Articles

Scientific papers I published or co-authored. Theses below.

Peer-reviewed

[12]

B. de Fleurian, M. A. Werder, S. Beyer, D. J. Brinkerhoff, I. Delaney, C. F. Dow, J. Downs, O. Gagliardini, M. J. Hoffman, R. LeB Hooke, J. Seguinot, and A. N. Sommers. SHMIP The Subglacial Hydrology Model Intercomparison Project. J. Glaciology, 64(248):897–916, doi:10.1017/jog.2018.78, 2018.

[11]

J. Seguinot, S. Ivy-Ochs, G. Jouvet, M. Huss, M. Funk, and F. Preusser. Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere, 12:3265–3285, doi:10.5194/tc-12-3265-2018, 2018.

[10]

G. Jouvet, Y. Weidmann, M. Kneib, M. Detert, J. Seguinot, D. Sakakibara, and S. Sugiyama. Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens. of Environ., 217:389–399, doi:10.1016/j.rse.2018.08.027, 2018.

[9]

B. Menounos, B. M. Goehring, G. Osborn, M. Margold, B. Ward, J. Bond, G. K. C. Clarke, J. J. Clague, T. Lakeman, J. Koch, M. W. Caffee, J. Gosse, A. P. Stroeven, J. Seguinot, and J. Heyman. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science, 358(6364):781–784, doi:10.1126/science.aan3001, 2017.

[8]

G. Jouvet, J. Seguinot, S. Ivy-Ochs, and M. Funk. Modelling the diversion of erratic boulders by the Valais Glacier during the Last Glacial Maximum. J. Glaciol., 63(239):487–498, doi:10.1017/jog.2017.7, 2017.

[7]

G. Jouvet, Y. Weidmann, J. Seguinot, M. Funk, T. Abe, D. Sakakibara, H. Seddik, and S. Sugiyama. Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry. The Cryosphere, 11(2):911–921, doi:10.5194/tc-11-911-2017, 2017.

[6]

P. Becker, J. Seguinot, G. Jouvet, and M. Funk. Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling. Geogr. Helv., 71(3):173-187, doi:10.5194/gh-71-173-2016, 2016.

[5]

J. Seguinot, I. Rogozhina, A. P. Stroeven, M. Margold, and J. Kleman. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. The Cryosphere, 10(2):639–664, doi:10.5194/tc-10-639-2016, 2016.

[4]

J. Seguinot, C. Khroulev, I. Rogozhina, Q. Zhang, and A. P. Stroeven. The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the last Glacial Maximum. The Cryosphere, 8(3):1087–1103, doi:10.5194/tc-8-1087-2014, 2014.

[3]

J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice-sheet surfaces. J. Glaciol., 60(221):603–605, doi:10.3189/2014jog14j036, 2014.

[2]

J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree-day glacier surface mass-balance model J. Glaciol., 59(218):1202–1204, doi:10.3189/2013JoG13J081, 2013.

[1]

C. Petit, Y. Gunnell, N. Gonga-Saholiariliva, B. Meyer, and J. Séguinot. Faceted spurs at normal fault scarps: insights from numerical modeling. J. Geophys. Res., 114:B05403, doi:10.1029/2008JB005955, 2009.

Theses

[4]

J. Seguinot. Numerical modelling of the Cordilleran ice sheet. Ph.D. thesis, urn:urn:nbn:se:su:diva-106815, 2014.

[3]

J. Seguinot. Deep permafrost evolution in unstable slopes during the Holocene. M.Sc. thesis, doi:10.31237/osf.io/p4mrh, 2009.

[2]

J. Seguinot. Glacial quarrying and development of overdeepenings in glacial valleys; modelling experiments and case studies at Erdalen, Western Norway. Maîtrise thesis, doi:10.31237/osf.io/8fzd6, 2008.

[1]

J. Seguinot. Modélisation numérique des facettes triangulaires. B.Sc. thesis, doi:10.31237/osf.io/wnejz, 2007.