
Signal and Information
Processing Laboratory

Institut für Signal- und
Informationsverarbeitung

Fachpraktikum Signalverarbeitung

SV2: Digital Filters

1 Introduction

A discrete-time (“digital”) signal x[k] is defined only at time points k ∈ Z. For instance, an
audio file on the computer is a discrete-time signal. Often, such a signal is used to describe
a continuous-time signal x(t) (z ∈ R). In this case, a sampling rate fs or a sampling
interval Ts = 1/fs is defined.

The z-transform of a discrete-time signal x[k] is defined for z ∈ C as

X(z) =
∞∑

k=−∞
x[k]z−k. (1)

The spectrum (the frequency response) of x[k] is X(eiΩ), i.e., the z-transform evaluated
on the unit circle, where the digital frequency Ω corresponds to the argument of z and is
usually considered from −π to π, being 2π-periodic. The corresponding continuous-time
frequency is f = Ωfs/2π.

In these experiments, discrete-time signals are manipulated with linear filters and the
sampling rate is converted.

2 Linear Filters

A linear filter processes an input signal x[k] to an output signal y[k], by forming a linear
combination of past input values and output values:

y[k] = a0x[k] + a1x[k − 1] + a2x[k − 2] + · · ·+ aNx[k −N]

+b1y[k − 1] + b2y[k − 2] + · · ·+ bMy[k −M]. (2)

An infinite impulse response (IIR) filter has at least one coefficient bm 6= 0, whereas a finite
impulse response (FIR) filter has all coefficients bm = 0. The order of a filter is defined
as the largest of the numbers N and M . The FIR filter can be defined by the impulse
response1 h[k], since its impulse response has just the coefficient an = h[n]. Note: this
impulse response has duration L = N + 1.

For IIR and FIR filters, the z-transformed impulse responseH(z) is given by the transfer
function and has the general form

H(z) =
Y (z)

X(z)
=
a0 + a1 z

−1 + a2 z
−2 + . . .+ aN z−N

1 + b1 z−1 + b2 z−2 + . . .+ bM z−M
. (3)

In these experiments, we often consider the amplitude response
∣∣H(eiΩ)

∣∣ of a filter.
1The impulse response is the output signal for the input signal x[k] = (1, 0, 0, ...).

1

The coefficients an and bn can thus be used directly in the filtering and at the same
time describe through H(z) the transfer function and thus the frequency response H(eiΩ)
of the filter.

3 Filter Design

3.1 FIR Filters

We consider the design of frequency selective FIR filters. We present the method for
lowpass filters. The design of other frequency selective FIR filters is similar.

An ideal lowpass filter is defined by its frequency response

H(eiΩ) =

{
1, |Ω| < Ωc,

0, Ωc ≤ |Ω| ≤ π.
(4)

With the inversion formation (cf. (1.183) in the DSSP lecture notes), we obtain

h[k] =
sin(Ωck)

πk
=

Ωc

π
sinc

(
Ωc

π
k

)
. (5)

The resulting filter is neither stable nor causal. An obvious attempt to turn it into a
practical filter is to truncate it, by multiplying (5) with a window function

w[k] =

{
1 |k| ≤ L/2
0 |k| > L/2

(6)

This results in a filter that no longer follows the ideal frequency response of (4) but
rather presents a smooth transition between stopband and passband as well as unevenness
in the frequency response in these ranges.

Many other window functions have been investigated and used: the Hann window, the
Hamming window, the Kaiser window, the Blackman window, the Lanczos window, etc.,
all of which are better than (6).

To make the so modified impulse response causal, it is shifted by L/2 time steps:
ak = h[k − L/2]w[k − L/2]. The resulting delay of L/2 time steps is accepted.

3.2 IIR Filters

Discrete-time IIR filters are often designed in two steps:

1. Design a suitable continuous-time filter.

2. Transform the continuous-time filter into a discrete-time filter.

The classical continuous-time filters include the Butterworth filter, the Chebyshev filter,
the elliptic filter, and the Bessel filter.

4 Conversion of the Sampling Rate

A (discrete-time) signal x[k] with sampling rate fs1 = 1/Ts1 is to be converted into a
signal y[k] with sampling rate fs2 = 1/Ts1 (6= f1). This corresponds to a resampling of the
(continuous-time) signal x(t) on the sampling grid kTs2.

For a rational factor fs2
fs1

= n
m (n,m ∈ N) the system of Figure 1 can be applied. It

consists of an interpolation block, a low-pass filter and a decimation block.

2

↑ n h[.] ↓ m

Figure 1: Sampling-rate conversion system

-pi 0 pi
Omega

X

U

H

V

Y

Omega

Omega

Omega

-pi 0 pi

-pi 0 pi

-pi 0 pi

k

k

k

k

x

u

v

y

Figure 2: Signal and amplitude response during a sampling rate conversion with n = 2
and m = 3

↑ n In the interpolation block, n−1 zeros are inserted between two values x[k] and x[k+1]

(for each k). The sampling rate is thus increased to fs(up) = nfs1.

u[k] =

{
x[k/n] k/n ∈ Z
0 k/n /∈ Z

(7)

In the frequency domain, this compresses the spectrum along the frequency axis by a
factor n (from [−π, π] to [−π/n, π/n]) with n− 1 “copies”. As an example for n = 2
compare the amplitude responses |X(eiΩ)| and |U(eiΩ)| in Figure 2.

↓ m The decimation block picks every m-th value from v[k] and ignores the values in
between. The sampling rate is thus lowered to fs2 = fs(up)/m.

y[k] = v[mk] (8)

This results in a stretching by a factorm in the frequency domain (from [−π/m, π/m]
to [−π, π]). Compare |V (eiΩ)| and |Y (eiΩ)| in Figure 2 for m = 3.

h[k] The low pass filter performs two tasks simultaneously:

3

– As interpolation filter it suppresses in U(eiΩ) the unwanted copies. Thus, the
original spectrum is theoretically completely preserved.

– In U(eiΩ) the signal must be limited to the frequency range −π/m . . . π/m.
Otherwise, during decimation, signal components outside this interval will be
stretched beyond π (below −π). Because every digital spectrum is periodic,
these parts are “folded back” into the spectrum, so to speak. This effect is
called aliasing and the filter h[k] therefore also acts as an antialiasing filter. As
shown in Figure 2 it is possible that the original shape of the spectrum is not
preserved.

For the combined interpolation and antialiasing filter h[k] to meet both requirements,
the cutoff frequency is set to

Ωc = min{π/n, π/m}. (9)

References

H.-A. Loeliger, Discrete-time and Statistical Signal Processing, Chapters 1 and 2, 2021.
J. G. Proakis und D. G. Manolakis, Digital Signal Processing, Prentice Hall, 1996.

5 Experiments

Inputs on the system command line (shell) are marked with “>” whereas input on the
Matlab command line is marked with “>>”.

Copy /home/isistaff/glf/fachprak_isi/SV2 in your home directory:
> cp -irL /home/isistaff/glf/fachprak_isi/SV2 ./
> cd SV2/matlab
> matlab &

The experiments consist of completing Matlab script files in the folder SV3/matlab and
playing with the “Filter Analyse- und Designtool” (fdatool) in Matlab. For illustration,
we use audio signals2 which are all stored as .wav files in the folder SV2/matlab/signals.

5.1 Linear Filters

1. Listen to the noise signal sig_original.wav. It lasts one second and is sampled at
44.1 kHz.
> play signals/sig_original.wav

2. In the file fir_window_lp.m, (5) is used to obtain the impulse response of a FIR
lowpass filter. Generate the impulse response h and the impulse response h_w mul-
tiplied by a Blackman window function for a freely selected filter length and cutoff
frequency
>> f_s = 44100; L = 43; f_c = 8000; window = blackman(L);
>> h = fir_window_lp(f_s, L, f_c);
>> h_w = fir_window_lp(f_s, L, f_c, window);

2The best way to output the audio files is to write a short Matlab function (play.m):
function play(audiofile):
[y, fs] = audioread(audiofile);
sound(y, fs)
end

4

Because these are FIR filters, in equation (2) all coefficients bm = 0 and the Matlab
vector h and h_w contain coefficients an.3

3. Use Matlab’s own “Filter Visualization Tool” fvtool to display the amplitude re-
sponse of both filters:4.
>> fvtool(h, 1, h_w, 1);
|Hw(eiΩ)| (red curve) differs from |H(eiΩ)| (blue curve) in the following features: the
transition between passband and stopband is less sharp, but the stopband attenua-
tion is larger and the ripple in the passband is smaller.

4. Look at the impulse response and the step response. Click on the corresponding
toolbar buttons in the fvtool window. Here you can see that hw[k] (red) has a
smoother transient response than h[k] (blue).

The method of Section 3 can also be used to design high-pass, band-pass and band-stop
filters. The corresponding functions are implemented in fir_window_hp.m, fir_window_bp.m
and fir_window_bs.m.

5. In fir_window_bs.m, complete the implementation with the following equation. This
can be derived analogously to equation (5).

h[k] = sinc(k)− Ωc1

π
sinc

(
Ωc1

π
k

)
− Ωc2

π
sinc

(
Ωc2

π
k

)
(10)

6. Calculate the impulse response of a bandstop filter (e.g.: >> f_c = [5000 15000];)
analog to the lowpass filter example in point 2 and plot the amplitude response with
the fvtool.

7. The Matlab function filter computes equation (2), so it filters a signal. Look at
filter_signal.m and run it with
>> filter_signal()
to get four filtered versions of sig_original.wav.

8. Listen to the generated wave files. If you want, you can modify filter_signal.m so
that all filters use a rectangular window (delete the argument window in the function
calls fir_window_...) and the signals are stored under a different name. Can you
hear a difference?

In the file noisy.wav a useful signal is perturbed by a narrowband noise signal (2.2 kHz
to 2.8 kHz). We try to remove the latter with a bandstop filter, but of course, the useful
signal is changed as well.

9. Listen to the useful signal sound.wav, the noise signal noise.wav and the addition
of both noisy.wav.
> play signals/sound.wav signals/noise.wav signals/noisy.wav

10. Complete the corresponding marked section in denoise_signal.m so that a bandstop
filter is applied using fir_window_bs.

3In the Matlab documentation, the coefficients in the numerator of equation (3) are called bn and those
in the denominator an.

4In the fvtool window, the sampling rate can be set in the menu Analysis -> Sampling Frequency.
This will cause correct labeling of the frequency axis

5

Parameters Values

Sampling frequency 44.1 kHz
Lower passband 0 kHz to 1.5 kHz

Stop band 2.2 kHz to 2.8 kHz
Upper passband 3.5 kHz to 22.05 kHz

Maximum ripple in passband 0.8 dB
Stop band attenuation 80 dB

Table 1: Bandstop filters specifications

11. Now execute the script:
> denoise_signal();
(possibly for different filter lengths L) and listen to the result:
> play signals/denoised_fir_window.wav

Matlab supports many other filter design methods, including IIR filters. Most of them
can be done with the fdatool. fvtool is integrated with fdatool.

We now use the exact specification in Table 1 to design an elliptic IIR filter and an
equiripple FIR filter. In particular, we let Matlab compute the required filter order.

12. Start the tool with fdatool.

13. Select “Response Type” > “Bandstop” and “Design Method” > “FIR Equiripple”

14. Enter the parameters from Table 1 into the “Frequency Specifications” and “Magni-
tude Specifications” fields.5

15. Click on the “Design Filter” button. The calculated filter order is displayed in the
upper left corner.

16. Change the “Design Method” to “IIR Elliptic” and click again on “Design Filter”.
Note the filter order.

At this point, you could export a filter.6. Likewise, it is possible to generate a .m file
to view the Matlab functions called. The design of these two filters is also implemented in
denoise_signal.m.

17. Close the fdatool window. The three filters are designed in denoise_signal.m and
loaded into the fvtool with: >> denoise_signal(1); The fvtool window shows
three plots.

– Blue: FIR filter by window method with self-selected filter order.

– Yellow: FIR equiripple filter.

– Red: IIR elliptic filter.

18. Listen to the resulting files.

– denoised_fir_window.wav

– denoised_fir_equirip.wav
5The lower end of the lower passband and the upper end of the upper passband do not need to be

specified, as these values are automatically 0 and the Nyquist frequency fs/2.
6If you want to do this, first select the menu “Edit > Convert to Single Section” for the elliptic filter to

get the filter coefficients according to equation (3)

6

– denoised_iir_elliptic.wav

The following observations and remarks can be made:

• The useful signal has undergone audible changes due to filtering. This signal sepa-
ration is not optimal but easy to perform.

• The IIR filter requires a much smaller filter order than the FIR filters to meet the
specification in Table 1.

• The phase response of both FIR filters is linear. Thus, the group delay is constant
for these two filters. However, this property is hardly audible.

5.2 Conversion of Sampling Rate with Rational Factor

19. Listen to convert.wav. It contains a speech signal sampled at fs1 = 16 kHz. We
now want to convert the sampling rate to fs2 = 6 kHz.

20. Calculate the corresponding truncated ratio n/m and perform the conversion using
the script resample_signal.m:
>> resample_signal(’./signals/convert.wav’, n, m);
Listen to the result convert6000_wrong.wav.

The noise you hear is due to interpolation and decimation artifacts. Since the conversion
works without interpolation and antialiasing filters, the spectrum is distorted as described
in Section 4. This is of course audible in the time signal.

21. Calculate the cutoff frequency (fc = Ωcfs(up)/2π) of the required lowpass filter for the
example of point 20. (Note: the filter operates at a sampling rate of fs(up) = nfs1.)

22. Implement the lowpass filter in resample_signal.m at the given position in the file.
Use either fir_window_lp.m with self-selected order or implement an equiripple FIR
filter (or an elliptic IIR filter) as in denoise_signal.m.

23. Now perform the conversion again. The additional fourth argument (1) turns filtering
on:
>> resample_signal(’./signals/convert.wav’, n, m, 1);
Listen to the result convert6000_right.wav.7

The speech signal has changed due to the lowpass filtering, but the aliasing noise is
hardly audible anymore. The lower the order of the filter is selected, the more audible this
lowpass filtering is. It is not completely inaudible even with a high filter order, since the
signal has frequency components above 6 kHz.

If the sampling frequency is increased, e.g., to 24 kHz, then – with a sufficiently high
filter order – the speech signal will hardly experience a perceptible change. Try it out if
you like.

Finally, we look at the amplitude responses for the sample conversion of the signal
triang.wav. Since this is a stationary signal, we can estimate the spectrum with the
discrete Fourier transform.

7Remaining noise can be explained by the non-ideal character of the filter, quantization effects, or
re-sampling rate conversion in the operating system audio output.

7

24. Load the signal and plot the amplitude response:8

>> [sig, f_s] = audioread(’./signals/triang.wav’);
>> spec = fftshift(fft(sig));
>> mag_spec = abs(spec); f = linspace(-f_s/2, f_s/2, length(sig));
>> plot(f, mag_spec);

25. In resample_signal.m the following amplitude responses are plotted for positive
frequencies f if an additional fifth argument (1) is passed:

– Amplitude of the original signal |X(f)|
– Amplitudes of the interpolated signal |U(f)| and filter |H(f)|
– Amplitude of the decimated signal |Y (f)|

26. Now execute resample_signal.m with the values for n and m calculated in point 20,
first without filter:
>> resample_signal(’./signals/triang.wav’, n, m, 0, 1);
Look at the plots and now switch the filter to them:
>> resample_signal(’./signals/triang.wav’, n, m, 1, 1);
Listen to the corresponding signals.

27. Now select n = 3 and m = 2 to increase the sampling rate to 24 kHz. Run
resample_signal again (you may have to adjust the cutoff frequency fc of the filter),
with and without a filter. Look at the spectra and listen to the result.

Congratulations! You made it to the end. If there is still time left, play with the used
Matlab functions and the audio signals.

8Often the amplitude response is converted to decibels. Because of the “beautiful” triangular shape, we
omit this step here.

8

