
Signal and Information
Processing Laboratory

Institut für Signal- und
Informationsverarbeitung

Fachpraktikum Signalverarbeitung

SV7: K-means and Spectral Clustering

1 Introduction

Clustering has been a prominent, successful and challenging topic for years. The task is
to group similar objects together. Clustering is a method from a larger family of methods
called unsupervised learning algorithms. The paradigm beneath these methods assumes
that no labeled training data are available. As an example, imagine a group of persons
of which a lot of personal details are given, but not their favorite music genre. How
would one assign these persons to different party cliques (based on the assumption that a
common taste of music is the most important criteria). Typically, we might expect that
persons with similar characteristics (e.g. age, gender and fashion style) like the same kind
of music. Therefore, identifying such groups, leads us to desired conclusion. Obviously,
unsupervised algorithms and clustering in particular, have a plethora of applications in
various fields (e.g. vector quantization, grouping proteins, density estimation).

Figure 1: Gaussian flower Figure 2: Three Rings

Given a fixed number K of clusters and n objects x1, . . . , xn, we want to partition the n
objects in K clusters. The general rule for clustering is that similar objects should belong
to the same cluster. For instance, looking at the Gaussian flower in Figure 1, we expect
that the clustering of the points for K = 8 will approximately assign all points of one

1

cloud (or petal) to the same cluster. Similarly, for the three rings in Figure 2, we would
like to assign all points of one ring to the same cluster.

Depending on the objects available and more specifically on the object space, different
approaches can be developed. In this work, we will be concerned with two different repre-
sentations of the objects. The first case is when the objects x1, . . . , xn are vectors of RN .
This space being Euclidean, it is naturally equipped with a norm and an inner product,
which can be used to measure distances between vectors. In this representation, we can
directly manipulate the objects. Very often, xi corresponds to a vector of observations
and clustering those vectors may be seen as grouping observation vectors generated by a
same noisy process. The second case is when the objects x1, . . . , xn are not known directly
but instead we have access to a pairwise measure between xi and xj . This measure can
be either a similarity or a dissimilarity measure between the objects. This second repre-
sentation is linked with graph clustering by the following analogy: an object xi is a node
i and the measure µi,j between objects xi and xj is a weighted edge between nodes i and
j. The goal is to group similar nodes into a same cluster. In Figure 3, we depict such a
graph with a possible partitioning.

x1

x2

x3

x4

x5

x6
2

9

20

9

1

21

84

12

Figure 3: Partitioning a weighted graph

In this work, we first study the popular K-means clustering used to groups vectors of
RN . We then apply it for clustering data points generated by normal distributions and
for quantifying colored pixels in images. In the second part, we derive and implement
a spectral clustering algorithm to group areas of research from an Electrical Engineering
department. Clustering algorithms and simulations are implemented in Python1. Addi-
tionally, a useful library called Numpy is used to implement image processing and linear
algebra.

2 K-means Clustering

2.1 Problem Setup

In this setting, n objects x1, . . . , xn which are vectors of RN are given. It is assumed that
the data can be well separated into a fixed number of K clusters. The problem setup of
K-means clustering is then: Find K prototype vectors y1, . . . , yK (also called centroids)
and K associated clusters (i.e. sets of data objects) C1, . . . , CK , such that the following
cost

RK-means (y1, . . . , yK , C1, . . . , CK) =
K∑
k=1

∑
xi∈Ck

‖xi − yk‖2 (1)

1http://www.python.org/

2

is minimal. Each cluster can be either identified by the set Ck or its prototype vector yk.
In fact, yk should be the best explanation for the objects of cluster k: xi ∈ Ck.
Clearly, a direct joint optimization over the yk ∈ RN and the sets Ck is not feasible due
to a high complexity. Indeed, clustering n objects into K clusters has in the order of
Kn possible configurations, which is exponential in the number n of objects. The exact
solution of this problem even belongs to the class of NP -hard problems, which are usually
computationally not feasible.

2.2 K-means Algorithm

Also known as the Lloyd’s algorithm, the K-means algorithm intends to find an approx-
imate (suboptimal) solution of the K-means clustering problem. We will briefly see how
this algorithm can be derived. The trick is to use a cyclic minimization. Instead of
minimizing jointly RK-means over the variables y1, . . . , yK on one hand and the cluster
assignments C1, . . . , CK on the other hand, we decompose the minimization in two steps
where we first minimize RK-means over the Ck letting all the yk fixed and then minimize
over the yk letting all the Ck fixed. We repeat these two steps until convergence or a
certain time ends, hoping that RK-means is minimized. This algorithm makes sense only if
the two minimization steps can be done easily. Let us have a look at these two steps.

First fix all the prototypes yk and search for the optimal clusters Ck. Looking at the
cost function, it can be seen that only a single term of the sum is modified if a particular
x` is moved to a cluster. Thus we can conclude that the quadratic terms ‖x` − yk‖2 for
each ` can be minimized separately. Since the optimization runs over the clusters Ck, each
sub-problem corresponds to assigning x` to the closest (in an Euclidean sense) cluster set
Ck with prototype yk. On the other hand, the minimum value with fixed prototypes yk
are then clusters Ck, composed of all objects x` that are closest to yk.
In the second step, clusters Ck are held fixed and we are looking for the optimum centroids
yk. The cost function is a continuous function in yk. Hence, the minimum value can be
found by setting the first derivatives with respect to all yk to zero. Deriving the cost
function in Equation 1 with respect to yp, leads to:

∂RK-means

∂yp
=

K∑
k=1

∑
xi∈Ck

∂‖xi − yk‖2

∂yp

=
∑
xi∈Cp

∂‖xi − yp‖2

∂yp

=
∑
xi∈Cp

2yp − 2xi

= 2|Cp|

yp − 1

|Cp|
∑
xi∈Cp

xi


Where |Cp| is the cardinality of Cp (the number of elements). The condition of optimality
follows readily:

yk =
1

|Ck|
∑
xi∈Ck

xi ,∀k . (2)

We can now formulate the algorithm:

3

Algorithm 1 K-means Algorithm

Initialization: y1, . . . , yK
repeat

- Assign each data points xi to the closest prototype vector yk. Ck is then the cluster
containing the objects xi which are closest to yk.

- Update the new centroids according to: yk =
1

|Ck|
∑
xi∈Ck

xi , ∀k ∈ [[1,K]].

until convergence or allocated time ends

It can be shown that the cost function RK-means is monotonically non-increasing. As
this cost is non negative, it is therefore ensured that the algorithm converges2. However,
as this algorithm only approximately solves the K-means problem, it is only guaranteed
to converge to a local minimum of RK-means but not to the global minimum. Getting
stuck in a local optimum is actually the main drawback of this algorithm. To overcome
this issue, careful initialization (e.g., choosing starting centroids as far as possible) may
help but increases the computational complexity. Another method to avoid this effect,
is to randomly choose K different prototype vectors y1, . . . , yK among the data vectors
x1, . . . , xn.

Question 1. Before implementing K-means algorithm, try to apply it manually to Figure
4 in order to group the 8 points into K = 2 clusters. First, initialize the prototypes y1
and y2 with one point from the blue square and one from the red one. In Figure 4, draw
the prototype vectors and the clusters at each iteration. After convergence (only two
iterations are needed), evaluate the final cost RK-means. Now, start again the algorithm
but initialize the two prototype vectors with the most left points (draw also the solution).
After convergence, compute the final cost function and compare it to the previous one.
What can you observe?

Figure 4: Two Squares

Literature The standard K-means clustering algorithm was first proposed by Lloyd
(who was working in Bell Labs) in 1957 and published only in 1982 in [1]. In the meantime,
Forgy published the same algorithm in 1965 in [2]. To solve the K-means problem, other
similar algorithms can be derived from the original one. A popular and slightly more
efficient algorithm was proposed by Hartigan et al. in [3].

2Furthermore it can be proven that the time complexity is polynomial in the number n of data vectors.

4

2.3 Implementation

2.3.1 Preliminaries

A short tutorial on Python and the library Numpy is available in the Appendix. Please
spend 5 minutes of your time to familiarize yourself with this easy programming language.
Open a terminal, go to your home directory and type:
/home/isistaff/glf/fachprak isi/SV7/copySV7.sh
Use a text editor (e.g Bluefish) in order to open the Python scripts *.py. Ignore Gtk-
Warnings if any.

2.3.2 K-means function

Question 2. Open func.py and look at the first function Kmean. It takes n column vectors
(put into a matrix V), a number of cluster K and a maximum number of iterations maxit
as arguments. The outputs are the assignment vector classi containing n elements taking
values between 0 and K − 1 and the prototype column vectors y1, . . . , yK put into the
matrix proto. In line 70, write the update rule of the prototype vectors.

2.3.3 Clustering Samples from Normal Distributions

In this first simulation, we use K-means algorithm to cluster 2D-points generated by
Gaussian distributions. Initially, we have points from only two Gaussian distributions of

means µ0 =
[
−1 −1

]>
, µ1 =

[
1 1

]>
and covariance matrices Σ0 = σ20I2, Σ1 = σ21I2.

With σ0 = 0.5 and σ1 = 0.3, a typical data set is plot in Figure 5.

Figure 5: Points generated by two Gaussian distributions

Without knowing the parameters (means and covariance matrices) of the Gaussian
distributions, the goal is to group together data points generated by the same distribution.
Open plotdata.py with a text editor.

Question 3. In line 29, call the function Kmean from the module func.py and with the
right parameters. Save the file. Then, using a terminal, go to your directory containing
the files and type: ./plotdata.py. Observe the results. Are they good? Can you observe
any clustering errors?

5

Question 4. Now set σ0 to 1.2, save the file and run the python script. Observe the
results and repeat this procedure for σ0 = 3 and σ0 = 5. Comment the results.

Question 5. Set σ0 to 0.5 and modify K = 3. Run the Python script several times
and observe the plots. Is there something remarkable about the clustering result? By
repeating this simulation many times, do you expect a result in which a cluster contains
points from both the two original clouds? Why? What can you conclude on the way to
select the parameter K?

Question 6. Adapt the code in the file plotdata.py to generate a third cloud of data

points from a 2D normal distribution with mean µ2 =
[
−1 1

]>
and covariance matrix

Σ2 = σ22I2.

2.3.4 Quantizing Pixel Values

In this second simulation, we use K-means algorithm to quantize colored pixels of an
image. A raw image (e.g opened with Python) can be seen as a matrix of size m×n where
each element corresponds to a pixel. In the RGB format (red, green, blue), one pixel has
three components (3D vector) and each component indicates the level of each basic color
(R, G and B). The values are coded with 1 byte, that is to say a range from 0 to 255.
A colored pixel is then defined by a 3D vector such as [128 0 26]. Using this convention,
there are (28)3 possible colors. Some basic colors are: [255 255 255] white, [0 0 0] black,
[255 0 0] red, [0 255 0] green and [0 0 255] blue.

Question 7. Knowing that the color yellow is composed of red and green, what is the
RGB vector of the color yellow?

Using K-means, the goal of this experiment is to smartly (re-)quantize the colored
pixel with only K possible vectors instead of (28)3. In Figure 6, we can observe an original
image with 3 bytes per pixel (1 byte per basic color). In Figure 7, we show the resulting
quantized image where we have applied K-means quantization with K = 8. It means that
the algorithm has selected 8 colors among the (28)3 and has assigned one color (among
the 8 selected colors) to each pixel. In Figure 8, we also observe the result of a uniform
quantization with K = 8 colors. The space [[0, 255]]3 is partitioned into K = 8 cubes of
the same length and each original pixel belonging to a cube is assigned to the cube center.

Figure 6: Original Image
with (28)3 colors (3 bytes)

Figure 7: K-means Quan-
tization with K = 8 colors

Figure 8: Uniform Quanti-
zation with K = 8 colors

Open image seg.py with a text editor. We use the library matplotlib.image for image
handling.

Question 8. Observe the code. There is nothing to add in this script. Notice how the
image is handled. We first rearrange the pixels by concatenating each rows of the image
into a unique row (using np.reshape). Then we cluster the 3D pixels using K-means. In

6

the terminal, run: ./image seg.py
You may need to wait a little bit (less than one minute, depending on your computer).
Can you still recognize the main object in the picture? Note that only K = 8 pixel values
are used. Which colors have completely disappeared? Why?

Question 9. Assume we apply a uniform quantization to this same image where the 8
possible colors are defined by the 3D vectors whose components take either the value 0 or
255. First, find the common names of these 8 colors. Then, can you predict the result of
the uniform quantization algorithm? Which colors are likely to disappear?

Question 10. One can say that uniform quantization is a special case of K-means quan-
tization. How can it be? What is the main advantage and the main drawback of K-means
quantization compared to uniform quantization?

Question 11. Change the number of clusters to K = 4 and then K = 2. Try also with
other images test2.jpg and test3.jpg. You can also try out with images of your own, just
copy them into your working folder and be careful about the resolution (the higher it is
the longer it takes).

Question 12 (Optional). If your are fast enough, implement the uniform quantization
algorithm and compare the results with K-means quantization. Some useful lines of code
may be helpful if you uncomment the lines 25 to 31.

2.4 Limits of K-means

The two applications we used show how useful K-means algorithm can be. Especially
for colored-pixel quantization, the results are quite impressive compared to a uniform
quantization algorithm. However this algorithm has several drawbacks and restrictions:

a) We have already seen that Algorithm 1 may get stuck into a local minimum (e.g.
Figure 4).

b) In the introduction, we have seen that the general rule for clustering is to group
similar objects together. Nevertheless, in general, we do not have a clear definition
of similarity. In K-means clustering, the dissimilarity measure we use is implicitly
the squared distance between vectors: µi,j = ‖xi−xj‖2. We then group vectors that
are close to each other. Unfortunately, the distance between vectors may not be
the most suitable metric. Indeed, looking at Figure 9, a human observer can easily
distinguish three different groups of points. Applying K-means algorithm to these
data will never succeed in finding the grouping solution we are looking for because
the distance between vectors is not the right dissimilarity measure to use.

Question 13. In Figure 9, try to predict the result of K-means algorithm for K = 3
(draw the clusters) and check your prediction by running the script rings.py. Do you
think K-means algorithm can still give the result we expect if we do some pre-
processing on the data (e.g. feature extraction)? If yes, explain how to do it.

c) K-means clustering can be used only if the objects xi are vectors of an Euclidean
space. Therefore, there are many situations in which we can simply not apply this
algorithm. For example, imagine we want to cluster words in a text. The idea
can be to regroup all declinations and forms of a same word into one cluster. In
this situation, we cannot use vectors any more because words do not have the same
length and no operations are defined. In order to circumvent this problem, the idea
is not to care about the objects (the words) in themselves but rather to know how

7

similar the objects are between each other. This new approach is developed in the
next part. Notice that K-means is a special case where the dissimilarity measure
corresponds to the distance between vectors.

Figure 9: Three Rings

3 Spectral Clustering

3.1 Introduction

Suppose we have n objects x1, . . . , xn that we want to cluster into K groups. We have
access to a similarity measure Si,j , (i, j) ∈ [[1, n]]2 where Si,j is a positive real value
indicating how similar objects i and j are. For simplicity, we assume Si,j = Sj,i. The
problem can be represented using an undirected weighted graph where a node is an object
and an edge between nodes i and j is weighted by the value Si,j . In Figure 10, we give an
example of such a graph. If there is no edge between two objects, it simply means that
their similarity is zero. The graphical structure allows us to use and apply well-known
operators and algorithms on graphs, as we will see in the following. The second way
of representing our problem is to use the matrix S containing the pairwise similarities
Si,j between objects xi and xj . Define an adjacency matrix by writing similarities Si,j
in matrix-form. The matrix representation corresponding to the example in Figure 10 is
displayed in Figure 11. It is a symmetric matrix with zero diagonal elements.3

Analogously to clustering in RN , which was demonstrated before, the goal of graph
clustering is to find groups of vertices on a graph that are similar to each other. As a
practical example, consider the problem setup shown at the end of this chapter. In this
problem, the goal is to identify large and comprehensive research areas. The data consists
of interest data from a group of professors. Each professor had to grade a list of research
areas according to their interest. Suppose that professors will not choose randomly very
different research areas, but areas that are related to each other. Thus considering two

3One can argue that the similarity Si,i between an object xi and itself should be as big as possible (or
even +∞). In fact S should be seen as an adjacency matrix where a strictly positive coefficient indicates
both the presence of an edge and a strictly positive weight. Then the zero coefficients indicate the absence
of an edge. As the nodes are not linked with themselves, the S matrix has a zero diagonal.

8

topics, the more professors that are interested in both topics at the same time, the more
similar the research areas ought to be. Towards the goal of finding common research
themes, one could now represent each research area in the questionnaire as a vertice with
edges based on the similarity and apply a graph clustering method to this graph.

x1

x2

x3

x4

x5

x6
2

9

20

9

1

21

84

12

Figure 10: Undirected weighted graph

S =



0 2 9 0 12 0
2 0 0 20 0 8
9 0 0 4 9 0
0 20 4 0 0 1
12 0 9 0 0 21
0 8 0 1 21 0



Figure 11: Matrix representation of
undirected weighted graph

Remarks

• In some applications, instead of having a similarity measure we only have access to a
dissimilarity D. Using a suitable transformation, we can change dissimilarities into
similarities (e.g. Si,j = exp(−Di,j/δ) or Si,j = maxk,lDk,l −Di,j).

• Depicting our problem into a graphical representation is natural but may not seem
useful in our situation. Be aware that in practical applications it is not always clear
what the nodes, edges and similarities are. We can even define several meaningful
graphs for the same clustering problem.

• The graphical representation we used is quite simple because we restrict ourselves
to undirected weighted graphs with positive weights. Graph clustering theory is a
huge topic and can be applied to various types of graph: weighted and unweighted,
directed and undirected...

3.2 Spectral Clustering Theory

In this section, we briefly describe the theory behind spectral clustering. All graphs are
considered undirected and weighted with positive values.

3.2.1 Graph Clustering

Graph clustering is the task of partitioning a graph (V, E). V is the set of nodes and for
simplicity, we assume they are labeled from 1 to n such that V = {1, . . . , n}. E is the set
of edges and Ei,j is the edge between nodes i and j with the weight wi,j . We also define K
clusters Gν , ν = 1, . . . ,K, which represent sets of nodes. By definition of clustering, the
sets Gν are disjoint. Analogous to the presentation of clustering in the previous chapter,
we first introduce cost functions that measure the quality of a clustering.
To obtain a measure of a clustering on a graph, some notation is introduced. Let A and
B be two subsets of the nodes V. We can define two useful quantities:

cut(A,B) =
∑

i∈A, j∈B
wi,j (3)

assoc(A) = cut(A,V) =
∑

i∈A, j∈V
wi,j (4)

9

cut(A,B) measures the interaction between the two sets A and B of nodes. assoc(A)
measures the interaction of the nodes in set A with all the nodes of the graph, even those
from A. These two quantities are helpful to define cost functions for graph partitioning. In
this work, we present the cut cost function and the normalized-cut cost function introduced
by Shi and Malik in [4]. The cut cost function is:

RC (G1, . . . ,GK) =

K∑
ν=1

cut(Gν ,V\Gν) (5)

where V\Gν is the set of all nodes of the graph except those belonging to cluster Gν .
Observe that the expression sums the cut cost of all K clusters. In the simplest case
K = 2, minimization of this cost is known as the min-cut problem (i.e., to find a cut of a
weighted graph into two parts with minimum cost).

The normalized-cut cost expression is:

RNC (G1, . . . ,GK) =

K∑
ν=1

cut(Gν ,V\Gν)

assoc(Gν)
(6)

Compared to Equation 5, the normalized-cut cost function weighs each cut cost term by
the total interaction assoc(Gν). The term cut(Gν ,V\Gν)

assoc(Gν) measures how strongly Gν interacts
with the complete graph V. Conversely, a small value indicates that Gν can be separated
well from the graph. Minimizing this cost thus leads to a partition of the graph and
edge cuts such that the sum of the average interaction of each cluster with the rest of the
nodes is minimal: we want clusters to be as independent as possible. Of course, other cost
functions can be used but the normalized-cut has a very nice property as we will see in
the next part.

3.2.2 Spectral Clustering

To obtain a clustering algorithm that (approximately) minimizes the given cost functions,
we look at spectral clustering methods. The general idea of spectral clustering is to define
a symmetric matrix L on a graph using the adjacency matrix S and/or other matrices
such as the degree matrix. Then an eigenvalue decomposition is performed on the matrix
L: L = UΛU>. Depending on the application, a dimensionality reduction procedure may
be carried on by removing some eigenvalues. Finally, the remaining row vectors contained
in U (or sometimes in U Σ̃) are clustered using K-means algorithm. As a result, as each
row vector corresponds to one node, we have obtained our partitioning. In the following,
we will call the matrix L the graph Laplacian and detail spectral clustering algorithms
that find an approximate minimum clustering for the cost functions given in Equation 5
and Equation 6.

Spectral Clustering Algorithm The graph Laplacians we need are defined by:

LC = D − S , (7)

and
LNC = I −D−1/2SD−1/2 , (8)

with I the identity matrix and D the diagonal matrix with diagonal elements:

Di,i =
n∑
j=1

Si,j (9)

10

Recall the similarity matrix S (or adjacency matrix) defined in the last subsection. It
can be shown that the graph Laplacian LC and LNC are linked to the cost functions RC

respectively RNC [4]. This means that performing spectral clustering on one of the latter
graph Laplacians corresponds to graph clustering with respect to the cost functions RC

and RNC .
Given a graph Laplacian, spectral clustering proceeds to compute the eigenvalue de-

composition of L: L = UΣU>. Then we choose the K smallest eigenvalues and extract
the matrix Ũ which contains the K columns of U corresponding to theses values. Ũ is of
dimension n×K. Finally, we apply K-means algorithm to cluster the n row vectors of Ũ .
Node i is assigned to the cluster of the ith row vector of Ũ .

Algorithm 2 Spectral Clustering

- Compute the graph Laplacian L (Equation 7 or 8)
- Perform an eigenvalue decomposition: L = UΣU>

- Extract Ũ by taking the K columns of U corresponding to the K smallest eigenvalues
- Cluster the row vectors of Ũ using K-means

The spectral clustering algorithm described above is quite simple but nonetheless pow-
erful.

Summary The term Spectral Clustering is used when the task of minimizing a cost
function (defined on the initial graph) reduces to define an operator T (in a simple case it
is a matrix) with which the minimization problem becomes an eigenvalue decomposition
with some dimensionality reduction and a K-means clustering applied to a submatrix of
the eigenvectors. Mathematically, we embed the initial objects into an Euclidean space
where the initial cost function RNC changes to RK-means in this new space.

3.3 Implementation

3.3.1 From the similarity to vectors

Question 14. Open func.py. Write the function sim to vect which takes a similarity
matrix S of size n × n and a number K of clusters as arguments and returns a K × n
matrix Data containing n K-dimensional vectors in columns. Use Algorithm 2 with the
graph Laplacian LC from Equation 7.

3.3.2 Clustering research areas

A survey has been carried out in an Electrical Engineering department. A list of research
areas has been provided and professors had to grade each areas on a scale from 0 to 3
according to their interests. The data can be seen by opening the file topis.csv with a text
editor. The goal is to cluster the research areas, assuming that the professors’ interests
indicate how strongly related two different research areas are.

Pre-processing From the raw data contained in topis.csv, we first need to define the
similarity measure between the research areas to compute a similarity matix S. As it is
not the main point of this work, we will simply explain how we transform the data. The
data can be seen as a matrix of size m×n, where m is the number of professors and n the
number of research areas. Each coefficient is an integer from 0 to 3. We first normalize
this matrix such that each row average is zero (average grades given by one professor
becomes zero). Then we define the n column vectors c1, . . . , cn of this matrix. One vector

11

corresponds to all the normalized grades of one research area. Finally we use a Gaussian
kernel to measure the similarity between areas:

Si,j = exp

(
−‖ci − cj‖

2

2σ2

)
, (10)

with σ = 5.

Question 15. Open spectral clu.py. Check the code for the pre-processing step (from line
21 to 38). Is there any mistake compared to what we have described? If yes, correct it.

Question 16. In a terminal run: ./spectral clu.py. For the clustering, we have chosen
K = 3. Observe the results (displayed in the terminal). Do you know what is plotted in
the figure? Explain the meaning of this plot.

Question 17. Launch this simulation several times (./spectral clu.py). Do you always
observe the same results? Why?

In performing multiple clustering runs, you will have noticed that frequently very small
clusters appear.

Question 18. Explain why small clusters are not desirable in this task. Then to overcome
this issue, modify sim to vect such that it performs spectral clustering based on the graph
Laplacian LNC related to normalized-cut cost function.

Question 19. Again perform several simulation runs of ./spectral clu.py. Do you still
observe very small clusters? Compare the graph Laplacians and explain the difference
observed in the clustering results?

Congratulations, you have completed this lab exercise. You can now proceed with
optional question 12 or test the behavior of the simulations by changing parameter values.

3.4 Beyond the Presented Spectral Clustering Algorithms

Another cost function In the literature, a lot of cost functions on graph can be found.
However the associated minimization problem may be quite complex. Another example of
cost function that can be solved using spectral clustering is pairwise data clustering, see
[5] and also [6] for further information. The main advantage of pairwise data clustering is
that small and big clusters are not penalized by the cost function, which can be useful if
we are confronted to groups of very different sizes.

Choosing K The number of cluster K has to be set in advance. We have seen that if
K is not chosen correctly, the clustering result is not meaningful. There are many ways of
selecting K such as using a penalty term depending on K or using some stability measure.

12

References

[1] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Trans-
actions on, 28(2):129–137, 1982.

[2] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus interpretabil-
ity of classifications. Biometrics, 21:768–769, 1965.

[3] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–
108, 1979.

[4] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[5] Volker Roth, Julian Laub, Motoaki Kawanabe, and Joachim M Buhmann. Optimal
cluster preserving embedding of nonmetric proximity data. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 25(12):1540–1551, 2003.

[6] Joachim Buhmann. Data clustering and learning. The Handbook of Brain Theory and
Neural Networks, pages 278–281, 1995.

13

Appendix: Short Tutorial on Python and Numpy

In this appendix we introduce some basics on Python. We assume that you know some
basics on Matlab.

3.5 Generalities on Python

Python is a very simple programming language and it is included in many linux distribu-
tions. Python can be used in the same manner as Matlab, that is to say as a scripting
language or directly in a shell. A main file main.py has to be created with a text editor. In
order to run the script, you can open a terminal and just run the command line ./main.py.
If there are some errors, the first execution error will be displayed in your terminal.

3.5.1 Structuring your main file

Importing Libraries Libraries contain constants, objects and functions that are useful.
Depending on your needs (plotting, array handling, optimizations...), you need to import
the additional libraries before using them. The first lines of your main file should contain
all the libraries you want to import. For instance, if you need some mathematical functions
such as sin or cos or some constant such as π, you need to import the math library by
writing on a line: import math. Then press enter to go to the next line. Be aware that
if you want to use pi in your script, you will need to add the prefix math.pi to indicate
that the constant π has to be found in the library math. In case the name of the library
is too long or complex you can rename it. For example, we will need the library numpy to
handle arrays and linear algebra operations. We can write: import numpy as np. Then all
functions and constants from numpy should be prefixed with np. instead of numpy.
Of course you can write libraries of your own: just create a file mylibrary.py and in your
main file, write the following line import mylibrary. Proceeding this way, you can use all
constants, objects and functions created in mylibrary.py directly in your main file.

Basic Structures and Examples Python is a language where the punctuation is strict.
Specifically, the indentation, the colons and the return to line is meaningful. To end a line
no need to put semicolons as in Matlab, just return to a new line.

• Open a terminal and type the following commands

>ipython

• A Python shell has been opened and we can try out some simple examples. To define
variables (an integer or a float):

a=1

b=1.

• To print the value of variable

print a,b

• Multiple assignments at the same time

a,b,c = 3. , 2, 9

• Basic operations

14

a+b

a**b

• The For Loop starts by writing this line.

for k in range(10):

The colons indicate that a block is starting so when you return to a new line an
indentation is needed (the Python shell and some text editors do it automatically).
Now enter this new lines:

print ’Inside Loop’

print ’k=’,k

Then press Enter, remove the indentation and press Enter again. The loop is exe-
cuted. Note that k will take values between 0 and 9 and not 1 and 10 ! The block
ends when a line has no indentation.

• The While and If statements are similar to the For statement.

k=0

while (k<10):

k+=1

if (k==5):

print ’k=’,k

else:

print ’k is not equal to 5’

print ’End Iteration ’,k

To define a function A simple example:

def hello(i)

if (i==0):

print ’Hello Madam’

elif (i==1):

print ’Hello Sir’

else:

print ’Hello’

return(i+1)

To test it, just type hello(0).

3.6 Generalities on Numpy

Numpy is used for handling arrays and linear algebra. Compared to Matlab, the main
difference is that indexes start at 0 ! In your Python shell, type

import numpy as np

Familiarize yourself with some easy commands:

15

n=5

m=3

v=np.zeros(n) #n-D vector of 0’s

A=np.zeros((m,n)) #Matrix

B=np.array([[1,5,6],[1,9,12]])

C=np.zeros((m,n))

v[0]=5

v[2:4]=4

A[1,:]=np.arange(n)

v[2:3] #Be careful, index 3 is not included !

B[:,0:2]

B[0,1::] #From column 1 to the end

condi=(v==4) #Boolean vector condi[k]=1 if and only if v[k]=4.

A[0,condi] #Boolean extraction

Some useful functions:

np.dot(B,A) #Matrix multiplication

C*A #Element-wise multiplication

np.arange(0,10) #Integer values from 0 to 9

np.sum(B) #Sum of the elements of M.

np.sum(B,axis=0) #Sum of each column

np.amin(B) #Minimum of M (other possibilities: argmin, amax, argmax)

np.amin(B,axis=0) #Minimum values of each column

To know more about the Numpy library, go to: http://docs.scipy.org/doc/numpy/
reference/. The Quick Search section http://docs.scipy.org/doc/numpy/search.

html is quite useful.

16

