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1 Introduction

In wireless and wired data transmission, a signal is sent through a channel. Channels im-
perfections (e.g., external disturbances, thermal noise, quantization error, etc.) introduce
some noise in the original signal. A transmission channel can thus be modeled by a linear
filter and the addition of a noise signal, as represented by the dashed box in figure 1. The
task of de-filtering is known as equalization or deconvolution. As of today, many possi-
ble solutions exist. Several equalization methods are tested and compared experimentally
(in software) in the experiment. In addition, channel estimation employing two adaptive
methods will also be discussed.

H(z) + G(z)

N [.]

S[.] Z[.] Y [.] Ŝ[.] ≈ S[.− L]

Figure 1: Equalization (with delay L) of a noisy LTI transmission channel.

2 Preparation

For the experiments, we will use filters of different orders. To be able to compare the
results, we will mostly start from the following transmission channel:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 + h4z

−4 (1)

= 0.5 +−1.575z−2 + 0.025z−3 + 1.2012z−4 (2)

= 0.5 · (z + 1.1)(z − 1.2)(z − 1.3)(z + 1.4)

z4
. (3)

The channel distorts the transmitted signal like a linear time-invariant filter. The ampli-
tude response |H(eiΩ)| is shown in figure 2.

Furthermore, we assume that we only have access to measurements of the channel
output, which were noisy by white Gaussian noise with power σ2. The goal now is to
use some equalization algorithm G(z) to estimate the input signal as well as possible. We
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will see that delaying the estimation often improves the estimate’s quality. The process is
depicted in figure 1.
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Figure 2: Amplitude response of the band-pass filter H(z).

2.1 Zero-forcing equalization 1

An inverse filter G(z) to a filter H(z) is a filter with a transfer function that satisfies
G(z)H(z) = 1. The idea of using such a filter is obvious since it eliminates the effect of
linear filtering through the channel. The first drawback of this approach is that noise is
not considered. This quite naive approach is known as zero-forcing equalization.2

It is often impossible to construct exact inverse filters, so one must settle for an ap-
proximation. On the other hand, we require the filter g[.] to be stable and causal.

Example 2.1. With the channel defined in equation (1), we obtain

1/H(z) =
2z4

(z + 1.1)(z − 1.2)(z − 1.3)(z + 1.4)
. (4)

Because the poles lie outside the unit circle, the right-sided expansion is not stable, and
the left-sided expansion is not causal. A causal and stable inverse filter can be constructed,
allowing some delays, i.e., requiring only G(z)H(z) ≈ z−L, for some nonnegative integer
L. We rewrite H(z) as

H(z) = z−4
(
h̃0 + h̃1z + h̃3z

2 + h̃3z
3 + h̃4z

4
)
. (5)

The (stable) left-sided expansion of 1/H(z) is thus given by:

G`(z) = z4(g0 + g1z + g2z
2 + . . . ). (6)

Shifting this signal to the right, we add some delay L

z−LG`(z) = z4−L(g0 + g1z + g2z
2 + . . . ). (7)

Finally, the non-causal part of the shifted signal is truncated and we obtain

z−LG`(z) mod z = gL−4 + gL−4+1z
−1 + · · ·+ g0z

−(L−4). (8)
1Discussed in the section 1.7 of the DSSP Lecture Note
2The name zero-forcing is derived from the behavior of the zero-forcing filter G̃(z) when combined with

the distortion (in this case the channel H(z)). Because G̃(z)H(z) ≈ 1, all coefficients of zn for n 6= 0 are
transformed to zero

2



Question 1. Let Nc be the order of a causal filter h[.], i.e. H(z) = h0 + h1z
−1 + · · · +

hNcz
−Nc. Specify the delay L of an inverse filter with order N according to the above

scheme.

To calculate the coefficients gk of the inverse filter G(z), the following recurrence
relation can be used:

gk = − 1

h̃0

k−1∑
i=0

h̃k−igi, (9)

for k > 0 and g0 = 1/h̃0.

Question 2. Transform the recursion in (9) so that the recursion can be implemented in
a Matlab program. (Hint: Matlab matrix/vector indices start from 1 and not from 0.)

2.2 Wiener Filter3

The Wiener filter is a particular case of filter, which uses the information about the
channel, the input, and noise signals for robust equalization. For this purpose, specific
properties (the so-called autocorrelation functions) of the signals must be known.

In the modeled transmission channel (see figure 1), the equalizer takes as input the
noisy transmitted signal Y (z) = H(z)S(z) +N(z). The signal S[.] is assumed to be i.i.d.,
uniformly distributed in {−1, 1}. Thus, we have E

[
S[.]2

]
= 1. Moreover, W [.] is white

noise with power E
[
N [.]2

]
= σ2, and is independent of S[.].

Example 2.2. With the channel defined in equation (1), the cross-correlation function
from S to Y is given by RSY [.] = h[−.].

Question 3. For the channel defined in equation (1), compute the autocorrelation function
RY [n], using

RY [.] = (h ? RSY )[.] +RN [.], (10)

Let L and M be nonnegative integers such that gw[n] = 0 for n < −L and n > M . The
coefficients of the Wiener filter of order N = L + M are determined by solving a system
of linear equations called the Wiener-Hopf equations:

M∑
n=−L

gw[n]RY [j − n] = RXY [j] j = −L, . . . ,M. (11)

2.3 Decision-feedback equalizer (DFE)4

Next, we consider a popular nonlinear equalization method, the decision feedback equalizer
(DFE). This method is applicable when the unknown signal S[.] in figure 1 takes only value
in a discrete set S, as is common in digital communication, e.g., S = {−3,−1, 1, 3}.

The structure of the original DFE5 is shown in figure 3. It consists of a linear forward
filter Gf (z), a linear backward filter Gb(z), and a (static) decision function q : R→ S (or
q : C→ S), that rounds to the nearest value in S. This decision function makes the DFE
nonlinear. There are several versions of DFE, differing mainly in the choice of the forward
filter Gf (z).

3Discussed in the section 5.6 of the DSSP Lecture Notes
4Discussed in the section 1.7 of the DSSP Lecture Notes.
5The DSSP Lecture Notes introduce a slightly different one with G′

f (z) = Gf (z) and G′
b(z) =

Gb(z)Gf (z). Of course, both are equivalent.
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Gf (z) + q(.)

Gb(z)

z−1

•
Y [.] Ŝ[.]

Figure 3: Decision-Feedback Equalizer (DFE).

Question 4. For the channel defined in equation 1, compute the DFE with latency L = 2.
Proceed as follows:

1. Decompose the transfer function of the channel into two parts : H(z) = H1(z) +
z−L−1H2(z) with H1(z) = h0 + h1z

−1 + h2z
−2 and H2(z) = h3 + h4z

−1.

2. The forward filter should inverse H1(z) as well as possible. Compute Gf (z) =
z−LF (z) mod z where F (z) is the (stable) left-sided inverse of H1(z). Before you
calculate, consider what order Gf (z) will be.

3. The backward filter is simply Gb(z) = −Gf (z)H2(z).

2.4 LMS algorithm6

Often the exact channel transfer function H(z) is not available or, even worse, is not
time-invariant (e.g., wireless communication). In this case, adaptive methods are used
for equalization. The most popular methods are based on the least mean squares (LMS)
algorithm. Figure 4 shows the basic structure of an adaptive filter for an equalization task
with a quantizer q(.). The measured signal Y [.] is filtered by a time-varying linear FIR
filter with coefficients gk[.].

+

g[.] q(.)•

−S[.− L]

Y [.] S̃[.] Ŝ[.]

Figure 4: Adaptive filter for equalization.

The algorithm has two modes of operation: in the frozen phase or operating phase,
the coefficients are fixed, i.e. gk+1[.] = gk[.]; in the adaptive phase or training phase, the
signal S[.] must be available7 and the coefficients gk[.] are modified according to a gradient
descent learning rule on the expected squared error, i.e.,

gk+1[.] = gk[.] + βE
[
(S[k − L]− Ŝ[k])Y [k − .]

]
(12)

= gk[.] + β(RXY [L− .]− (gk ? RY )[.]), (13)

6Discussed in the section 5.10 in the DSSP Lecture Notes
7Under certain circumstances, adaptation can also be performed in the operating phase. However, a

suitable reference signal is necessary.
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where β > 0 is the learning rate.
However, this iteration rule is useless because the channel is unknown, and therefore

the expected value cannot be computed. At this point, assuming that the reference signal
is known, the LMS starts with an approximation. The current signal values replace the
expected value.

Question 5. Find the LMS learning rule for estimating S[.−L] from Y [.] by approximating
the expected value by the current signal values as described above.

2.4.1 Bonus: Adaptive decision feedback equalizer

In this section, we will see that a good estimation is even possible without a training phase,
i.e., when the input signal is unavailable. Here, the LMS algorithm is used to estimate the
forward and backward filters of a DFE. S[.−L], Y [.], and Ŝ[.] must be suitably substituted
in the LMS learning rule found in question 5. However, S[.− L] is not available anymore
for training. As a substitute, the output Ŝd[.] of the quantizer q(.) can be used as a
reference. Thus, the learning rule tries to minimize the difference between the input and
output of the quantizer. This algorithm is shown in figure 5. The LMS learning rule for
the time-varying backward filter is given by:

gb,k+1[.] = gb,k[.] + β(Ŝ[k]− S̃[k])Ŝ[k − 1− .]. (14)

Gf (z) + q(.)

Gb(z)

z−1

•
Y [.]

Ŝ[k]− S̃[k]

Ŝ[k]− S̃[k]

S̃[k] Ŝ[.]

Figure 5: Adaptive decision-feedback equalizer.

Question 6. Find the LMS learning rule for the time-varying forward filter gf,k[.].

3 Experiment

1. Copy /home/isistaff/glf/SV4 in the home directory
(with cp -irL /home/isistaff/glf/SV4 ./)

2. Move in the matlab folder and launch Matlab (with matlab &)

For the experiments, various scripts have to be completed. It is worth it to look at the
different files to understand what each file is computing. All files are located in the folder
matlab and can be modified. It is not necessary to make copies. The main object of the
simulation part is the struct8 variable s Settings. Each variable s Settings specifies

8A struct variable is a list of fields with names and values. With myStruct.fieldName, you have access
to the value of the myStruct variable in the fieldName field. In a struct array, each element is a struct

variable and all elements have the same fields (with different values). With myArrayStruct(2).fieldName

you can access the fieldName field of the second struct in the myArrayStruct array.
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Algorithm str EstimationAlgorithm Parameters

Zero Forcing Filter ZF InverseFilterLength

Wiener Filter WF InverseFilterLength

DFE DFE -

LMS Filter LMS

InverseFilterLength,
TrainingLength, LearningBeta,

RunningBeta

adaptive DFE Adaptive DFE TrainingLength, LearningBeta

Table 1: Labels in str EstimationAlgorithm and parameters of the equalization meth-
ods.

a simulation. It includes information about the transmitter, transmission channel, and
equalization algorithm. This variable is always the first argument passed to a function,
and it is also returned. Thus, it is possible to return selected data (e.g., filter coefficients
or the bit error rate9). In the simulation environment, only the scripts runSimPlot.m,
runSim.m, and ZFSim.m should be modified.

An overview of the simulation process and environment can be found in section 4.
The main parameters controlling the simulations are NumberOfSimulationRuns, which
specifies the number of Monte Carlo simulation runs, and the array SNRValuesToSimulate,
which specifies the SNR points to simulate. Note that the SNR points are specified in dB.
Both variables can be defined in defaultSettings.m (or directly in s Settings).

The following Matlab files have to be adapted at marked positions in the source code:

defaultSettings.m Default values are defined for all simulations and automatically
set. For most simulation parameters it is sufficient to adjust and use these values.

runSimPlot.m Each simulation is launched with this script (or the similar script
runSim.m). Here, at the marked location in the source code, any number of vari-
ables s Settings can be added to the array as SimSettings and initialized. For
each entry in the array as SimSettings, a simulation is executed and the error
rate is output graphically. It is recommended to follow the pattern of ZFSim.m (see
below), as it should make it easier to combine different simulations and reuse older
simulations. Note that no Matlab function is executed here. As a result, all variables
in the script appear in the workspace. This way, variables can still be viewed in the
Command window after the simulation. Tip: Some important functions and scripts
also have short documentation. Call them e.g. with doc followed by the name.

runSim.m Performs the same operations as runSimPlot.m except for the graphical
output of the error rates.

ZFSim.m This sample script is used to simulate the zero-forcing method. In detail, the
script adds a new entry to the array as SimSettings. The last occupied index in the
array is always indicated by the variable INDEX. If a new entry is added, this variable
must be incremented by one. Most entries are already initialized with the default
values (from defaultSettings.m) and are therefore commented out and listed in
ZFSim.m for illustrative purposes only.

Calculating the coefficients for the equalization filters is done in the functions listed
below. A few of these functions need to be completed in the experiments.

9The bit error rate (BER) is defined as the number of bit errors per bit transmitted, thus BER =
number of bit errors/number of bits transmitted).
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ComputeZeroForcingFilter.m Compute a (causal and stable) inverse filter G̃(z) to a
transfer function H(z). Here, we need to insert the recursion found in question 2
and the calculation of the delay from question 1.

ComputeWienerFilter.m Compute a Wiener filter Gw(z) to the transfer function H(z).
This file does not need to be edited.

ComputeDFEFilter.m Computes the filters Gf (z) and Gb(z) for the DFE equalization
procedure. In this function, the coefficients from question 4 must be inserted.

ComputeLMSFilter.m Computes the adaptive filter gk[.] using the LMS method. The
filter order InverseFilterLength, the number of training symbols TrainingLength,
and the learning rate β LearningBeta must be specified. The learning rule from
question 5 for filter gk[.] must be inserted here.

ComputeAdaptiveDFEFilter.m Computes the adaptive DFE filter from 2.4.1.

3.1 Equalization of a known channel

In the first part of the experiments, it is assumed that the receiver knows the channel.
The zero-forcing algorithm, the Wiener filter, and the DFE are compared. Creating a new
script file for each simulation as described above is recommended.

3. Complete the script ComputeZeroForcingFilter.m with the recursion found in
question 2 and the calculation of delay L from question 1.

4. Calculate an inverse filter to H(z) with length 20 by running the script runSim.m. In
runSim.m the script ZFSim.m should be called. Create a plot10 of the filter coefficients
of G̃(z). Tip: The filter G̃(z) was stored in the array as SimSettings in the field
Gf after running runSim.m.

5. Use the Matlab command conv to find out if the calculated filter is approximately
inverse to H(z). Plot the approximately equalized impulse response. What would
the equalized impulse response look like with an ideal inverse filter? Can you read
off the delay?

6. Now, compute zero-forcing filters with other lengths and look at the filter coeffi-
cients of G̃(z) and the convolution with H(z). To do this, change the value of
InverseFilterLength in the file ZFSim.m. Tip: You can use a loop (e.g. for) in
ZFSim.m to calculate multiple filter lengths at once.

In the error rate simulations, bit sequences of length 5000 (constant SEQUENCE LENGTH)
should be selected. For the number of simulation runs (field NumberOfSimulationRuns

or default constant NUM SIMULATION RUNS), one has to trade-off between the duration of
a simulation and the accuracy of the results. Therefore, experiment with this parameter.
Choose the SNR range so that the meaningful part of the bit error rate (between 10−1

and 10−3) is shown.

7. First create a plot of the bit error rate for a zero-forcing filter of length 20 by setting
the necessary values in runSimPlot.m (for the default values) or in ZFSim.m. Execute
the script runSimPlot.m.

8. Simulate and plot now the bit error rates for the zero-forcing filter with lengths 10,
20, 30, 40 and 50. In what order can hardly any improvement of the error rates be
seen?

10The Matlab function stem is a nice way to plot discrete-time signals
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Now let us compare the previous equalization method with the Wiener filter method. The
Wiener filter is calculated in the script ComputeMyWienerFilter.m. However, nothing
more has to be changed there.

9. The Wiener filter depends on the noise’s strength - that is, the noise variance or
SNR. It is instructive to compare the Wiener filter with the zero-forcing filter at
different SNR points. To do this, compare the convolution of the filter with the
channel (see point 5) for SNR points 0 dB, 15 dB, and 30 dB. For this, you have to
run a separate simulation for each SNR point. What do you see?

10. Now create a plot analogous to point 8 with the error rates for different Wiener filter
lengths. Plot all curves and compare the performance. Which delays are sufficient
for the optimal performance of the Wiener filter?

11. As you may have noticed from the plot in 10, the error rates with the zero-forcing
method approach those of the Wiener filter at high SNR. Plot the filter coefficients
of the Wiener filter gw[.] and the zero-forcing filter g̃[.] for length 50 and SNR=30 dB
on top of each other. Can you confirm the observation on the error rates by this?

Next, we want to simulate the error rates of the DFE.

12. Complete the m-file ComputeDFEFilter.m with the values found in task 4.

13. Again, create a plot of the bit error rate and compare it with the Wiener filter. Can
you explain the difference in performance? Tip: consider which assumptions about
the sequence S[.] are inherent in the DFE (and not in the Wiener filter)? Is the
DFE a linear filter?

3.2 Bonus: Equalization with adaptive methods

We will consider the equalization problem when the channel is unknown in the following
experiments. We will therefore use adaptive filters. Furthermore, we assume that the
transmitter sends a known training sequence of length TrainingLength and then the
data sequence of length SequenceLength = 5000 symbols.

14. Complete the script ComputeLMSFilter.m with the LMS learning rule for the filter
gk[.] found in question 5. Note that the step size parameter β is called betaT in the
Matlab code.

15. Choose a training sequence of length (TrainingLength) 2000, set the step size pa-
rameter β = 0.005 (LearningBeta). The SNR should be 15 dB and the equalization
filter should have a length of 20. To find out how well the LMS algorithm has con-
verged, create a plot showing the evolution over time of the last 3 filter coefficients.11

Tip: Again, the filter coefficients are calculated before the simulation runs and stored
in s Settings.

16. Using the same setting as in the previous point, compare the learned filter coefficients
g2000[.] with those of the Wiener filter and zero-forcing filter. Can you tell if the
learned filter converges to one of the known filters? To which filter does it converge?

11The function from ComputeLMSFilter.m returns not only the final value of the filter coefficients but
also the intermediate values. Therefore, the filter is stored in Matlab as a two-dimensional array. For
example, the filter coefficient gk[n] can be found in row k and column n of the two-dimensional return
value.
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17. Choose 2 as the length for the adaptive filter and compute the filters with differ-
ent values for β. Call the function plotErrorSurface12 with one of the returned
s Settings variable. This function plots the error surface as a function of the two
filter coefficients. On the surface, the iteration steps of the LMS are also shown as a
path. Depending on the value of β and SNR, the LMS converges very fast near the
minimum of the surface. For small SNR and/or large β, the path may not even go
towards the minimum anymore.

18. Compare the error rates of the Wiener filter, zero-forcing and the LMS algorithm.
Play with the filter length and the length of the training sequence for the LMS. How
long must the training sequence be for the LMS to have lower error rates than the
zero-forcing filter for the same SNR and filter length?

3.2.1 LMS Tuning and Adaptive DFE

To improve the error rate of the LMS algorithm without changing the length of the training
sequence, we can extend the learning rule. We want to use the estimated symbols Ŝ[.]
as a reference signal after the training phase and thus train the filter also during normal
operation. Since errors can also occur during this process, the step size parameters for
this learning rule (RunningBeta field in s Settings) should be 5− 10 times smaller than
that of the training phase.

19. Put the new learning rule for the operational phase in ComputeLMSFilter.m. Note
that there are now two step-size parameters: betaT for the step size during the
training phase and betaR for the step size during normal operation. Compare the
error rates with the previous LMS. Does the new algorithm need fewer training
symbols?

Finally, examine the error rate of the adaptive DFE from section 2.4.1. In this case,
there is also a training phase. However, it differs from the training phase of the LMS
because no reference signals are available.

20. Simulate the error rate for the adaptive DFE for different length training periods
and compare it with that of the non-adaptive DFE.

4 Summary

Three widely used equalization methods (zero-forcing, Wiener filter, and DFE) were intro-
duced and tested on a practical communication model. The second part applied adaptive
methods (namely the LMS algorithm) to the channel inversion problem and the DFE.
The experiments show that good inversion requires some delay, depending on the channel.
Furthermore, inverting a distortion is usually not the most optimal method, as the com-
parisons with the Wiener filter and the DFE show. Adaptive methods can be used if the
channel is unknown to the receiver but often need a certain number of training symbols. It
was briefly shown how, by clever choice of alternative reference signals, one can sometimes
even dispense with reference symbols altogether.

Congratulations! You have worked through all experiments!

12Use doc plotErrorSurface to know how to see a short documentation.
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Appendix

The simulation environment consists of a loop that performs the steps listed below for each
SNR value in the SNRValuesToSimulate times NumberOfSimulationRuns. The following
steps are performed in this order:

simulate.m Runs the simulation specified in the argument s Settings. A simulation
always consists of the three same steps:

1. GenerateRandSignal.m Generates a random symbol sequence of a given
length (s Settings.SequenceLength) from the symbols in the alphabet vec-
tor s Settings.InputAlphabet. As in figure 1, this sequence is distorted by a
channel defined in s Settings.Channel (in this experiment the channel from
equation (1)). Finally, noise is added to the channel output13.

2. EstimateInputSignal.m This function corresponds to the equalization block
in figure 1. As return values, besides the variable s Settings, the estimated
input symbols Ŝ[.] are calculated. In the beginning, the coefficients of the
equalization filter are calculated. The used equalization method is read from
the str EstimationAlgorithm field according to the table 3.

3. ComputeErrors.m Here the error rate is computed by comparing the input
sequence S[.] with the estimates Ŝ[.].

13An important parameter of this function is the field Seed in s Settings. Thanks to this number it
can be determined which random sequences will be generated. In turn, it can be guaranteed that the
simulation results are reproducible
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