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Piece 1 (the solid piece):

A Single Trick and Algorithm
for Many Problems in Signal Analysis

Combining

• linear state space models,

• normal priors with unknown variances (NUV) for sparsity,

• and expectation maximization (EM) for learning all parameters

can be used for sparse estimation, dictionary learning, unsupervised
signal labeling, blind signal separation, and more,

by variations of a single algorithm essentially consisting of repeated
multivariate-Gaussian forward-backward message passing (i.e., re-
cursions as in Kalman smoothing).

[ITA 2016], [EUSIPCO 2017], [PhD thesis Zalmai 2017]



3 / 19

Sparsity by NUV Priors (Normal with Unknown Variance)

• Originating from Bayesian inference [MacKay 1992, Neal 1996, . . . ]

• Basis of “automatic relevance determination” and sparse Bayesian
learning [Neal, Tipping 2001, Wipf et al., . . . ]

Example: real U ∼ N (0, s2) with unknown variance s2,
single observation Y = U +Z = µ ∈ R with noise Z ∼ N (0, σ2):

N (0, 1)
-×
?

s

-U
+
?

N (0, σ2)

- µ

likelihood
N (µ, σ2)

Maximum-likelihood estimate ŝ2ML = max{0, µ2 − σ2}
For fixed s2 = ŝ2ML, U is Gaussian with posterior mean (MAP/MMSE/LMMSE
estimate)

û =

{
µ · µ2−σ2

µ2
if µ2 > σ2

0, otherwise.

Still holds for Y ∈ RN with likelihood p(y|u) ∝ e−(u−µ(y))
2/2σ2.
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Sparsity by NUV Priors cont’d

General method:

• Model variables (or parameters) U1, . . . , UK of interest as in-
dependent zero-mean Gaussians, each with its own individual
unknown variance σ21, . . . , σ

2
K.

• Determine σ21, . . . , σ
2
K by ML (or some approximation thereof);

e.g., by expectation maximization (EM).
A local maximum of the likelihood suffices for sparsity.

Specifically (for linear Gaussian models):

1. Begin with an initial guess σ̂21, . . . , σ̂
2
K.

2. Compute∗ the means mUk and the variances σ2Uk of the

(Gaussian) posterior distributions p(uk|y, σ21, . . . , σ2K) for k =
1, . . . , K with σ21, . . . , σ

2
K fixed.

3. Standard EM: update σ2k ← m2
Uk

+ σ2Uk for all k.

4. Repeat 2 and 3 until convergence.

∗by Gaussian message passing in the appropriate factor graph
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Linear State Space Models

State Xk ∈ Rn and observation Yk ∈ RL evolving according to

Xk = AXk−1 +BUk
Yk = CXk + Zk

with A ∈ Rn×n, B ∈ Rn×m, C ∈ RL×n, and where Uk (with values in Rm)

and Zk (with values in RL) are independent zero-mean white Gaussian noise

processes.

Factor graph:
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Linear state space models with sparse input: [ITA 2016]

Sparse Scalar Input

N
?
×-σk

?
Uk

b

?
. . . -+

Xk . . .

instead of

N

?
Uk

B

?
. . . -+

Xk . . .

E.g.:

• Sparse input-signal estimation (e.g., heart beat [ISIT 2015]):
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Fig. 5. Blind pulse (heart beat) detection from a ballistocardiographic (BCG)
signal. The ECG signal (middle) is used for validation (i.e., to provide the
ground truth). The bottom plot shows the estimated variance of each input
signal sample.

specifically we select an i.i.d. Student’s t prior with ⌫ = 10�3.
Our choice is motivated by guarantees that realizations of
this prior are itself almost surely weakly sparse or com-
pressible [11], thus encouraging soundness of our Bayesian
inference scheme. Initialization according to Section V-A is
followed by 20 EM iterations.

Comparing the estimated variance vector Fig. 5 (bottom)
with an electrocardiographic (ECG) reference signal Fig. 5
(middle), we find that all heartbeats are detected, and there
are no false alarms except that some heartbeats are split
into closely adjacent beats. Such (physiologically impossible)
duplications can easily be cleaned up, as illustrated by the
circles in Fig. 5 (bottom).

VII. CONCLUSION

Variational representations of heavy-tailed priors in oth-
erwise linear Gaussian models enable estimation by means
of Gaussian message passing. This general idea was worked
out for estimating the (weakly) sparse input signal of a
linear state space model. The approach was then extended
to the case where the linear system is unknown and must
be estimated as well. The robustness and practicality of the
proposed approach was demonstrated by a real-world example.
Finally, we proposed a new (and very efficient) version of
Gaussian message passing in linear state space models for
input estimation without matrix inversion.
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• Piecewise constant
least-squares fit:
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Linear state space models with sparse input: [ITA 2016]

White Noise Input + Sparse Scalar Input
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E.g., random walk with occasional jumps:
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Linear state space models with sparse input: [ITA 2016]

Multiple Sparse Scalar Inputs
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E.g., least-squares fitting of straight-line segments:
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Obvious generalizations:

• polynomial segments

• enforcing continuity, or continuity of derivative(s)
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Linear state space models with sparse input: [ITA 2016]

Dealing with Outliers

Simply replace Y = CXk + Zk
by Y = CXk + Zk + Z̃k with sparse Z̃k, i.e.,
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Linear state space models with sparse input: [ICASSP 2016]

Sparse Input Pulses with Individual Direction
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?
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Xk . . .

• Unknown scalar σk replaced by unknown vector bk ∈ Rn

• Still sparsifying, still learnable (e.g.) by EM

Applications:

• Occasional arbitrary jumps in the state space

• System identification from multiple unknown excitations

• . . .
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Linear state space models with sparse input: [EUSIPCO 2017]

Recurring Unknown Sparse Input Pulses
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instead of

N
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B

?
. . . -+

Xk . . .

• Unknown input vectors b1, . . . , bM ∈ Rn, each with independent
sparse input.

• Still learnable by EM. The state transition matrix A can also be learned.

Applications: unsupervised signal labeling, dictionary learning, blind
signal separation, . . .
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Unsupervised Feature Extraction, Signal
Labeling, and Blind Signal Separation

Artificial example: irregular occurances of localized signal shapes
on top of a wandering baseline with jumps.
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Fig. 2. Synthetic example of signal separation

from which we deduce E[XkXT
k ], E[UkUT

k ], E[Xk�1U
T
k ], and

E[XkUT
k ]. Note that at each EM step, the log-likelihood is

non-decreasing and can be computed iteratively as

Lk = Lk�1�
(yk � C�→mXk

)2

�2
Z + C

�→
VXk

CT
�ln

�
2⇡(�2

Z + C
�→
VXk

CT)
�
, (37)

for k = 1, . . . , K, with L0 = 0 and Lk = 2 ln p(y1, . . . , yk|✓).
Finally, the `th signal component estimate is given by

ŝ
[`]
k = Cm

[`]
Xk

, k 2 {1, . . . , K}. (38)

V. EXPERIMENTAL RESULTS

We first illustrate our algorithm with a synthetic example.
We generate a signal as in the upper plot of Fig. 2 which
superimposes a baseline generated with filtered white Gaussian
noise, two different decaying sinusoids, spikes, an offset, and
white Gaussian noise of variance 10�2. For our algorithm, we
use a LSSM with L = 4 where

• n0 = 2 with (C0, A0, V0) that models a cubic spline
smoothing [22]

• n1 = 2 with c1 = (1, 0) and unknown A1 = ⇢1R(!1)
and b1 2 R2 to model a decaying sinusoid

• n2 = 2 with c2 = (1, 0) and unknown A2 = ⇢2R(!2)
and b2 2 R2 to model another decaying sinusoid

• n3 = 1 with c3 = b3 = 1 and A3 = 0 to model spikes
• n4 = 1 with c4 = A4 = b4 = 1 to model offsets

(where R(!) denotes a 2⇥ 2 rotation matrix of angle !).
While A1, b1, A2 and b2 are randomly initialized, the input

variances are initialized as �2
E`

= 10�5, �2

U
[1]
k

= �2

U
[2]
k

= 10�6

and �2

U
[3]
k

= �2

U
[4]
k

= 10�7 in order to favor the unknown
models over the known (spike and offset) ones. The noise
variance �2

Z is fixed to 10�1. As can be seen in Fig. 2, our
algorithm recovers the individual input positions of each model
(indicated in the second plot by the non-zero values of �̂

U
[`]
k

)
and outputs a good estimation for both the individual signal
shape components ŝ

[1]
k and ŝ

[2]
k and the baseline ŝ

[0]
k . If more

unknown shapes than actually present are specified (i.e., L >

0
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Fig. 3. Fetal ECG separation. 1) raw ECG. 2,3) estimated signal components
from our algorithm. 4,5) estimated signal components from K-SVD.

4), unnecessary signal shapes are automatically disregarded by
the algorithm under adequate initialization of parameters.

In Fig. 3, we display the result of our algorithm on a raw
abdominal ECG recording of a pregnant woman from the
DaISy dataset [29]. In this recording, the fetal ECG signal
is about eight times weaker than the maternal ECG, which
thus consists of a delicate signal separation and estimation
problem. For our algorithm, we use L = 2 models consisting
of linear combinations of 8 and 3 damped sinusoids. The
baseline model still emulates cubic spline smoothing. The
weak fetal ECG signal (plotted in purple) is remarkably well
estimated and separated from the strong maternal ECG signal
(plotted in green), as indicated in the subplots 2 & 3 of Fig. 3.

We also compare our algorithm with an adaptation of the K-
SVD algorithm [17] that finds L sparse vectors w(`) 2 RK and
dictionaries H` 2 RK⇥K consisting of time-shifted versions of
a single vector, while minimizing ky�PL

`=1 H`w
(`)k subject

to, w(`) � 0, kw(`)k1  T`, for some fixed T` > 0. The results,
for L = 2, are shown in subplots 4 & 5 of Fig. 3. While the
maternal ECG signal is well estimated, the fetal ECG signal
is poorly separated and estimated. Indeed, K-SVD algorithm
does not allow much variations between occurrences of a
signal shape. Thus, despite a good estimation of the maternal
ECG signal, the remaining errors are still large enough to spoil
the estimation and separation of the weak fetal ECG (plotted
in purple in subplots 4 & 5 of Fig. 3). Our method is more
robust with this respect since small variations of a pulse shape
are compensated by state noise terms (via the variances �2

E`
).

Everything (matrices A, B, input signals) is learned, unsupervised.
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Unsupervised Feature Extraction, Signal
Labeling, and Blind Signal Separation

ECG recording of a pregnant woman:
decomposition into maternal and fetal heart beats.
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from our algorithm. 4,5) estimated signal components from K-SVD.

4), unnecessary signal shapes are automatically disregarded by
the algorithm under adequate initialization of parameters.

In Fig. 3, we display the result of our algorithm on a raw
abdominal ECG recording of a pregnant woman from the
DaISy dataset [29]. In this recording, the fetal ECG signal
is about eight times weaker than the maternal ECG, which
thus consists of a delicate signal separation and estimation
problem. For our algorithm, we use L = 2 models consisting
of linear combinations of 8 and 3 damped sinusoids. The
baseline model still emulates cubic spline smoothing. The
weak fetal ECG signal (plotted in purple) is remarkably well
estimated and separated from the strong maternal ECG signal
(plotted in green), as indicated in the subplots 2 & 3 of Fig. 3.

We also compare our algorithm with an adaptation of the K-
SVD algorithm [17] that finds L sparse vectors w(`) 2 RK and
dictionaries H` 2 RK⇥K consisting of time-shifted versions of
a single vector, while minimizing ky�PL

`=1 H`w
(`)k subject

to, w(`) � 0, kw(`)k1  T`, for some fixed T` > 0. The results,
for L = 2, are shown in subplots 4 & 5 of Fig. 3. While the
maternal ECG signal is well estimated, the fetal ECG signal
is poorly separated and estimated. Indeed, K-SVD algorithm
does not allow much variations between occurrences of a
signal shape. Thus, despite a good estimation of the maternal
ECG signal, the remaining errors are still large enough to spoil
the estimation and separation of the weak fetal ECG (plotted
in purple in subplots 4 & 5 of Fig. 3). Our method is more
robust with this respect since small variations of a pulse shape
are compensated by state noise terms (via the variances �2

E`
).

Totel model order 24: 8 and 3 damped sinusoids, respectively, for the heart beats;

local line model (≈ cubic spline) for the baseline.
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:

s s s s s s s s
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The same method can be applied again to such signals!
(Gaussian estimation ≈ least squares ≈ orthogonal projection.)

(Mentioned in [Zalmai thesis 2017], but no experience as yet.)
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:
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=
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s

The same method can be applied again to such signals!
(Gaussian estimation ≈ least squares ≈ orthogonal projection.)

And again, and again . . . , to any depth (all unsupervised).

(Mentioned in [Zalmai thesis 2017], but no experience as yet.)
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Piece 2 (more speculative): [ISIT 2015]

Layered Networks of Feature Detection Filters

Such multichannel sparse feature signals have already been used in
parallel work:
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Feature detection filters (“neurons”) work here as follows:

• A multi-input, single-output linear time-invariant filter (IIR)
produces a score signal (= correlation with a smooth template).

• An isolated unit pulse is generated if the score signal exceeds
some threshold. (Sparsity is essential: thresholding does not work.)
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Piece 2: Layered Networks of Feature Detection Filters

Toy Example of Three-Channel Template
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• Time scale: at most one pulse in window

• Realizable with biological plausible neurons

• Realizable with simple analog circuits
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Piece 2:

Layered Networks of Feature Detection Filters
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Feature detection filters (“neurons”):

• Score signal (= correlation with smooth template) is computed by IIR filter.

• An isolated unit pulse is generated if the score signal exceeds some threshold.

• Allows biologically plausible neuron models.

• Supervised learning of deep network based on gradient back-
propagation demonstrated (for toy example), apparently avoid-
ing gradient degeneration [Neff thesis 2016].

• Promising for (non-digital) neuromorphic computation.
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Conclusion

The solid piece:

• Linear state space models with NUV priors can be used for
sparse estimation, dictionary learning, unsupervised signal la-
beling, blind signal separation, . . .

• . . . by variations of a single algorithm consisting essentially of
repeated multivariate-Gaussian forward-backward message pass-
ing (i.e., recursions as in Kalman smoothing).

The view:
Sparse multichannel feature signals are an interesting data type for
signal analysis. Features-of-features networks with such signals can
be built as in Piece 1 or as in Piece 2.
(Did not discuss relations to convolutional neural networks, wavelets, . . . )
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