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1 Introduction

Error detection and correction are an essential part of any communication system and
data storage device. Some examples are magnetic drives, CDs and mobile phones. Error
correcting codes are used to protect information: if, for some reasons, data bits are missing
or corrupted, the use of error correcting codes allows to still recover the information.
After studying the typical structure of a code and defining some common parameters,
we investigate the error detection and correction capabilities of some example codes. In
this session, we focus on two families of linear codes: Hamming codes and Reed-Solomon
codes.

2 Generalities on Error Correcting Codes

Consider the following scenario: We are given a sequence of information symbols b =
b1, b2, . . . which are to be protected from errors in, for example, a communication or
storage system.

✲ ✲

❄

✛✛✛
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Figure 1: System Diagram

Figure 1 shows the information flow of a typical system that uses an error correcting
code.

• First, at the transmitter, the framer splits the information sequence b1, b2, . . . and
maps it using a suitable alphabet and outputs the message U = (U1, . . . , Uk) of
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length k with Ui ∈ A. Example of finite alphabet A are {0, 1} or Zp (integers
modulo p).

• Then the message U = (U1, . . . , Uk) is encoded using an error correcting code (n, k)
into a codeword (X1, . . . ,Xn) of length n with Xi ∈ A. Note that the same alphabet
A is used. In order to protect the data, the encoder should add some redundancy
therefore n has to be greater than k. The amount of redundancy of a code is
characterized by its rate R = k/n. Codes are efficient if they can correct many
errors while having a high rate. Figure 2 shows two examples of an encoder. The
encoder maps a k-symbol message into a codeword of n symbols in the same alphabet.
In Example-1, the message is drawn from the alphabet {0, 1}. The encoder maps
the k = 3 bit message into an n = 5 bit codeword. In Example-2, the message is
drawn from the alphabet {A,B,C, . . . , Z}. The codeword ‘L D A F Z E Y’ has
redundant symbols ‘D F E’ in the 2nd, 4th and 6th position.

• A codeword (X1, . . . ,Xn) is then transmitted over an unreliable channel. The chan-
nel delivers (Y1, . . . , Yn) which is a noisy version of the codewords to the receiver.
For the purpose of this experiment, the Yi’s belong to the same alphabet A.

• The decoder performs the reverse process of the encoder in order to recover the
original message. The decoded message is denoted Û = (Û1, . . . , Ûk). Note that
the received word may be corrupted too much such that the decoder might fail to
recover the original message that is to say Û 6= U .

• Finally, the deframer remaps and reorganizes the decoded message to recover the
estimated information sequence b̂1, b̂2, . . ..

Encoder

U1 U2 . . . Uk

Ex-1 1 0 1

Ex-2 L A Z Y

X1X2 . . . Xn

1 0 1 1 0

L D A F Z E Y

Figure 2: Encoding Overview

In this experiment, we are mainly interested in the encoder and decoder. A code C
usually refers to the set of possible codewords at the output of an encoder. A (n, k) code
C is a subset of An which contains |A|k elements. A codeword is a specific element of the
code.
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3 Experiments

Copy the working files to your home directory:
cp -irL /home/isistaff/glf/fachprak_isi/SV5 ./

Start Matlab from a shell in the SV5 folder by using the command matlab &.

3.1 A simple linear code: (7,4) Hamming Code

A very simple binary linear code is the n = 7, k = 4 Hamming code that can correct a
single error in a codeword. Let us try some simple experiments with the Hamming Code.
For comparison purpose, you may like to keep notes on the parameters we use.

Tip: Write down your results on a piece of paper for later comparison.

3.1.1 Know the Code

1. Run hamming list. A list of all the messages and codewords of a Hamming Code is
displayed. Note that the input message appears in the last four bits of the corre-
sponding codeword. What are the 3 remaining bits used for?

2. Check that the code is linear that is to say, in the binary case, for two codewords
c1 and c2, b = c1 + c2 is also a codeword. As we manipulate bits, the usual symbol
operations are modulo 2.

3. As the code is linear, the encoder mapping can be elegantly described using the
generator matrix G. Find out how and express the dimensions of G in terms of n
and k.

4. A second matrix H is displayed in the output of hamming list. After expressing the
dimensions of H in terms of n and k, for each codeword c, compute with Matlab
the product HcT (use the variables already defined). Compute the same quantity
for some element x of {0, 1}n that does not belong to the Hamming code. What can
you observe? This matrix is called the parity check matrix. Explain why.

5. Give two mathematical characterizations of this code C using on the one hand the
G matrix and on the other hand the H matrix. Note that these descriptions char-
acterize linear codes in general and not only Hamming codes.

6. Let p > 2 be an integer. A Hamming code is defined by its parity check matrix H
which contains all the binary tuples of size p in its columns except for the all zero
one. Check this definition for H in hamming list. Express k, n, and the rate R in
terms of p.

3.1.2 Detecting and Correcting Errors

A code is useful if it is able to take advantage of the redundant bits to detect and correct
errors. Let y ∈ {0, 1}n be the received word that may not be a codeword. y may have
been corrupted in some places (i.e., 1 becomes a 0 and vice versa).

7. How can you detect if y /∈ C ?

In order to correct errors, it is desirable that any pair of different codewords c1, c2 are
as far as possible from each other. Indeed the more two codewords differ, the more errors
can be introduced by the channel without confusing the two codewords. A good measure
of distance between two codewords is the Hamming distance dH(c1, c2) which is defined
as the number of elements that differ between c1 and c2.
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8. Let C be a code such that the substraction between codewords is defined. Prove
that:

dH(c1, c2) = wH(c1 − c2) ,

where wH(b) is the number of non-zero elements in b.

We define the minimum Hamming distance dmin as follows:

dmin := min
c1,c2∈C:c1 6=c2

dH(c1, c2) .

9. For linear codes, prove that:

dmin = min
c∈C:c 6=0

wH(c) .

Then, compute the minimum Hamming distance dmin of our Hamming Code. Note
that the simplification saved us a lot of time.

The (7,4) Hamming Code is listed in Appendix-A

The decoder strategy is to associate the received word y to the closest codeword c:

ĉ(y) := argmin
c∈C

dH(c, y) . (1)

This is the minimum Hamming distance decoder.

10. Correcting One Error Run hamming ec. Choose 1 error. A corrupted codeword
is shown, which has an error in 1 position. Try to use the list in Appendix-A to
decode the corrupted codeword using strategy (1). Then press any key on Matlab
to see the result. It outputs a decoded codeword which is the closest codeword in the
list to the corrupted codeword.

11. Correcting Two Errors Repeat this simulation by introducing 2 errors. Try to
decode the corrupted codeword using strategy (1). Unfortunately both your answer
and the answer from the program are wrong because the code we have chosen is
not capable of correcting more than one error! To convince yourself, compute the
Hamming distance between the original codeword and the corrupted word and then
between the decoded codeword and the corrupted word. Check your values with the
Matlab output. What do you notice from these distances?

12. Explain why this code is not capable of correcting more than one error in a codeword.
Use the fact that the minimum Hamming distance dmin of a Hamming code is 3.

13. Can you guess the relation between dmin and the maximum number ne of errors a
linear code can correct?

14. What about the relation between dmin and the maximum number nd of errors a
linear code can detect?

3.1.3 Visualization of Errors

Now let us try the above experiments again, but on a much longer information sequence.
We use an image for this purpose.

Tip: For comparison purpose, do not close the figure windows!
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15. Run hamming rec. Choose ”Fix number of errors per codeword”, number of errors
in each codeword = 1, image file = tiger gray. The original image (left), the image
corrupted with 1 error in every codeword (center) and the corrected image (right)
are displayed by Matlab. What can you observe?

16. Repeat the above experiment for the same image, but with two errors in every
codeword. What can you conclude? Would have it been better to leave the received
word uncorrected?

We have introduced errors in every codeword. In reality, this never happens. Errors
may be occurring randomly or in bursts depending on the channel.

17. Run hamming rec in random errors mode. Try different bit error probabilities (e.g
0.001, 0.1, 0.4). Compare the average error probability displayed in Matlab.

3.2 Reed-Solomon Codes

In this section, we introduce Reed-Solomon (RS) codes. These linear codes are used in
CDs, DVDs, Bluray and in a plethora of other devices. They are specified over large
symbol sets.

3.2.1 A simple RS code over Z7

Constructing a general Reed-Solomon code requires a deep understanding of algebra the-
ory. We focus on a simple example. Let the alphabet A be Z7 = {0, 1, . . . , 6} with addition
and multiplication modulo 7. For our code, we choose k = 3 and n = 6. The construction
start by selecting an element α of Z7 such that αn = 1 and ∀i = 1, . . . , n − 1, αi 6= 1.
This element is called primitive nth root of unity. Note that such element exists only for
well-chosen alphabet A.

18. Find the minimum suitable α for Z7 without using Matlab for computation.
Write down all the powers of α in a table.

Given this α, a RS encoder (u1, . . . , uk) 7→ (x1, . . . , xn), has the following form:

xj =

k∑

i=1

uiα
(i−1)(j−1) , j = 1, . . . , n . (2)

19. Prove that this RS code is indeed linear (i.e. for two codewords x and y and for
λ ∈ Z7, λx+ y is also a codeword). Express the generator matrix G in terms of α.
Does this matrix look familiar?

An important result for RS codes is that their minimum Hamming distance is dmin =
n− k + 1, which you can prove by doing the following optional question.

20. Optional: We define the polynomial u(z) =
∑k

i=1 uiz
(i−1). After checking that

xj = u(α(j−1)), prove that dmin ≥ n − k + 1. According to the Singleton Bound
theorem, every (n, k) linear code must satisfy dmin ≤ n − k + 1. What can you
conclude on the minimum Hamming distance of a RS code?

21. Implement the encoder function encoder RS7. Compute and enter the G matrix
by hand for this specific case (hint: use your table that contains the powers of α).
Explain why it is not a good idea to directly enter the expressions of the formula (2)
in Matlab. Test your encoder by running simu RS7.
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22. Once your encoder works, experiment it on the picture tiger gray by runningmain RS7

while choosing the number of error per codeword equal one. Then, choose the num-
ber of errors equal 2. Did you expect those results? (These two simulations may
take few minutes.)

Decoding a RS code is non-trivial. You can have a look at the decoder PIM decoder.

3.2.2 Experimenting with RS codes

Now we experiment with RS codes over bigger alphabets and use the built-in Matlab
functions to encode and decode. Symbols are composed of M bits.

23. RS(255, 147) In this experiment, we will try a very large RS Code. The code
we choose has a capability to correct up to 54 symbol errors! Run rscode ec with
M = 8, N = 255, T = 54, number of errors = 54 and image file = tiger gray. The
program will introduce errors in 54 symbols in every codeword. Since M=8, the
image is split into 8 bit symbols. Then the symbols are grouped into messages of
length K = N−2T = 147. Observe the output on Matlab. What is so special about
this code? Note that the code rate is nearly the same as the Hamming code in Sec
(3.1.3) but this code has much more powerful error correction capabilities. Explain
why the comparison between this RS Code and the Hamming code of Sec (3.1.3) is
unfair.

24. RS(255, 147) Burst Errors Run the same experiment rscode ec as before but
choose number of errors = -1. The program will introduce errors in bursts, that is
to say, all 54 consecutive symbols are corrupted. The output of the program shows a
corrupted image that is nearly erased on one side (corresponding to the burst error
in every codeword). The image, nevertheless, is reconstructed perfectly! Explain
why.

Before proceeding to the Quiz, you can now experiment with the Matlab simulations.

3.3 Quiz on Error Correcting Codes

Solve the following problems.

25. Let your information sequence be from the English alphabet {A,B, . . . , Z} with the
space character. If you have to design a framer which takes groups of 2 letters, and
map them to messages of size K = 4 in an alphabet Zp for some integer p, what
is the smallest p you can choose? How would you design this mapper (remember
that you should also be able to demap)? As an example, convert the following
information sequence (or at least the first two symbols) into messages: I THINK
THEREFORE I AM

26. Let the symbols belong to a finite alphabet A with |A| elements. Let the messages
and codewords have lengths of k and n respectively.

(a) How many different messages are possible? How many different words are
possible? How many different codewords do you have to pick among those
words?

(b) How many codes can be constructed?

27. Assume we have a binary linear code C ⊂ {0, 1}n but C 6= {0, 1}n. Someone claims
that a possible parity check matrix of C is H = (0, 0, . . . , 0) with the justification
HcT = 0 for all c ∈ C. Can you trust this person?
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28. Assume we have a binary code. The encoder forms the codeword by appending a
parity check bit to the message bits. A parity check bit equals 1 if the sum of the
bits of the message is odd else it is 0. Find a generator matrix and a parity check
matrix of this code. Compute the rate of this code and the minimum Hamming
distance. Explain why this code is not powerful.

29. Assume the messages consist of exactly one bit (k = 1). The encoder repeats this
bit n times to form the codeword. This is a repetition code. Find a generator matrix
and a parity check matrix of this code. Compute its rate and its minimum Hamming
distance. Explain why it is highly likely that a minimum Hamming distance decoder
will be successful if n is large and the bit error probability is p < 0.5. Explain why
this code is not efficient.

30. In certain systems, an interleaver is added just before transmission (i.e., an addi-
tional block between encoder and channel in Figure 1) and a deinterleaver is put
after the receiver. If we want to transmit M codewords X = (x(1), . . . , x(M)) where

x(j) = (x
(j)
1 , . . . , x

(j)
n ) , an interleaver permutes in a predefined way the M × n sym-

bols of X to form X ′ which is then transmitted. For instance, choosing M = n and
rearranging X as a matrix of size n × n (one row is one codeword), a simple inter-
leaver consists in transmitting X column by column instead of row by row. In which
context the interleaver gradually improves the performance of the overall system?

If you want to know more about Error Correcting Codes, you can open the Matlab help
window and go through the section ‘Communications System Toolbox > System Design
> Error Detection and Correction’.
Alternatively, you can check on Wikipedia for some information while waiting to take the
lecture Algebra and Error Correcting Codes. Congratulations, you have reached the end
of this fachpraktikum.

Appendix A: Hamming Code
Message Encoded Message (Codewords) Weight

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 3
0 0 1 0 1 1 1 0 0 1 0 4
0 0 1 1 0 1 0 0 0 1 1 3
0 1 0 0 0 1 1 0 1 0 0 3
0 1 0 1 1 1 0 0 1 0 1 4
0 1 1 0 1 0 0 0 1 1 0 3
0 1 1 1 0 0 1 0 1 1 1 4
1 0 0 0 1 1 0 1 0 0 0 3
1 0 0 1 0 1 1 1 0 0 1 4
1 0 1 0 0 0 1 1 0 1 0 3
1 0 1 1 1 0 0 1 0 1 1 4
1 1 0 0 1 0 1 1 1 0 0 4
1 1 0 1 0 0 0 1 1 0 1 3
1 1 1 0 0 1 0 1 1 1 0 4
1 1 1 1 1 1 1 1 1 1 1 7
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