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1 Introduction

In this experiment, an active filter is constructed and measured. Consisting of resistors,
capacitors, and an amplifier, it belongs to the class of active RC filters. Properties such as
the frequency and time domains’ behavior are investigated using a second-order low-pass
filter. The experimental circuits are built on a plug-in board with discrete components.

2 Linear filters

In most cases, electrical filters are used to attenuate specific frequency components of a sig-
nal. These frequency-selective filters include, for example, low-pass, high-pass, band-pass,
and band-stop. All these filters also change the phase response of the signal. However, this
is less relevant for many applications than the frequency-dependent change in amplitude.
On the other hand, some filters (e.g., all-pass filters) only influence the phase of the output
signal.

2.1 Transfer function

The continuous-time transfer function of a linear filter describes the relationship between
input and output signals:

T (s) =
VOUT

VIN
(1)

T (s) is a rational function of the complex frequency s = σ + jω. The numerator N(s)
and denominator D(s) of T (s) are complex polynomials (2). If they are decomposed into
linear factors, the poles pi and zeros zi of the transfer function (3) are obtained.

T (s) =
N(s)

D(s)
=

bmsm + bm−1s
m−1 + . . .+ b1s+ b0

ansn + an−1sn−1 + . . .+ a1s+ a0
(2)

T (s) = k · (s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)
(3)

Evaluating T (s) along the imaginary axis (s = jω), we obtain the frequency response
T (jω), which can be decomposed into the amplitude response |T (jω)| and the phase re-
sponse ϕ(ω):

T (jω) = |T (jω)| · ejϕ(ω). (4)
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The group delay τg(ω) is a measure of the change in phase response:

τg(ω) = −dϕ(ω)

dω
. (5)

Using the transfer function of a second-order low-pass filter, let’s take a closer look at
the meaning of the poles. Suppose T (s) has a complex conjugates poles pair p1 = p =
−σp + jω̃p and p2 = p∗ = −σp − jω̃p. T (s) is then

T (s) = k ·
ω2
p

s2 + 2σps+ ω2
p

= k ·
ω2
p

s2 +
ωp

qp
s+ ω2

p

. (6)

The values σp and ω̃p are needed for the representation of the poles in the complex s-plane.
However, for filter design, the values k (gain at ω = 0), ωp (pole frequency), and qp (pole
quality) are more useful since these quantities are physically measurable. The phase shift
at ω = ωp is exactly 90◦; the amplitude response has a value of kqp at this point. Thus, the
pole quality qp measures the exaggeration of the amplitude response. These relationships
are illustrated in Figure 1.
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Figure 1: Pole/zero diagram of a low-pass filter with one complex conjugates pole pair
with the corresponding amplitude and phase response.

3 Filter types

Ideally, the amplitude response of a filter is rectangular or step-shaped. In addition, a
linear phase response is often desired. In practice, however, these two characteristics can
only be realized approximately. The characteristics of five popular filter types are described
below. Figure 2 shows the amplitude responses of various second-order low-pass filters.

• Bessel filter: Smooth amplitude response with low slope (flatter than Butterworth
filter). Hardly any overshoot of the step response. The phase response is closest
to the linear ideal; the group delay in the passband is largely constant. Also called
linear phase filter.

• Butterworth filter: Linear amplitude response in the passband ("maximally flat"),
smooth amplitude response in the entire frequency band. Represents a compromise
between the steepness of the amplitude response in the stopband and linear phase
response.
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Tschebyscheff Filter (Typ 1)
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Figure 2: Amplitude responses of five different filter types. All are second-order low-pass
filters
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• Chebyshev filter (type 1): Wavy amplitude response in the passband (passband
ripple), steep bend at the cutoff frequency. Wavy phase response. Also called equirip-
ple filter.

• Chebyshev filter (type 2): Wavy amplitude response in stopband ripple, steep
bend at the cutoff frequency. Wavy phase response. Also called inverse Chebyshev
filter, inverse equiripple filter.

• Elliptic filters: Highest slope of amplitude response for a given filter order. Wavy
amplitude response in passband and stopband. Strongly wavy phase response. Also
called Chebyshev-Cauer filter.

4 Active RC filters

Originally, electrical filters were constructed exclusively from coils and capacitors (LC
filters). Theoretically, filters with arbitrarily high qualities can be realized since these
elements ideally work without loss. Filters can also be built from resistors and capacitors.
However, the quality is limited due to the losses in the resistors. Adding an active element,
such as an operational amplifier, can compensate for these losses. In this way, filters with
high qualities can be realized.

4.1 Second-order RC filters

There are many ways to build filters from resistors, capacitors, and op-amps. The circuits
used in this experiment are called Sallen-Key filters or VCVS 1 filters. They have a simple
positive feedback path (Figure 3). This arrangement can be used to implement low-pass
and high-pass filters. The circuit of the high-pass filter results from the low-pass filter
shown in figure 3, if capacitors are used instead of resistors and vice versa (for all elements
except R5 and R6). Figure 4 shows the high-pass filter derived in this way.
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Figure 3: Active second-order low-pass filter (VCVS filter) with simple positive feedback.

4.2 Filter design

The circuits shown can be used to build filters with Bessel, Butterworth, or Chebyshev
characteristics, among others; inverse Chebyshev and elliptic filters cannot be realized
with these circuits because they need additional zeros. The following equations (design
equations) are used to dimension the circuit elements in Figure 3 and 4:

1The operational amplifier forms with the resistors R5 and R6 a Voltage Controlled Voltage Source
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Figure 4: Second order active RC high-pass filter. Note the duality to the low-pass filter
in Figure 3.

low-pass high-pass

T (s) = k ·
ω2
p

s2 + (ωp/qp)s+ ω2
p

T (s) = k · s2

s2 + (ωp/qp)s+ ω2
p

k = 1 +
R6

R5
k = 1 +

R6

R5

ω2
p =

1

R1C2R3C4
ω2
p =

1

C1R2C3R4

qp =

√
R3C2/(R1C4)

1 +R3/R1 −R6C2/(R5C4)
qp =

√
R4C1/(R2C3)

1 + C1/C3 −R4R6/(R2R5)

4.3 Filter parameters tuning

The component values are subject to considerable tolerances in discretely constructed and
integrated circuits. Therefore it is often necessary to adjust the filter parameters after
production (tuning). In the circuits shown, the values of ωp and qp can be adjusted by
changing resistor values using the following table:

Parameter Low-pass High-pass
ωp R3 R2 or R4

qp R6 R6

In each case, ωp is set first and then qp is set.

5 Experiments

1. Set up your workstation, connect the equipment and familiarize yourself with the
instruments. Please contact the assistant if you have any questions. (Hint: Beware
of floating grounds!)

2. We build a second-order active Butterworth low-pass filter (see figure 3) with DC
gain of 6 dB and cutoff frequency fg = 1000Hz. This gives the following values for
the filter parameters: k = 2, ωp = 2π · 1000 s−1 and qp =

√
2/2. Now the values of

the resistors and capacitors must be determined. With R6 = 10 kΩ, C2 = 10nF and
C4 = 15nF,
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3. Build the filter circuit on the breadboard. Practical advice: use the schematic (figure
3) as a guide for the placement of the components, this increases the clarity. The
pinout of the operational amplifier TL072 is shown in figure 5. Use a supply voltage
of ±15V.

4. Measure the frequency response. Try to determine fg and qp as accurately as possible.
Note: for f = fg = fp, the phase rotation is exactly 90◦. Do the measurement results
agree with the expected frequency response?

5. Insert potentiometers instead of resistors R3 and R6 so that you can adjust the values
of ωp and qp. Observe the frequency response in different settings.

6. Investigate how the circuit behaves in the time domain: Look at the step response
at different values of qp (R6). Apply a square wave signal to the input.

7. The circuit can be easily transformed into a high-pass filter by replacing the resistors
with capacitors and vice versa (R5 and R6 are excluded). Figure 4 shows the circuit.
Measure the frequency response of the high-pass filter and vary ωp and qp.
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Figure 5: Pin assignment of the TL072 operational amplifier (top view).

6 Material

• Function generator, oscilloscope, multimeter.

• Accessories: BNC cable, probes, lab cable, tool, wire reel.

• Plug-in board, components: resistors 7.5 kΩ, 2x 10 kΩ, 22 kΩ; trimmers 2x 20 kΩ;
capacitors 10 nF, 15 nF; operational amplifier TL072.

6


