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SV8: Continuous Phase Modulation

Many digital modulation techniques result in a transmitted signal which - depending
on the data to be transmitted - might change abruptly. This leads to detrimental spectral
characteristics (e.g., poor spectral efficiency). In contrast, continuous phase modulation
(CPM) modulates the data bits in a continuous manner and has therefore a high spectral
efficiency. This is particularly interesting in wireless communication where bandwidth is
expensive. In fact, CPM is most notably used in GSM.

In this experiment you will investigate a communication system that uses CPM mod-
ulation. With the aid of SIMULINK, you will simulate the modulation and decoding
processes of CPM systems, and you will analyze key figures such as spectral characteris-
tics of the modulated signal or probability of a decoding error.

1 Introduction

Figure 1 illustrates the functional diagram and the basic elements of digital communication
systems. The data symbols {d`}`∈Z (for short {d`}) are converted by the encoder into a
sequence of code symbols {xk}k∈Z (for short {xk}) from a finite alphabet X . The sequence
at the output of the encoder is passed to the modulator, which serves as the interface to
the communication channel. The primary purpose of the modulator is to map the code
symbols {xk} into a signal1 s(t), i.e., an electrical signal that can be transmitted by an
antenna or through a wired line.
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Figure 1: Model of a digital passband transmission system.

This signal s(t) propagates through the channel, i.e., the physical medium that is used
to send the signal from transmitter to receiver. For example, the channel might be a pair

1Here, we write g(t) when we mean a function g: R → C; t 7→ g(t). The variable t stands for time and,
thus, g(t) is a continuous time signal that can be either complex or real.
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of wires, a coaxial cable, or the air between the transmit and receive antenna. In this lab
exercise, we model the channel by a system with input signal s(t), additive white Gaussian
noise z(t), and output signal r(t) = s(t) + z(t).2

The receiver wants to guess the sent data symbols {d`} based on the received signal
r(t). To this end, the demodulator processes r(t) and reduces the signal to a sequence
of numbers {x̂k} that represent estimates of the transmitted code symbols {xk}. This
sequence of numbers is passed to the decoder, which attempts to reconstruct the original
data symbols, i.e., the decoder produces the guesses {d̂`} based on the numbers {x̂k}.

A performance measure of the system is the relative frequency with which errors occur
in the decoded sequence, i.e., the number of wrongly guessed data symbols divided by the
total number of sent symbols.

2 Passband Signals and their Representation

Almost all communication systems modulate information onto a sinusoidal carrier wave-
form. Table 1 lists the carrier frequencies of some popular communication systems. Notice

Type of Transmission Carrier Frequency of Transmission

FM radio 88 - 108 MHz

GSM900 890 - 915 MHz / 935 - 960 MHz

WLAN (IEEE 802.11b/g) 2.4 - 2.4835 GHz

Table 1: Carrier frequency assignments for different methods of information transmission.

that the carrier frequency of the transmitted signal is not the component which contains
the information. The waveform that is modulated onto the carrier is the signal which
contains the information.

A general sinusoidal transmit waveform, which we will also call a passband signal, can
be written in the form

s(t) = 2a(t) cos
(
2πfct+ φ(t)

)
, t ∈ R, (1)

where fc > 0 is the carrier frequency, a(t) the amplitude, φ(t) the phase of the signal
s(t), and the factor 2 is a normalization factor. The information that is to be transmitted
is either contained in the amplitude a(t), in the phase φ(t), or in both the phase and
amplitude.

Applying the identity

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) (2)

to (1), we have

s(t) = 2 · a(t) · cos(2πfct) · cos
(
φ(t)

)
− 2 · a(t) · sin(2πfct) · sin

(
φ(t)

)
. (3)

We observe that cos(2πfct) and sin(2πfct) do not depend on the data symbols. Conversely,
the terms that contain the information a(t) · cos

(
φ(t)

)
and a(t) · sin

(
φ(t)

)
do not depend

on the carrier frequency. It would be convenient to have a representation of the passband
signal that does not contain the carrier frequency fc. To this end, we rewrite (3) as

s(t) = 2 · vI(t) · cos(2πfct)− 2 · vQ(t) · sin(2πfct), (4)

2In more general communication scenarios, the transmit signal is not only affected by additive noise but
might also be filtered by the channel. See lab exercise SV4 for the equalization of such channel impairments.
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where
vI(t) , a(t) cos

(
φ(t)

)
(5)

and
vQ(t) , a(t) sin

(
φ(t)

)
. (6)

The signals vI(t) and vQ(t) are known as the in-phase (I) and quadrature (Q) components,
respectively. They are the only terms that contain the information. We define the complex
baseband representation v(t) as

v(t) , vI(t) + i · vQ(t), (7)

where i =
√
−1. Note that v(t) is a complex signal and hence not physically realizable. It

is just a representation of the real transmit signal s(t) that still contains all the information
but is independent of the carrier frequency. In fact, the passband signal s(t) can easily be
reconstructed from its baseband representation v(t) and the carrier frequency fc with

s(t) = 2Re
(
v(t) · ei2πfct

)
. (8)

Therefore, we will look at the signals in the baseband representation. In order to generate a
real passband signal s(t) that can be transmitted, the modulator can generate a baseband
representation v(t) and up-convert it to the passband signal s(t) prior to the transmission.
To this end, Formula (8) can be applied.

Exercise 1. Verify that (8) is indeed equivalent to (1) by applying Euler’s formula:

eiϕ = cos(ϕ) + i · sin(ϕ).

3 Continuous Phase Modulation

Some of the modulation techniques used in mobile radio systems are special cases of the
broad class of phase modulation techniques. In such systems, the information is only
contained in the phase φ(t) of the transmit signal, while the amplitude a(t) = A remains
constant, i.e.,

s(t) = 2 ·A · cos
(
2πfct+ φ(t)

)
. (9)

In this lab exercise we consider the special case of continuous phase modulation (CPM),
where the carrier phase varies in a continuous manner. This is attractive because such
signals have excellent spectral characteristics.

As a first step, the encoder maps the binary data symbols {d`}, d` ∈ {0, 1}, to code
symbols {xk}. In CPM, the code symbols {xk} are from the finite alphabet
X = {±1,±3, . . . ,±(M − 1)} with M denoting the alphabet size.

Baseband Representation With the stream of code symbols {xk}, the modulator
constructs the baseband representation of CPM signals of the form

v(t) = A · exp (iφ(t)) = A · exp

(
i2πkf

∫ t

−∞

∑
k

xkhf (τ − kTb)dτ

)
, (10)

where

A : is the amplitude,
kf : the peak frequency deviation,
hf (t) : the frequency shaping pulse, and
Tb : the symbol duration.
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We call φ(t) = 2πkf
∫ t
−∞

∑
k xkhf (τ − kTb)dτ the excess phase. Note that the excess

phase is continuous whenever the shaping pulse hf (t) does not contain impulses, thus the
name continuous phase modulation.

The shaping pulse hf (t) can have a variety of forms. A full response CPM scheme
uses shaping pulses that have a duration equal to the symbol duration Tb. Some common
pulse forms are:

hf (t) = uTb(t) ,

{
1, if 0 ≤ t ≤ Tb
0, else

non-return-to-zero (NRZ) (11)

hf (t) = sin

(
π

Tb
t

)
· uTb(t) half sinusoid (HS) (12)

hf (t) =
1

2

[
1− cos

(
2π

Tb
t

)]
· uTb(t) raised cosine (RC) (13)

hf (t) =

1−

∣∣∣t− Tb
2

∣∣∣
Tb
2

 · uTb(t) triangular (TRI). (14)

Exercise 2. Consider the bit sequence {dk} = {1, 1, 0, 1, 0, 0, 1}. Sketch the curve of the
excess phase for this sequence if an NRZ shaping pulse uTb(t) is used and each data symbol
dk is mapped into a code symbol from the binary antipodal symbol alphabet X = {−1,+1},
i.e.,

xk =

{
−1, if dk = 1

+1, if dk = 0,
k = 0, 1, . . . , 6.

These symbols are also called BPSK symbols.

Phase and Frequency The instantaneous frequency fdev(t) of the baseband represen-
tation v(t), defined as

fdev(t) ,
1

2π
· dφ(t)

dt
, (15)

is given by

fdev(t) = kf
∑
k

xkhf (t− kTb). (16)

The peak frequency deviation kf strongly influences the bandwidth of the signal. It is
therefore an important parameter in the design of CPM systems in order to fit the signal
to spectral requirements. The average frequency deviation of a full response CPM signal
is defined as

kf , kf
1

Tb

∫ Tb

0
hf (t)dt, (17)

and the modulation index is defined as

h , 2kfTb. (18)

Exercise 3. Compute the peak frequency deviation kf as a function of the modulation
index h with respect to the shaping pulses given in (11), (12), (13), and (14).

CPM signals can be conveniently described by sketching the phase for all possible code
symbol sequences {xk}. Such a plot is called a phase tree. For a typical phase tree with
an NRZ shaping pulse hf (t) = uTb(t) and BPSK code symbol alphabet X = {−1,+1} see
Figure 2.

The modulation index h is often restricted to be a rational number. This constraint
ensures that the number of phase states Φk , φ(kTb), k ∈ Z, is finite which might simplify
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Figure 2: Phase tree of binary CPM with NRZ shaping pulse and arbitrary modulation index. The
excess phase derived from the data symbols {0, 0, 1, 0, 1, 1, 1} is shown as a bold line.

the receiver design, as we will see in the next section. For example, if h = 1
2 , then the

CPM signal has phase states Φk ∈
{

0, π2 , π,
3π
2

}
. This means that two consecutive phase

states are always hπ = π
2 apart.

3.1 Minimum Shift Keying

Minimum shift keying (MSK) is a special case of CPM resulting when choosing the NRZ
shaping pulse hf (t) = uTb(t), the BPSK code symbol alphabet X = {−1,+1}, and mod-
ulation index h = 1

2 . A slightly modified3 form of this modulation scheme is used in the
Global System for Mobile communications (GSM).

In the following we consider MSK. Then, the excess phase φ(t) in the interval
nTb ≤ t ≤ (n+ 1)Tb, n ∈ Z, can be simplified to

φ(t) = 2πkf

∫ t

−∞

∑
k∈Z

xkhf (τ − kTb)dτ

= 2π
h

2Tb

∫ t

−∞

∑
k∈Z

xkuTb(τ − kTb)dτ

(a)
= π

1/2

Tb

n−1∑
k=−∞

xk

∫ (k+1)Tb

kTb

1dτ + π
1/2

Tb
xn

∫ t

nTb

1dτ

=
π

2Tb

n−1∑
k=−∞

xk · Tb +
π

2Tb
xn · (t− nTb)

(b)
= Φn ±

π

2Tb
(t− nTb) , nTb ≤ t ≤ (n+ 1)Tb,

(19)

where (a) follows from interchanging the integral with the sum and separating the sum-
mand which contains the pulse that lies in the considered time interval, and (b) follows
because Φn = φ(nTb) is the phase state at time t = nTb. The plus sign corresponds to
sending code symbol xn = +1, and the minus sign corresponds to sending code symbol
xn = −1.

3In GSM, the NRZ pulses are first filtered with a Gaussian low-pass filter prior to the integration. This
leads to a more compact spectrum. The scheme is then called Gaussian MSK (GMSK).
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We observe that φ(t) depends on the past history of the modulation process. We
further observe that the total phase change in the interval nTb ≤ t ≤ (n+ 1)Tb is exactly
±π

2 . Therefore, all even phase states Φ2n are either 0 or π, and all odd phase states Φ2n+1

are either π
2 or −π

2 .

The passband signal of an MSK system is

s(t) = 2A · cos
(
2πfct+ φ(t)

)
, (20)

or expressed in its in-phase and quadrature components

s(t) = 2 ·A cos
(
φ(t)

)
· cos(2πfct)− 2 ·A sin

(
φ(t)

)
· sin(2πfct). (21)

From this we can determine the in-phase and quadrature component of s(t). The
in-phase component will be described in the interval (2n − 1)Tb ≤ t ≤ (2n + 1)Tb, i.e.,
the interval of length 2Tb where the center 2nTb is an even multiple of Tb; whereas the
quadrature component will be described in the interval 2nTb ≤ t ≤ (2n + 2)Tb, i.e., the
interval of length 2Tb where the center (2n+ 1)Tb is an odd multiple of Tb.

In the interval (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb, the in-phase component is with (19)

vI(t) = A cos
(
φ(t)

)
(22)

= A cos

(
Φ2n ±

π

2Tb
(t− 2nTb)

)
, (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb. (23)

Substituting t̃ , t− 2nTb and applying the trigonometric identity (2) to (23) yields

vI(t̃) = A cos

(
Φ2n ±

π

2Tb
t̃

)
= A cos(Φ2n) cos

(
π

2Tb
t̃

)
∓A sin(Φ2n) sin

(
π

2Tb
t̃

)
= ±A · cos

(
π

2Tb
t̃

)
, −Tb ≤ t̃ ≤ Tb,

which follows because cos(Φ2n) = ±1 and sin(Φ2n) = 0, since Φ2n is either 0, or π.
Therefore, in the interval (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb we have

vI(t) = ±A · cos

(
π

2Tb
(t− 2nTb)

)
, (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb, (24)

where the plus sign corresponds to Φ2n = 0 and the minus sign corresponds to Φ2n = π.
Thus, the in-phase component vI(t) consists of a half-cycle cosine pulse whose polarity
depends on the even phase state Φ2n.

Similarly, one can show that the quadrature component vQ(t) consists in the interval
2nTb ≤ t ≤ (2n+ 2)Tb of a half-cycle sine pulse, whose polarity depends on the odd phase
state Φ2n+1.

vQ(t) = A sin
(
φ(t)

)
= A sin

(
Φ2n+1 ±

π

2Tb

(
t− (2n+ 1)Tb

))
, 2nTb ≤ t ≤ (2n+ 2)Tb.

Substituting t̃ , t− 2nTb yields

vQ(t̃) = A sin

(
Φ2n+1 ±

π

2Tb

(
t̃− Tb

))
= A sin

(
Φ2n+1 ∓

π

2
± π

2Tb
t̃

)
, 0 ≤ t̃ ≤ 2Tb.
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Applying the identity sin(α± β) = sin(α) cos(β)± cos(α) sin(β) leads to

vQ(t̃) = A sin
(

Φ2n+1 ∓
π

2

)
cos

(
π

2Tb
t̃

)
±A cos

(
Φ2n+1 ∓

π

2

)
sin

(
π

2Tb
t̃

)
= ±A · sin

(
π

2Tb
t̃

)
, 0 ≤ t̃ ≤ 2Tb,

because Φ2n+1 = ±π
2 and hence adding ∓π

2 to Φ2n+1 leads to 0 or π. Therefore,

vQ(t) = ±A sin

(
π

2Tb
(t− 2nTb)

)
, 2nTb ≤ t ≤ (2n+ 2)Tb. (25)

The plus sign corresponds to Φ2n+1 = π
2 and the minus sign corresponds to Φ2n+1 = −π

2 .

Looking at the interval 2nTb ≤ t ≤ (2n + 1)Tb, the passband signal s(t) is determined
by the two phase states Φ2n and Φ2n+1. Since Φ2n and Φ2n+1 can each take on one of two
possible values, one of four possibilities can arise:

• Φ2n = 0 and Φ2n+1 = π
2 , corresponding to the transmission of x2n = +1,

• Φ2n = π and Φ2n+1 = π
2 , corresponding to the transmission of x2n = −1,

• Φ2n = π and Φ2n+1 = −π
2 , corresponding to the transmission of x2n = +1,

• Φ2n = 0 and Φ2n+1 = −π
2 , corresponding to the transmission of x2n = −1.

This, in turn, means that in each interval nTb ≤ t ≤ (n + 1)Tb, the MSK signal s(t) can
take on any one of four possible forms, depending on the values of the two consecutive
phase states Φn and Φn+1. If n is even, the phase states Φn and Φn+1 are related to xn
as described above. If n is odd:

• xn = −1 corresponds to Φn = π
2 and Φn+1 = 0, or Φn = −π

2 and Φn+1 = π,

• xn = +1 corresponds to Φn = π
2 and Φn+1 = π, or Φn = −π

2 and Φn+1 = 0.

In summary, the transmission of a code symbol xn = −1 corresponds to a decreasing
excess phase, the transmission of a code symbol xn = +1 corresponds to an increasing
excess phase in the time interval nTb ≤ t ≤ (n+ 1)Tb.

3.2 MSK Receiver

Before the receiver structure is presented, we will have a closer look at the MSK signal.
Based on expanding (21) with (24) and (25), we define the basis functions,

sI(t) , cos

(
π

2Tb
(t− 2nTb)

)
cos(2πfct), (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb, (26)

sQ(t) , sin

(
π

2Tb
(t− 2nTb)

)
sin(2πfct), 2nTb ≤ t ≤ (2n+ 2)Tb. (27)

Then, in the interval 2nTb ≤ t ≤ (2n + 1)Tb, the transmitted passband signal can be
expressed as

s(t) = bI,2n · sI(t) + bQ,2n+1 · sQ(t), 2nTb ≤ t ≤ (2n+ 1)Tb, (28)
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where the coefficients bI,2n and bQ,2n+1 are related to the phase states Φ2n and Φ2n+1. To
evaluate bI,2n, one can integrate the product s(t) · sI(t) between the limits (2n− 1)Tb and
(2n+ 1)Tb

bI,2n =

∫ (2n+1)Tb

(2n−1)Tb
s(t) · sI(t)dt

= A cos(Φ2n), (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb.

(29)

The verification of (29) is left as an exercise.
Similarly, to evaluate bQ,2n+1 one can integrate the product s(t) · sQ(t) between the

limits 2nTb and (2n+ 2)Tb

bQ,2n+1 =

∫ (2n+2)Tb

2nTb

s(t) · sQ(t)dt

= −A sin(Φ2n+1), 2nTb ≤ t ≤ (2n+ 2)Tb.

(30)

When the coefficients bI,2n and bQ,2n+1 are known, the phase states can easily be
recovered with (29) and (30):

• if bI,2n > 0 ⇒ Φ2n must be 0,
if bI,2n < 0 ⇒ Φ2n must be π,

• if bQ,2n+1 > 0 ⇒ Φ2n+1 must be −π
2 ,

if bQ,2n+1 < 0 ⇒ Φ2n+1 must be π
2 .

With this, we can draw the signal-space diagram for the MSK signal (Figure 3). With
this diagram, the phase states can be deduced from the values of bI,2n and bQ,2n+1, which
lie on the sI and sQ axis, respectively. For example, bI,2n > 0, bQ,2n+1 > 0 corresponds to
Φ2n = 0 and Φ2n+1 = −π

2 and the transmitted code symbol must be x2n = −1.

2

22

2

+1-1

+1 -1

I

=2n
=2n+1

=2n
=2n+1

=2n
=2n+1

=2n
=2n+1

0

0

s

Qs

-A

-A

A

A

Figure 3: Signal-space diagram for MSK.
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In the case of an additive white Gaussian noise (AWGN) channel, the received signal is
given by

r(t) = s(t) + z(t) (31)

where s(t) is the transmitted MSK signal, and z(t) is a white Gaussian noise process of
zero mean and power spectral density N0/2. From r(t), we wish to guess {xn}, i.e., to
decide whether xn = +1 or xn = −1. To this end, the phase states {Φn} are guessed.

For optimum detection of the even phase states Φ2n, the projection of the received
signal r(t) onto the basis function sI(t) is determined over the interval (2n − 1)Tb ≤ t ≤
(2n+ 1)Tb:

b̂I,2n =

∫ (2n+1)Tb

(2n−1)Tb
r(t) · sI(t)dt

=

∫ (2n+1)Tb

(2n−1)Tb
s(t) · sI(t)dt+

∫ (2n+1)Tb

(2n−1)Tb
z(t) · sI(t)dt︸ ︷︷ ︸

, z̃I,2n

= bI,2n + z̃I,2n.

(32)

From the signal-space diagram in Figure 3, we observe that if b̂I,2n > 0, the receiver

chooses the estimate Φ̂2n = 0. On the other hand, if b̂I,2n < 0, it chooses the estimate

Φ̂2n = π. This procedure is optimal in the sense that it minimizes the probability of a
detection error.4

Similarly, for the optimum detection of the odd phase states Φ2n+1, the projection of
the received signal r(t) onto the second basis function sQ(t) over the interval 2nTb ≤ t ≤
(2n+ 2)Tb is computed:

b̂Q,2n+1 =

∫ (2n+2)Tb

2nTb

r(t) · sQ(t)dt

=

∫ (2n+2)Tb

2nTb

s(t) · sQ(t)dt+

∫ (2n+2)Tb

2nTb

z(t) · s2(t)dt︸ ︷︷ ︸
, z̃Q,2n+1

= bQ,2n+1 + z̃Q,2n+1.

(33)

Referring again to the signal-space diagram in Figure 3, we observe that if b̂Q,2n+1 > 0,

the receiver chooses the estimate Φ̂2n+1 = −π/2. If, on the other hand, b̂Q,2n+1 < 0, it

chooses the estimate Φ̂2n+1 = π/2.
The coefficients b̂I,2n give a phase estimate for every even multiple of Tb, i.e., Φ̂2n.

The coefficients b̂Q,2n+1 give a phase estimate for every odd multiple of Tb, i.e., Φ̂2n+1. To
reconstruct the original data symbol sequence, the receiver computes at every time-step
one of these two estimates, depending on whether the actual time-step is an even or an
odd multiple of Tb. Then, the two sets of phase estimates have to be interleaved as follows:

from b̂I :

from b̂Q :

. . . Φ̂0 Φ̂2 Φ̂4 . . . Φ̂2n . . .

. . . Φ̂1 Φ̂3 Φ̂5 . . . Φ̂2n+1 . . .

From this stream of interleaved phase estimates, the transmit sequence can be recon-
structed. The receiver looks at the phase estimates Φ̂n and Φ̂n+1 and chooses x̂n according
to Table 2. From x̂n, we can determine d̂n.

4To learn about optimal guessing strategies, visit the lecture Information Transfer.
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Figure 4: Block diagram of an MSK receiver.

n even n odd

Φ̂n Φ̂n+1 x̂n d̂n Φ̂n Φ̂n+1 x̂n d̂n

0 −π
2 −1 1 −π

2 0 +1 0

π π
2 −1 1 π

2 π +1 0

π −π
2 +1 0 −π

2 π −1 1

0 π
2 +1 0 π

2 0 −1 1

Table 2: Detection of MSK.
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G. L. Stüber, Principles of Mobile Communication, Chapter 4, Kluwer Academic
Publishers, 1996.

S. Haykin, Communication Systems, 3rd edition, Chapter 8, Wiley, 1994.

J. G. Proakis, Digital Communications, 4th edition, Mc Graw Hill, 2001.

10



4 Experiments

1. Copy /home/isistaff/glf/fachprak isi/SV8 to your home directory:
(cp -irL /home/isistaff/glf/fachprak isi/SV8 ./) and open MATLAB.

2. Open the SIMULINK model CPM.mdl in the directory SV8/simulink.

You can see the complete CPM system. It consists of a Data Source, a Transmitter,
an additive white Gaussian noise channel (AWGN Channel), and a Receiver. In this lab
exercise, the red boxes have to be modified.

Parameters:

• Symbol duration: Tb = 1 sec,

• Sampling frequency of the SIMULINK model: Fs = 1000 Hz,

• Simulation duration: 20 sec.

Exercises:

3. Each Tb = 1 sec, the Data Source generates a bit d. Open Scope1 Data Signal

with a double click to see a sequence of bits. Choose Start in the menu Simulation

of the SIMULINK model or press <CTRL>+<T> in order to run the simulation.

4. With this bit stream, we modulate a CPM baseband representation. To this end,
open the block Transmitter with a double click. Here you see the block Pulse

Shape which maps each bit d to a frequency shaping pulse. Open this box (dou-
ble click). The MATLAB editor appears with a MATLAB script that has to be
completed. The function pulseshape has two inputs, the time t and the bit d.

Implement the mapping from the bits d to the BPSK symbols x from the alphabet
X = {−1,+1}:

x =

{
−1, if d = 1

+1, if d = 0.

Find a way to implement this mapping as efficient as possible (without using if and
else). Write your code into the script pulseshape. Note that the output variable
must be x. Save the script and close the editor. Open Scope2 Pulse Shape and run
the simulation (<CTRL>+<T>). The signal you see corresponds to the NRZ shaping
pulse.

5. Now try the half sinusoid HS frequency shaping pulse:

hf (t) = sin

(
π

Tb
t

)
, 0 ≤ t ≤ Tb.

Remark: Note that hf (t) is defined in the interval [0, Tb] only. Use t (mod Tb)
instead of t to extend hf (t) for all times (MATLAB instruction mod(t,Tb)instead
of t).

Open again the MATLAB script pulseshape and multiply the symbol x with the HS
pulse. Use again x as the output variable. Save, close the editor, run the simulation,
and watch the signal in Scope2.

6. Try other shaping pulses:
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• Raised Cosine (RC): hf (t) = 1
2

(
1− cos(2πtTb )

)
, 0 ≤ t ≤ Tb

• Triangular (TRI): hf (t) =

(
1− |t−

Tb
2
|

Tb
2

)
, 0 ≤ t ≤ Tb.

Use again mod(t,Tb) instead of t.

What is the difference between the pulse forms? How do the frequency deviations
with different hf (t) look like?

7. To compute the excess phase of the CPM signal, we need to integrate the sequence
x*hf(t). To this end, delete the Terminator and the Ground in the Transmitter

and replace them with an Integrator:

i) Type simulink3 in the MATLAB command line. This opens the SIMULINK
library.

ii) Open Continuous with a double click and look for the integrator. Drag and
drop this block to the place where the Terminator and the Ground have been.

iii) Connect the input and the output, respectively, of the integrator with the lines.

Run the simulation and watch the integrated signal in Scope3 Integral for the
different shaping pulses. How can you back-reference from the integral curve to the
sent bits?

8. We have computed ∫ t

−∞

∑
k

xk · hf (τ − kTb)dτ. (34)

From (34), the baseband representation (10) is generated as follows:

v(t) = A · exp
{
i2πkf

∫ t
−∞

∑
k xk · hf (τ − kTb)dτ

}
. (35)

Open the MATLAB script baseband (with a double click) and define the following
parameters:

• Amplitude: A = 1;

• Peak Frequency Deviation: kf = 10.

Implement (35), where
∫ t
−∞

∑
k xk ·hf (τ −kTb)dτ is available as the input variable u

and the output variable must be v. In SIMULINK, you have to write the imaginary
number i as 1i or 1j. Save and close the editor.

9. Open now the block passband to up-convert the baseband representation v(t) to the
passband signal:

s(t) = 2Re
(
v(t) · ei2πfct

)
.

To do so, choose first a carrier frequency fc > 0, i.e., the center frequency of the
transmit signal. Note that fc should not be greater than 500 Hz since the SIMULINK
model is sampled with 1000 Hz (Sampling Theorem!).

10. Look at the spectrum of the transmit signal (Vector Scope Spectrum) for differ-
ent fc (change in passband) and for different kf (change in baseband). Try for
example fc = 50, 200 and kf = 1/4, 5, 30. Try also different pulse forms hf (t) (in
pulseshape). Can you see differences in the spectrum? Can you explain them?
What are the advantages and disadvantages of the different shaping pulses? How
can you decide whether a 1 or a 0 has been transmitted by observing the spectrum?
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11. Choose fc = 4 (in passband) and kf = 2 (in baseband) and compare the signal s(t)
(Scope4 Transmit Signal) of all different shaping pulses. Can you guess the sent
bits?

Based on the general CPM, we consider now the special case of MSK. Recall that MSK is
a special case of CPM with:

hf (t) = uTb(t), h =
1

2
, xk ∈ {−1,+1}.

12. Compute the peak frequency deviation kf for h = 1/2 and hf (t) = uTb(t) (NRZ
pulse) by using

kf = kf
1

Tb

∫ Tb

0
hf (t)dt

h = 2kfTb.

13. Change the parameters in the Transmitter so that it generates MSK signals:

• hf (t) in pulseshape

• kf in baseband.

Watch the transmit signal (Scope4 Transmit Signal) and compare it with the
noisy version after the AWGN Channel (Scope5 Noisy Received Signal). Can
you still guess the sent bits?

14. Now we implement the MSK receiver. The basis functions (26) and (27) are

sI(t) , cos

(
π

2Tb
(t− 2nTb)

)
cos(2πfct), (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb,

sQ(t) , sin

(
π

2Tb
(t− 2nTb)

)
sin(2πfct), 2nTb ≤ t ≤ (2n+ 2)Tb.

Notice that by periodicity of the cosine and because cos
(

π
2Tb

(t− 2nTb)
)
≥ 0 in the

interval (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb,

cos

(
π

2Tb
(t− 2nTb)

)
=

∣∣∣∣cos

(
π

2Tb
t

)∣∣∣∣ ,
and similarly because sin

(
π
2Tb

(t− 2nTb)
)
≥ 0 in the interval 2nTb ≤ t ≤ (2n+ 2)Tb

sin

(
π

2Tb
(t− 2nTb)

)
=

∣∣∣∣sin( π

2Tb
t

)∣∣∣∣ .
Therefore, the basis functions sI(t) and sQ(t) are given by

sI(t) =

∣∣∣∣cos

(
π

2Tb
t

)∣∣∣∣ · cos(2πfct), t ∈ R,

sQ(t) =

∣∣∣∣sin( π

2Tb
t

)∣∣∣∣ · sin(2πfct), t ∈ R.

Implement these functions in the blocks basisI and basisQ, respectively, in the
Receiver. Note that fc must be chosen as in the Transmitter! The output variables
have to be called sI and sQ.
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In the in-phase and the quadrature channel, the received signal r(t) is multiplied with
sI(t) and and sQ(t), respectively, and integrated:

when n is even

b̂I,n =

∫ (n+1)Tb

(n−1)Tb
r(t) · sI(t)dt, n = 0, 2, 4, . . .

when n is odd

b̂Q,n =

∫ (n+1)Tb

(n−1)Tb
r(t) · sQ(t)dt, n = 1, 3, 5, . . .

After the integration, the Inphase Decision Device and the Quadature Decision Device

decide whether b̂I,n and b̂Q,n are smaller or larger than 0.

15. Open Scope6 Inphase and Scope7 Quadrature, and run the simulation. The
scopes plot the in-phase and the quadrature components as well as a sequence of
rectangular functions which are +1 if the coefficients b̂I,n, b̂Q,n > 0 and −1 if the

coefficients b̂I,n, b̂q,n < 0. Note that the coefficients b̂I,n and b̂Q,n are delayed by Tb
with respect to r(t) · sI(t) and r(t) · sQ(t).

16. The block Interleaver combines the two streams of sign(b̂I,n) and sign(b̂Q,n) such
that for every symbol time nTb the two values signb1 and signb2 are available in
the block estimator:
If n even

signb1 = sign(b̂I,n)

signb2 = sign(b̂Q,n+1), n = 0, 2, 4, . . . ,

if n odd

signb1 = sign(b̂Q,n)

signb2 = sign(b̂I,n+1), n = 1, 3, 5, . . . ,

where

sign(a) =

{
+1, if a ≥ 0

−1, if a < 0
, a ∈ R.

Implement a function that makes a decision on the bits based on the input values
signb1 and signb2. Use

Φ̂n =

{
0, if b̂I,n ≥ 0

π, if b̂I,n < 0
, if n even, Φ̂n =

{
−π

2 , if b̂Q,n ≥ 0
π
2 , if b̂Q,n < 0

, if n odd,

and Table 2 to develop your function. Call the output variable dhat. Can you find a
function that makes the decision without using Φ̂n and Φ̂n+1, i.e., based on signb1

and signb2 only?

Run the simulation and see in Scope8 if the decoded bits are equal to the sent bits.
Note that the received and decoded bits are delayed by 2Tb due to the integration
and estimation. Therefore, the first decoded bit is at time instance 2Tb; the values
in the first two time slots are meaningless. In scope8, the transmitted bits are also
delayed by 2Tb, such that the sent and the correctly decoded bits lie perfectly on
top of each other.

17. Open AWGN Channel and change the value of the noise Variance. At which value
can you observe errors in the decoded bit stream?
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