr =
D/(D=D%) of £'. In order to distinguish between the two, the ele-
ments of Sy will be denoted by [c]c, for ¢ € C, and the elements of Sy
by [d]p, for d € D. Due to properties 2 and 3 above, the mapping

der : Ss; — Sy : [c]c > [der(c)]p = der(c)D~D? (3.7)

is well defined, and it is clear that der is a homomorphism and that it
maps Sy onto Sx.

The following theorem (Theorem 3.7) is the key for the construction
of minimal encoders of the type of Theorem 3.2. Its proof uses the
following elementary fact from group theory, the proof of which is an
easy exercise.
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Figure 3.13: Illustration of controllability (Definition 3.12) and of
Proposition 3.11.

Lemma 3.5 Let X and Y be arbitrary groups and let f : X — Y be a
homomorphism with kernel K; let A be an arbitrary nonempty subset

of X and let A = f(A). Then f~1(A) = AK.

Theorem 3.7 The kernel of der consists of those states of ¥ to which
an edge from the neutral state exists.

Proof: According to Lemma 3.5 and properties 1 and 4 of Lemma 3.4,
der™ (D~ D) = C~0(C*)Co = C~0(CF) = U, epc+){cC~C*). The
kernel of der is therefore UcGa(C+)[c]’ l.e., it consists of those states that
contain a codeword in ¢(C*). O

Note that Theorem 3.7 implies that, for any two states s and s’ of Sy,
der(s) = der(s") if and only if s and s’ have a common predecessor, or,
equivalently, if and only if they have the same set of predecessors.

So far, the notion of controllability has not appeared in this section; it
comes into play now. A transition graph I is called strongly controllable
if there exists an integer n such that every vertex of ' can be reached
from every other vertex over paths of length at most n. The smallest
nonnegative such integer is called the controllability indez of T and will
be denoted by p(I'). If T has only a single vertex, then u(T') = 0 by
definition.

These notions could be carried over to group systems by means of the
canonical transition graph. Following [57] and [55], we prefer, however,
the following definition (cf. Fig. 3.13).

Definition 3.12 A shift-invariant discrete-time system £ = (G,C) is
controllable if, for any two sequences c and ¢’ in C, there exists a sequence
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¢” in C and a nonnegative integer n such that c”|(_oo,0) = c|(_oo,0) and
c”|[n’oo) = c’l[n’oo). If, for all ¢ and ¢’ in C, this condition is satisfied
for some fixed n, then ¥ is strongly controllable and the smallest such
integer n is the controllability index of X.

Proposition 3.11 A complete, shift-invariant group (or linear) system
is controllable (strongly controllable) if and only if its canonical transi-
tion graph is so, and the controllability index of such a system equals
that of its canonical transition graph.

Proof: Let ¥ be a complete, shift-invariant group (or linear) system,
let T' be its canonical transition graph, and let g and p’ be the control-
lability indices of ¥ and T, respectively. If T is controllable (strongly
controllable), then ¥ is clearly also controllable (strongly controllable)
and p < u'. Conversely, Theorem 3.4 implies that the controllability
(strong controllability) of ¥ carries over to T and that p' < p. O

Note that every convolutional code is strongly controllable because
the notions of controllability and strong controllability coincide for tran-
sition graphs with only finitely many vertices.

Proposition 3.12 Let ¥ be a shift-invariant, complete, and strongly
controllable group (or linear) system, and let ¥’ be its state system.
Then pu(I's/) = p(Tg) — 1if u(Tg) > 0, and p(T'y/) = 0 otherwise.

The proof is obvious from Fig. 3.13. (Note that the conditions of com-
pleteness and linearity are used here only to guarantee the existence of
a well-defined state system, which, however, exists under much more
general conditions, cf. [57].)

For any convolutional code C, Proposition 3.12 implies that the series
of derivatives C’' = der(C), C"” = der(C’), ..., eventually ends in the
trivial code. This fact, together with Theorem 3.7, is the basic idea

behind the encoder structure of Fig. 3.5. We are now ready for the proof
of Theorem 3.2.

3.4.4 Proof of Theorem 3.2

We first deal with the easy problem of parallel edges. Let T' = (G, S, B)
be a group (or linear) transition graph. Let By be the set of those edges
of I' that both start and end in the neutral vertex, and let Gy be the
corresponding set of labels. It is clear that By is a normal subgroup of
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B. If we assume, without loss of essential generality, that I uses all of G,
i.e., if every element of G is the label of some edge of I', then Gy is also
normal in G. For any edge b = (s, g,s’), the set of parallel edges is then
clearly the coset bBy, and the corresponding set of labels is precisely the
coset ¢Gy. By merging all parallel edges in I' and labeling them with
the corresponding coset of Go in G, we obtain a new group transition
graph IV = (G/Go, S, B') with B' = {(s,9Go,s') : (s,9,s') € B}. It is
thus clear that, if the inner encoder of Fig. 3.6 produces A(I"), then the
resulting total encoder produces A(T).

Conversely, we might as well start from a group (or linear) transition
graph IV = (S,G/Gy, B') over some quotient group G/Gy and introduce
parallel edges by passing to the group (or linear) transition graph I' =
(S,G, B) with B = {(s,g,s') : (s,9Go,s") € B'}.

Since the conditions of the minimality test (Theorem 3.4) are not
affected when passing from I' to I or vice versa, I' is minimal if and
only if I'V is. We have proved:

Proposition 3.13 If the inner encoder of Fig. 3.6 is a convolutional
code over G/Gyp, then the resulting total encoder of Fig. 3.6 produces a
convolutional code over GG and the total encoder is minimal if and only
if the inner encoder is minimal. Conversely, every convolutional code
has an encoder of this type such that the inner encoder has no parallel
edges.

Consider now Fig. 3.7. We have an encoder for a convolutional code
C' over some group S whose output s(t), together with the delayed
output s(t — 1),~is passed to a box that represents a homomorphism ¢
from the group B C Sx.S of possible pairs (s(t — 1), s(t)) into some group
G. Then the output of the resulting total encoder is a convolutional code
C over ( since it is a homomorphic image of C’.

Conversely, let C be a convolutional code without parallel edges in
its canonical transition graph. Then C has an encoder as in Fig. 3.7
with C’ = der(C); i.e., the inner encoder produces the state code of C.
This follows from the fact that, in the absence of parallel edges, the edge
group B of any group transition graph I' = (G, S, B) is isomorphic to
the group B C S x S of connected state pairs. In general, however, this
construction does not give a minimal encoder for C.

We now return to Fig. 3.5. Note that, as far as the input/output
behavior is concerned, the structure of Fig. 3.5 is equivalent to the com-
bination of the structures of Fig. 3.6 and Fig. 3.7. The delay cell at the
output of the inner encoder of Fig. 3.7 has, however, been replaced in
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Fig. 3.5 by an second inner encoder, identical to the first one, whose
input is delayed by one time unit.

While it is clear from the above discussion that the structure of
Fig. 3.5 always produces a convolutional code and that every convo-
lutional code has an encoder of this type, it remains to prove that every
convolutional code has a minimal encoder of this type. To this end, we
need one final lemma.

Lemma 3.6 Let I' = (G, S, B) be a minimal group (or linear) transition
graph and let C = A(T'). Then the forward input group B% of T is
isomorphic with C+|[0 o]

Proof: Theorem 3.4 implies that the homomorphism « : Bt —
C'+|[0’0] : (es, g,8) — g is one-to-one; together with Lemma 3.2, Theo-
rem 3.4 implies also that « is onto. O

Now let ¥ = (G,C) be an arbitrary convolutional code. Let ¥/ =
(S,C"), with S = Sy, and C’ = der(C), be the state code of ¥ and let
I'''=(S,S’, B’) be a minimal group transition graph for £’. Theorem 3.7
then implies that there is a one-to-one correspondence between S and
the product set S’ x Sy, where Sy C S consists of those states of & to
which an edge from the neutral state exists. In particular, any transition
graph for I has at least |S'|-|So| vertices. But clearly So = C'*|;; 5 and
thus Lemma 3.6 implies that any encoder for C has at least |S’|- |B'Y|
states.

Assume now that we have an encoder for C according to the structure
of Fig. 3.5 such that the inner encoder is based on I''. (We have seen
earlier that this is always possible.) But this encoder has |S’|-|B’* | states
and 1s therefore minimal. This concludes the proof of Theorem 3.2.

3.5 Appendix: Extensions of Groups, Mod-
ules, and Vector Spaces

The concept of a group extension, though simple and natural, is usually
not treated in courses on elementary algebra. (The reason for this omis-
sion will be clear below.) The purpose of this appendix is to review this
concept and to relate it to the corresponding concepts for modules over
rings and vector spaces over fields. As in Section 3.4, we will use the
multiplicative notation for groups.
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Let G and A be arbitrary groups. An eztension of G by A (some
authors say ‘extension of A by G’) is a group E with a normal subgroup
A’ such that A’ is isomorphic to A and E/A’ is isomorphic to G [18,
p. 363], [23, p. 124 fi].

A closely related concept is that of a Schreier product. Since there
seems to be no established name for such group products — in math-
ematics, only the slightly more abstract concept of a group extension
is normally considered — we have chosen the term ‘Schreier product’
after the author of Theorem 3.8 below. A Schreier product of G by A,
denoted by G o A (nonstandard notation), is the set G x A endowed
with a group structure such that the mappings A — G < A : a — (eg, a)
and G x A — G : (g,a) — g are both homomorphisms. The notation
G «x A emphasizes that Schreier products are a generalization of the di-
rect product of G and A. The precise relation between Schreier products
and group extensions is given in the following proposition.

Proposition 3.14 Every Schreier product G « A of groups G and A
1s an extension of G by A. Conversely, every extension E of G by A is
1somorphic to a Schreier product G o< A.

Proof: The direct part of Proposition 3.14 is obvious. For the converse
part, let ¢ be the isomorphism A — A’ C E and let 7 be the isomorphism
G — E[A";let p: E/A" — E be the selection of a coset representative,
i.e., p(wA’) € A’ for all w in E, where we assume that the representative
of the neural coset is eg, the neutral element of E. Then the group
structure induced on the set G x A by the one-to-one correspondence

GxA— E:(g,a) — p(r(g9))(a) is clearly a Schreier product G o A.
O

Proposition 3.14 makes clear that Schreier products (rather than
group extensions) are needed only when the particular embedding in
the product set G x A is important, as is the case in this chapter.

Two given groups G' and A have, in general, many nonisomorphic
group extensions or Schreier products. In particular, the rules for calcu-
lating with G o< A are not uniquely determined by the group structure
of G and A. For all Schreier products G « A and all elements (g, a) and
(¢',a') in G ox A, we have, however, the rules (g,a)(g’,a’) = (gg’,a") for
some a” € A and (g,a)"! = (¢71,a) for some a € A.

The determination, for given groups G and A, of all extensions of G
by A or Schreier products G o< A is in general very difficult. The fol-
lowing ‘solution’ of the extension problem is due to Schreier [18, p. 368],
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[23, p. 124 fi]. Let {«, : ¢ € G} be a set of automorphisms of A. A set
{pg.g € A:g,g' € G} is called a factor system in A belonging to G, if
the following three conditions are satisfied

"‘.’91(/‘92,93) “Hgy,9295 = Hgi,92 " Hg192,93
-1
K!h (K’yz(a)) = ”91,92 ’ Kshgz(a) ’ (“91,!)2)
Keg (a) = Heg,eg " @ (/‘ec,eG)—l .

for all a € A and all ¢1,¢94,93 € G.

Theorem 3.8 (Schreier) Let {«, : ¢ € G} be a set of automorphisms
of A and let {yy 4 € A:g,9’ € G} be a factor system in A belonging to
GG. Then, the ‘multiplication’

(g,a)(g',a’) = (gglaa"cg(a/)”g,g/) (38)

defines a group structure on the cartesian product G x A, which is a
Schreier product and hence a group extension of G by A.

Conversely, every group extension E of G by A determines a set
of automorphisms and a factor system such that the Schreier product
G o< A determined by the formula (3.8) is isomorphic to E.

Extensions and Schreier products of modules over commutative rings
and of vector spaces over fields are defined in the same way as for groups.
In contrast to the group case, the field case is, however, very simple. It is
an elementary fact of linear algebra that, for any linear mapping T from
a vector space I onto a vector space G with kernel A, F is isomorphic
to the direct sum G @ A. In other words, G @ A is the unique (up to
isomorphism) extension of G by A.

It should be pointed out, however, that this uniqueness of the ex-
tension of two vector spaces G and A does not mean that G @ A is the
only Schreier product G < A. While any two such Schreier products are
1somorphic, their particular embedding in the set G x A is, in general,
different.



Chapter 4

Conclusions

It has been tried in this dissertation to identify a suitable mathematical
framework for the algebraic construction of good Euclidean space codes.
While this attempt has not produced any spectacular general construc-
tion method for such codes, it was not a complete failure either. The
following insights have been gained in Chapter 2:

e Signal sets matched to groups are essentially equivalent to Slepian-
type group signal sets (i.e., ‘group codes for the Gaussian channel’);
Slepian’s viewpoint is, however, mathematically more fundamental
and therefore superior.

¢ Ingemarsson’s theorem on commutative-group signal sets has a
natural interpretation in terms of linear ring codes used with PSK.

e The interpretation of high-dimensional signal sets as codes over
inner signal sets has directed the attention to low-dimensional pro-
Jections of high-dimensional signal sets. The capacity (in bits per
dimension) of inner signal sets corresponding to such projections
is an upper bound to the capacity of the outer signal set.

e A construction method of high-dimensional group signal sets has
been found that is based on linear codes (typically binary or over
Zy) and their automorphism groups. This construction method
can be interpreted as a way to obtain outer group signal sets from
inner non-group signal sets such as amplitude modulation. This
greatly enlarges the class of inner signal sets that are candidates

79



80

CHAPTER 4. CONCLUSIONS

for algebraic coding. However, no actual constructions have been
carried out yet.

It i1s unclear whether the concept of linear codes over noncommu-
tative groups leads anywhere. At present, such codes are still quite
inaccessible.

Chapter 3 is more technical. The following concrete results have been
achieved:

The concept of convolutional codes over groups has carefully been
defined.

Every convolutional code has a well-defined minimal transition
graph, which is essentially unique; a simple minimality test has
been derived that holds for convolutional codes over groups, rings,

and fields.

The basic system-theoretic aspects of such codes are now under-
stood. In particular, the parallel development of the theory for
groups, rings, and fields has clarified the relations between these
cases.

A canonically layered encoder structure has been presented that
generalizes the familiar linear-shift-register encoders.

Nevertheless, no interesting new code has so far been found. As in
the case of block codes, convolutional codes over groups are still
somewhat elusive, and it is presently unclear whether this concept
will lead to any useful codes.

The following topics should be addressed in future research.

[ J

The construction method of group signal sets from linear algebraic
codes and their automorphism group should be tried with concrete
examples.

A serious attempt should be made to find examples of convolutional
codes over noncommutative isometry groups.

In summary, despite the fact that no new codes have been discovered,
the author’s feeling of scratching the surface of a potentially rich field
has strenghtened in the course of this research.
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