stereo recording

intensity stereophony time of arrival stereophon mixed stereophony demo spacial mapping

microphone positioning

- demo microphon positioning
- surround soun recordings
- recording quality
- back

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics II: recording techniques

Reto Pieren 2024

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

stereo recording

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quali
- back

Stereo recording: Patent Blumlein, 1931

- ▶ in a real listening experience in a room, different contributions are perceived with directional information → allows for a separation of direct sound and reflections
- ▶ thus a suitable recording method has to provide directional information
- ▶ two channels are needed to offer different signals to the two ears

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

Stereo recording: principle

- evaluation of directional information by the ear:
 - level differences between left and right ear drum
 - time of arrival differences between left and right ear drum
- \blacktriangleright \rightarrow frequency dependency?

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording qualit
- back

Stereo recording: principle

stereo recording

- intensity stereophony time of arrival stereophon mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording qualit
- back

Stereo recording: principle

directional information due to level differences at the ear drums

stereo recording

- intensity stereophony time of arrival stereophor mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording qualit
- back

Stereo recording: principle

directional information due to time of arrival differences at the ear drums

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

Stereo recording: principle

- direct stereo signal recording:
 - two suitably mounted microphones:
 - intensity stereophony
 - time of arrival stereophony
 - mixed stereophony
- *indirect* stereo signal recording:
 - signals of several distributed microphones are summed up to left and right stereo channels

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

Stereo recording: principle

- direct stereo signal recording:
 - two suitably mounted microphones:
 - intensity stereophony
 - time of arrival stereophony
 - mixed stereophony
- ► *indirect* stereo signal recording:
 - signals of several distributed microphones are summed up to left and right stereo channels

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphon positioning
- surround soun recordings
- recording quality
- back

intensity stereophony

stereo recording

intensity stereophony

time of arrival stereophony mixed stereophony

microphone positioning

demo microphor positioning

surround soun recordings

recording quality

back

XY arrangement

stereo recording

intensity stereophony

- time of arrival stereophor mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

XY arrangement

- two cardioid capsules
- orientation: 65° each, relative to frontal direction (opening angle: 130°)
- capsules mounted very close to each other

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone
- positioning
- demo micropho positioning
- surround soun recordings
- recording qualit
- back

XY arrangement

correct

wrong

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

XY arrangement

advantage:

- substantial suppression of rear-side sources
- disadvantage:
 - \blacktriangleright frontal direction does not correspond to microphone axis \rightarrow non ideal "off-axis" frequency response

stereo recording

intensity stereophony

time of arrival stereophony mixed stereophony

microphone positioning

demo microphor positioning

surround soun recordings

recording quality

back

MS arrangement

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

MS arrangement

- one omni (or a cardioid) and one figure of eight microphone
 - ▶ omni → Mid signal
 - figure of eight \rightarrow *S*ide signal
- capsules very close to each other

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone
- demo microphon positioning
- surround sound recordings
- recording quality
- back

MS arrangement

stereo signal is obtained as:

• left = M +
$$\beta \cdot S$$

• right = M -
$$\beta \cdot S$$

 $\blacktriangleright \beta$ adjusts the opening angle

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

MS arrangement

advantages:

- opening angle can be adjusted electronically $(\rightarrow \beta)$
- with high quality storage media, M and S can be recorded for subsequent formation of *left* and *right* (opening angle remains adjustable)

disadvantage:

high sensitivity for rear-side sources

stereo recording

intensity stereophony

time of arrival stereophony mixed stereophony

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

Blumlein arrangement

stereo recording

intensity stereophony

- time of arrival stereophon mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

Blumlein arrangement

- two figure of eight microphones
- ▶ 90° differing orientation
- capsules very close to each other

stereo recording

intensity stereophony

- time of arrival stereophony mixed stereophony
- microphone
- positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

Blumlein arrangement

- advantages: -
- disadvantages:
 - high sensitivity for rear-side sources
 - Iow frequency weakness of figure of eight microphones

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

time of arrival stereophony

stereo recording

intensity stereophony time of arrival stereophony

.

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

AB arrangement

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone
- demo microphone positioning
- surround sound recordings
- recording quality
- back

AB arrangement

- two omnis
- laterally separated by typically 20 cm

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

AB arrangement

- increased lateral separation for larger distances to the source
- often used for recordings of classical music in churches and concert halls
- advantage:
 - omnidirectional microphones with excellent properties can be used
- disadvantage:
 - high sensitivity for rear-side sources

stereo recording

intensity stereophony time of arrival stereophon

mixed stereophony

demo spacial mapping

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

mixed stereophony

stereo recording

intensity stereophony time of arrival stereophon

mixed stereophony

demo spacial mapping

microphone positioning

demo microphor positioning

surround soun recordings

recording quality

back

ORTF arrangement

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

ORTF arrangement

- two cardioid microphones
- ▶ orientation: 55° each, relative to frontal direction (opening angle: 110°)
- laterally separated by 17 cm

stereo recording

- intensity stereophony time of arrival stereophony
- mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

ORTF arrangement

- advantage:
 - phantom sources are distributed homogeneously on stereo basis
- disadvantage:
 - ▶ frontal direction does not correspond to microphone axis \rightarrow non ideal "off-axis" frequency response

stereo recording

intensity stereophony time of arrival stereophon

mixed stereophony

demo spacial mapping

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

- two omnis
- laterally separated by 18 cm
- separating disc of 30 cm in diameter in between

stereo recording

intensity stereophony time of arrival stereophor

mixed stereophony

demo spacial mapping

microphone positioning

demo microphon positioning

surround sound recordings

recording quality

back

stereo recording

- intensity stereophony time of arrival stereophony
- mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

- advantage:
 - usage of omnidirectional microphones with excellent properties
- disadvantages:
 - problem of comb filter in case of insufficient absorption of the disc
 - high sensitivity for rear-side sources

stereo recording

intensity stereophony time of arrival stereophon

mixed stereophony

demo spacial mapping

microphone positioning

demo microphon positioning

surround soun recordings

recording quality

back

Binaural stereophony

Binaural stereophony

- two omnis
- fy stereophony **b** mounted at pos
- mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

mounted at position of ear drums in an artificial head

tereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

Binaural stereophony

- correct frequency response distortions due to head, outer ear and ear canal (head related transfer function)
- \blacktriangleright suited for play-back by headphones, optimal if headphones are compensated for transfer function membrane \rightarrow ear drum
- excellent reproduction of spacial impression
- however, front-back localization is not always perfect (visual information is missing, no information from head rotations)
- caution: can't be used for reproduction by loudspeakers (head related transfer function occurs twice)
- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- correct frequency response distortions due to head, outer ear and ear canal (head related transfer function)
- ► suited for play-back by headphones, optimal if headphones are compensated for transfer function membrane → ear drum
- excellent reproduction of spacial impression
- however, front-back localization is not always perfect (visual information is missing, no information from head rotations)
- caution: can't be used for reproduction by loudspeakers (head related transfer function occurs twice)

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- correct frequency response distortions due to head, outer ear and ear canal (head related transfer function)
- ► suited for play-back by headphones, optimal if headphones are compensated for transfer function membrane → ear drum
- excellent reproduction of spacial impression
- however, front-back localization is not always perfect (visual information is missing, no information from head rotations)
- caution: can't be used for reproduction by loudspeakers (head related transfer function occurs twice)

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- correct frequency response distortions due to head, outer ear and ear canal (head related transfer function)
- ▶ suited for play-back by headphones, optimal if headphones are compensated for transfer function membrane \rightarrow ear drum
- excellent reproduction of spacial impression
- however, front-back localization is not always perfect (visual information is missing, no information from head rotations)
- caution: can't be used for reproduction by loudspeakers (head related transfer function occurs twice)

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- correct frequency response distortions due to head, outer ear and ear canal (head related transfer function)
- ► suited for play-back by headphones, optimal if headphones are compensated for transfer function membrane → ear drum
- excellent reproduction of spacial impression
- however, front-back localization is not always perfect (visual information is missing, no information from head rotations)
- caution: can't be used for reproduction by loudspeakers (head related transfer function occurs twice)

stereo recording

intensity stereophony time of arrival stereophony

mixed stereophony

demo spacial mapping

microphone positioning

demo microphon positioning

surround sound recordings

recording quality

back

Binaural stereophony: localization test (JAES, vol. 47, p.83, 1999)

experiment:

- \blacktriangleright listener is sitting in a highly damped room, RT \approx 0.3 sec
- 19 visible loudspeakers arranged around listener
- \blacktriangleright task: listener has to identify active speaker \rightarrow localization accuracy

procedure:

phase 1: reproduction by real speakers

phase 2: binaural recording with artificial head and reproduction by headphones

stereo recording

intensity stereophony time of arrival stereophony

mixed stereophony

demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

Binaural stereophony: localization test (JAES, vol. 47, p.83, 1999)

experiment:

- listener is sitting in a highly damped room, $RT \approx 0.3$ sec
- 19 visible loudspeakers arranged around listener
- \blacktriangleright task: listener has to identify active speaker \rightarrow localization accuracy

procedure:

- phase 1: reproduction by real speakers
- phase 2: binaural recording with artificial head and reproduction by headphones

stereo recording

intensity stereophony time of arrival stereophon

mixed stereophony

demo spacial mapping

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording quality
- back

Binaural stereophony: localization test results for loudspeaker reproduction:

stereo recording

intensity stereophony time of arrival stereophony

mixed stereophony

demo spacial mapping

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording qualit
- back

Binaural stereophony: localization test results for binaural recording and headphone reproduction:

intensity stereophony time of arrival stereophony mixed stereophony

recording technique

demo spacial mapping

microphone positioning

- demo micropho positioning
- surround sound recordings
- recording quality
- back

sound demo: spacial mapping of various stereo microphones

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony

demo spacial mapping

microphone positioning

demo microphone positioning

surround soun recordings

recording qualit

back

demo: spacial mapping

(CD: Stereo Microphone Technique)

clicks radiated by one speaker after the other

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

Demo: spacial mapping

various stereo microphones:

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

Demo: spacial mapping

various stereo microphones:

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

microphone positioning

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

microphone positioning

- a recording aims at capturing:
 - the source signal
 - information about the room
- strategies:
 - stereo microphone pair
 - stereo microphone pair + room microphone
 - distributed microphones

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

microphone positioning

- a recording aims at capturing:
 - the source signal
 - information about the room
- strategies:
 - stereo microphone pair
 - stereo microphone pair + room microphone
 - distributed microphones

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

- identify optimal distance to source
- ► if distance is too small:
 - recording too dry
 extended source (orchestra) is mapped inhomogeneously
- ▶ if distance is too large:
 - recording too reverberant and too blurry
- ▶ optimal distance: strength direct sound ≈ strength diffuse sound
 ▶ → critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

stereo microphone pair

identify optimal distance to source

▶ if distance is too small:

- recording too dry
 extended source (orchestra) is manual
- ▶ if distance is too large:
 - recording too reverberant and too blurry
- ▶ optimal distance: strength direct sound ≈ strength diffuse sound
 ▶ → critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

- surround sound recordings
- recording quality

back

- identify optimal distance to source
- ▶ if distance is too small:
 - recording too dry
 - extended source (orchestra) is mapped inhomogeneously
- if distance is too large:
 - recording too reverberant and too blurry
- ▶ optimal distance: strength direct sound ≈ strength diffuse sound
 ▶ → critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

- surround sound recordings
- recording quality
- back

- identify optimal distance to source
- if distance is too small:
 - recording too dry
 - extended source (orchestra) is mapped inhomogeneously
- if distance is too large:
 - recording too reverberant and too blurry
- ▶ optimal distance: strength direct sound ≈ strength diffuse sound
 ▶ → critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

- surround sound recordings
- recording quality
- back

- identify optimal distance to source
- if distance is too small:
 - recording too dry
 - extended source (orchestra) is mapped inhomogeneously
- if distance is too large:
 - recording too reverberant and too blurry
- ▶ optimal distance: strength direct sound ≈ strength diffuse sound
 ▶ → critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

- surround sound recordings
- recording quality
- back

- identify optimal distance to source
- if distance is too small:
 - recording too dry
 - extended source (orchestra) is mapped inhomogeneously
- if distance is too large:
 - recording too reverberant and too blurry
- $\blacktriangleright\,$ optimal distance: strength direct sound \approx strength diffuse sound
 - \blacktriangleright \rightarrow critical distance
- caution: sources or microphones with pronounced directivity enlarge the critical distance

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphor positioning
- surround sound recordings
- recording qualit
- back

stereo microphone pair + room microphone

- stereo microphone pair mounted close to the source
- room microphone (omni) in the diffuse field
- balance between direct and diffuse sound adjustable during mixing

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial manning

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording qualit
- back

stereo microphone pair + room microphone

stereo microphone pair mounted close to the source

room microphone (omni) in the diffuse field

balance between direct and diffuse sound adjustable during mixing

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording qualit
- back

stereo microphone pair + room microphone

- stereo microphone pair mounted close to the source
- room microphone (omni) in the diffuse field
- balance between direct and diffuse sound adjustable during mixing

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording qualit
- back

stereo microphone pair + room microphone

- stereo microphone pair mounted close to the source
- ▶ room microphone (omni) in the diffuse field
- balance between direct and diffuse sound adjustable during mixing

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

- separate microphones for each instrument or group of instruments
- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - interferences between the signals of different microphones (large level differences between mics necessary)
 - ► early reflections at surfaces → comb-filter effects (solution: pressure zone microphones)

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

distributed microphones

separate microphones for each instrument or group of instruments

- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - Interferences between the signals of different microphones (large level differences between mics necessary)
 - ► early reflections at surfaces → comb-filter effects (solution: pressure zone microphones)

intensity stereophony time of arrival stereophony mixed stereophony demo spacial manning

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

- separate microphones for each instrument or group of instruments
- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - interferences between the signals of different microphones (large level differences between mics necessary)
 - ► early reflections at surfaces → comb-filter effects (solution: pressure zone microphones)

intensity stereophony time of arrival stereophony mixed stereophony demo spacial manning

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

- separate microphones for each instrument or group of instruments
- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - interferences between the signals of different microphones (large level differences between mics necessary)
 - ► early reflections at surfaces → comb-filter effects (solution: pressure zone microphones)

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

- demo microphone positioning
- surround sound recordings
- recording quality
- back

- separate microphones for each instrument or group of instruments
- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - interferences between the signals of different microphones (large level differences between mics necessary)
 - \blacktriangleright early reflections at surfaces \rightarrow comb-filter effects (solution: pressure zone microphones)

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

sound demo microphone arrangement and positioning

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

A B C

demo microphone arrangement and positioning

(CD: United Music of Marantz I) different microphone arrangements:

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

demo microphone positioning

(CD: United Music of Marantz I) different microphone arrangements:

A XY B Jecklin C distributed microphones

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

surround sound recordings

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

back

surround sound recordings

capabilities of stereo:

- generation of phantom sources within a listening angle of 60°
- good direct sound reproduction of the sources on stage

capabilities of surround:

- listening angle: 360°
- good direct sound reproduction of the sources on stage
- \blacktriangleright reproduction of rear lateral reflections \rightarrow more accurate room information

intensity stereophony time of arrival stereophony mixed stereophony

microphone positioning

demo microphone positioning

surround sound recordings

recording quality

surround sound recordings

capabilities of stereo:

- generation of phantom sources within a listening angle of 60°
- good direct sound reproduction of the sources on stage
- capabilities of surround:
 - listening angle: 360°
 - good direct sound reproduction of the sources on stage
 - \blacktriangleright reproduction of rear lateral reflections \rightarrow more accurate room information
stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone
- demo microphone positioning

surround sound recordings

- recording quality
- back

surround sound recordings: format

- most common format: 5.1 (developed for movie theatres)
 - 6 discrete channels:
 - Front Left
 - Front Right
 - Front Middle
 - Rear (Surround) Left
 - Rear (surround) Right
 - ► LFE (low frequency effects): 20...120 Hz

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone
- positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

surround sound recordings: perspectives

- direct/ambient
 - perspective of a listener in the audience area

- microphone arrangement:
 - front channels: stereo microphone pair
 - surround channels: more distant omnis or cardioids pointing to rear side

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- demo spacial mapping

microphone positioning

demo microphone positioning

surround sound recordings

- recording quality
- back

surround sound recordings: perspectives

- inside the band
 - musicians / conductor's perspective

- microphone arrangement:
 - front channels: distributed microphones
 - surround channels: distributed microphones for each group of instruments

stereo recording

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphor positioning
- surround soun recordings
- recording quality
- back

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings

recording quality

back

- ▶ guideline: EBU (*E*uropean *B*roadcasting *U*nion), Tech. 3286, 1997
- assessment categories:
 - Spatial impression

- Stereo impression
- Transparency
- Sound balance
- Timbre
- Freedom from noise and distortions

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone
- positioning demo microphone
- positioning
- surround sound recordings

recording quality

back

- **Spatial Impression** (reproduction of plausible environment):
 - homogeneity of spatial sound
 - reverberance
 - acoustical balance
 - apparent room size
 - depth perspective
 - sound color of reverberation
- sound example for criterion reverberance:
 - ► too dry
 - too reverberant
 - appropriate

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- stereo impression (reproduction of correct and plausible directions of the sources):
 - directional balance
 - stability
 - sound image width
 - location accuracy
- sound example for criterion sound image width:
 - too narrow
 - ► too wide
 - appropriate

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

- **transparency** (reproduction can be heard in all its details):
 - sound source definition
 - time definition
 - intelligibility
- **>** sound example for criterion *sound source definition*:
 - muddy
 - clear

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

- **sound balance** (all sources appear with correct loudness):
 - Ioudness balance
 - dynamic range
- sound example for criterion *loudness balance*:
 - trombone too weak
 - trombone too loud
 - trombone appropriate

- intensity stereophony time of arrival stereophony mixed stereophony
- microphone positioning
- demo microphone positioning
- surround sound recordings
- recording quality
- back

- **timbre** (correct reproduction of the characteristics of the sources):
 - sound colour
 - sound attack
- sound example for criterion sound attack:
 - attacks are not precise
 - precise attacks

- intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping
- microphone positioning
- demo microphon positioning
- surround sound recordings
- recording quality
- back

- freedom from noise and distortions (no audible noise components or distortions):
- sound example for criterion *noise*:
 - noise by audience

stereo recording

intensity stereophony time of arrival stereophony mixed stereophony demo spacial mapping

microphone positioning

- demo microphon positioning
- surround sound recordings
- recording quality
- back

eth-acoustics-2