electrostatio

principle of operatio equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics II: microphones

Reto Pieren 2024

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphonor

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Microphones: principles

microphone:

- \blacktriangleright conversion of an acoustic signal \rightarrow electrical signal
- how to do that?
- \blacktriangleright \rightarrow consider the manifestations of a sound wave

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

Microphones: principles

possibilities:

- \blacktriangleright sound \rightarrow movement of a membrane \rightarrow electrical signal
- \blacktriangleright sound \rightarrow cooling of heated wires \rightarrow measurement of wire temperature
- \blacktriangleright sound \rightarrow temperature fluctuations of the air \rightarrow measurement of air temperature
- ► sound → fluctuations of air density → measurement of air density (by optical methods)

electrostatic microphone

- principle of operation equivalent network power supply overview measuring microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

Microphones: membrane-based

characterization of membrane-based microphones:

membrane configuration

- membrane exposition to sound field
 - \rightarrow directivity

conversion principle

- conversion of membrane movement into an electrical signal:
 - electrodynamic
 - electrostatic
 - by optical means

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Microphones: membrane-based

characterization of membrane-based microphones:

- membrane configuration
 - membrane exposition to sound field
 - \blacktriangleright \rightarrow directivity

conversion principle

conversion of membrane movement into an electrical signal:

- electrodynamic
- electrostatic
- by optical means

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphones
- measurements
- visual microphone
- microphone arrays

Microphones: membrane-based

characterization of membrane-based microphones:

- membrane configuration
 - membrane exposition to sound field
 - \blacktriangleright \rightarrow directivity
- conversion principle
 - conversion of membrane movement into an electrical signal:
 - electrodynamic
 - electrostatic
 - by optical means

electrostatic microphone

- principle of operatio equivalent network power supply
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

electrostatic microphone

electrostatic microphone

principle of operation

equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

electrostatic microphone: principle of operation

electrostatic microphone

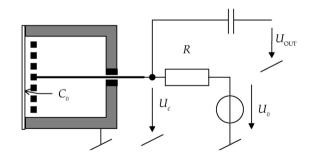
principle of operation

equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

principle of operation

basic structure: plate capacitor of varying capacitance \rightarrow condenser microphone

electrostatic microphone

principle of operation

equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphone
- measurements

visual microphone

microphone arrays

Principle of operation

fundamental capacitor relation:

Q = CU

charge Q of the capacitor is kept constant (polarization voltage U₀)
 variation of the capacitance C → variation of voltage U

principle of operation

 ϵ_0 :

Principle of operation

capacitance of a plate capacitor:

$$C = \frac{c_0 A}{x}$$

 ϵ_0 : electric constant = 8.85×10⁻¹² AsV⁻¹m⁻¹
A: area of one plate

c. A

x: distance between the plates

electrostatic microphone

principle of operation

equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphone

measurements

visual microphone microphone arrays

Principle of operation

at rest, the charge on the capacitor is

$$Q_0 = \frac{\epsilon_0 A}{x_0} U_0$$

 x_0 : distance between the plates in their reference position

displacement of the membrane by Δx leads to voltage change ΔU_c :

$$\Delta U_c = -\frac{Q_0}{\epsilon_0 A} \Delta x = -\frac{U_0}{x_0} \Delta x$$

 $\Delta U_c \sim \Delta x \rightarrow$ system has to be operated below resonance

electrostatic microphone

equivalent network power supply overview measuring

dynamic

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical micropho

measurements

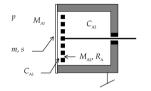
visual microphone

microphone arrays

electrostatic microphone: equivalent electrical network

electrostatic microphone

- equivalent network power supply
- microphones
- dynamic microphone
- principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- general

elements

p sound pressure

 M_{A1} acoustical mass of the air in front of the membrane m, s mechanical mass and stiffness of membrane

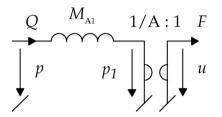
 C_{A1} acoust. compliance of air between membrane and back plate M_{A2} , R_A acoustical mass and resistance of the holes in the back plate C_{A2} acoustical compliance of the rear cavity

electrostatic microphone

- principle of operation
- equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

Transition sound field \rightarrow membrane

- acoustics: sound pressure acts on air layer and the membrane
- ▶ resulting mechanical force at the membrane: $F = p_1 A$
 - p₁: sound pressure acting on the membrane
 - ► A: area of the membrane

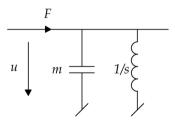
potential quantity $ho_1 \sim$ flow quantity F ightarrow gyrator

electrostatic microphone

- principle of operation
- equivalent network
- power supply overview measuring microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

Membrane

membrane:

- mechanical mass
- mechanical spring
- ▶ both elements have identical velocity (potential quantity) \rightarrow parallel arrangement

electrostatic microphone

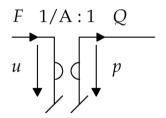
- principle of operation
- equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical microphone
- measurements
- visual microphone
- microphone arrays

Transition membrane \rightarrow interior of the microphone

- in mechanical system: membrane velocity
- **>** consequence for acoustical system: volume flow Q = uA
 - u: velocity of the membrane
 - A: area of the membrane

potential quantity $u \sim$ flow quantity $Q \rightarrow$ gyrator

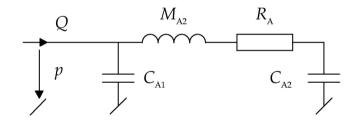
electrostatic microphone

- principle of operation
- equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

Interior of the microphone

cavity between membrane and back plate: acoustical compliance C_{A1}
 holes in the back plate: acoustical mass and resistance M_{A2}, R_A
 rear cavity: acoustical compliance C_{A2}

electrostatic microphone

equivalent network

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor

measurements

visual microphone

microphone arrays

Electrical output

microphone voltage ΔU_c :

$$\Delta U_c = -U_0 \frac{\Delta x}{x_0}$$

displacement of the membrane Δx :

$$\Delta x = \frac{F_s}{s}$$

consequently

$$\Delta U_c = -F_s \frac{U_0}{sx_0}$$

electrostatic microphone

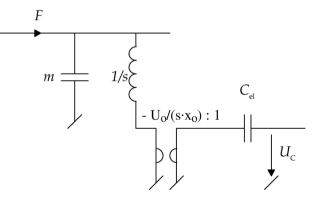
- principle of operation
- equivalent network
- overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Electrical output

$$\Delta U_c = -F_s \frac{U_0}{sx_0}$$

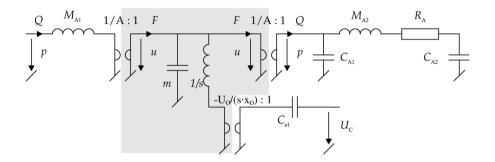
flow quantity $F_s \sim$ potential quantity $\Delta U_c
ightarrow$ gyrator

electrostatic microphone

principle of operation

equivalent network

- power supply overview measuring microphones
- dynamic microphone
- principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

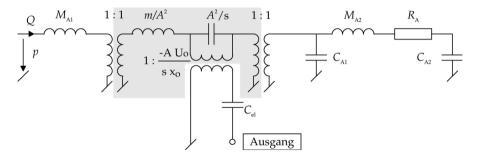
- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Complete equivalent network

electrostatic microphone

- principle of operation
- equivalent network
- overview measuring microphones
- dynamic microphone
- principle of operation equivalent network

directivity


omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

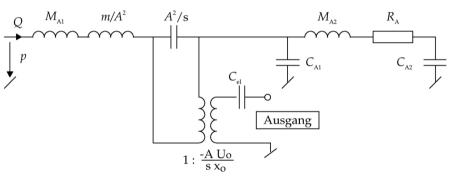
Complete equivalent network

after dual conversion with r = 1/A

electrostatic microphone

- principle of operation
- equivalent network
- overview measurin microphones
- dynamic microphone
- principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Complete equivalent network

after removal of 1:1 transformers

electrostatic microphone

- principle of operation
- equivalent network power supply
- microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

- ▶ operation below resonance → apply simplifications / approximations for low frequencies:
 - inductances replaced by short-circuits
 - C_{A2} dominates over $R_A \rightarrow \text{omit } R_A$
 - $\blacktriangleright C_{A2} \gg C_{A1} \rightarrow \text{omit } C_{A1}$

Simplified equivalent network

Simplified equivalent network

equivalent network

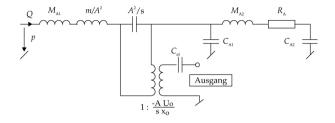
power supply overview measuring microphones

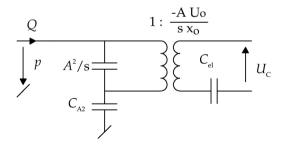
dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers


Microflown optical microphor

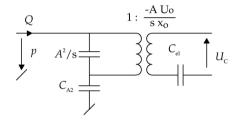
measurements

visual microphone

microphone arrays

Simplified equivalent network

electrostatic microphone


- principle of operation
- equivalent network
- overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- microphone arrays

transfer function: sound pressure \rightarrow output voltage:

$$\Delta U_c = p \frac{C_{A2}}{C_{A2} + A^2/s} \frac{-AU_0}{sx_0}$$

electrostatic microphone

principle of operation

equivalent network

- overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Design for maximal sensitivity

$$\Delta U_c = p \frac{C_{A2}}{C_{A2} + A^2/s} \frac{-AU_c}{sx_0}$$

design for maximal sensitivity?

electrostatic microphone

principle of operation

- equivalent network power supply overview measuring microphages
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

visual microphone

Design for maximal sensitivity

$$\Delta U_c = p \frac{C_{A2}}{C_{A2} + A^2/s} \frac{-AU_0}{sx_0}$$

- C_{A2} (rear cavity) sufficiently large: $\rightarrow C_{A2} \gg A^2/s$
- ▶ polarization voltage U_0 as large as possible, plate distance at rest x_0 as small as possible (200 V and 20 μ m \rightarrow max. isolation capability)
- membrane area A as large as possible, however distortion of the sound field at high frequencies
- stiffness s of the membrane as small as possible, however this lowers the resonance and thus the upper limiting frequency

Flectret

electrostatic microphone

- principle of operation
- equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

- polarization voltage can be omitted if electret material (permanent charge) is used
- electret: suitable synthetic materials that are exposed to heating and cooling with high DC voltage applied

electrostatic microphone

- principle of operation
- equivalent network power supply overview measuring
- microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

Pressure equalization opening

- pressure in the microphone interior = average absolute pressure (ambient pressure)
- \blacktriangleright \rightarrow need for a tiny opening that allows for pressure equalization
- \blacktriangleright \rightarrow defines the lower limiting frequency
- \blacktriangleright \rightarrow equivalent electrical network?

Pressure equalization opening

electrostatic microphone

equivalent network

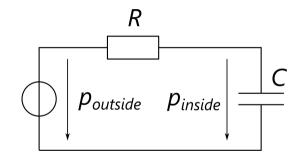
power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

Microflown optical micropho

measurements

visual microphone

microphone arrays

electrostatic microphone

principle of operation equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphe

measurements

visual microphone

microphone arrays

electrostatic microphone: power supply

electrostatic microphone

- principle of operation equivalent network
- power supply overview measuring microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

Power supply

- output capacitance of an electrostatic microphone capsule is extremely small (5...50 pF)
- an amplifier next to the capsule is needed
- microphone cable has to deliver powering of amplifier
- \blacktriangleright solution with additional conductors \rightarrow measuring microphones
- solution with two signal wires and shield (symmetrical cable):
 - T-powering
 - Phantom powering

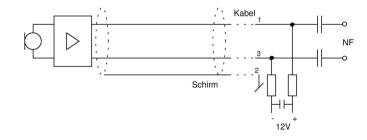
electrostatic microphone

- principle of operatio equivalent network
- power supply overview measurin

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

T-powering

- supply voltage (12 V) between the two signal wires ("Tonadern")
- supply current flows to the amplifier in one signal wire and back by the other
- T-powering is no longer used in modern microphones

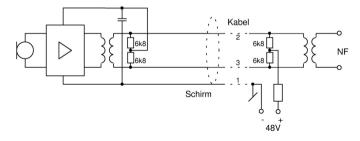
electrostatic microphone

- principle of operation equivalent network
- power supply
- overview measurin microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphone
- measurements
- visual microphone
- microphone arrays

Phantom powering

- supply voltage (typically 48 V) between the two signal wires ("phantom potential") and ground shield
- supply current flows symmetrically in both signal wires and back by ground shield
- standard in today's audio/recording microphones

electrostatic microphone

principle of operation equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

Phantom powering

advantages of phantom powering over T-powering:

- dynamic microphones can be plugged without switching off powering (safety)
- signal wires can be reversed in polarity (safety)
- ripple of the supply voltage has no effect on signal voltage (matched resistors, Δ < 0.4 %).

electrostatic microphone

principle of operation equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

Phantom powering

advantages of phantom powering over T-powering:

- dynamic microphones can be plugged without switching off powering (safety)
- signal wires can be reversed in polarity (safety)
- ripple of the supply voltage has no effect on signal voltage (matched resistors, Δ < 0.4 %).

electrostatic microphone

principle of operation equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphon
- measurements
- visual microphone
- microphone arrays

Phantom powering

advantages of phantom powering over T-powering:

- dynamic microphones can be plugged without switching off powering (safety)
- signal wires can be reversed in polarity (safety)
- ripple of the supply voltage has no effect on signal voltage (matched resistors, Δ < 0.4 %).

electrostatic microphone

principle of operation equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

Phantom powering

advantages of phantom powering over T-powering:

- dynamic microphones can be plugged without switching off powering (safety)
- signal wires can be reversed in polarity (safety)
- \blacktriangleright ripple of the supply voltage has no effect on signal voltage (matched resistors, $\Delta <$ 0.4 %).

electrostatic microphone principle of operation

equivalent netwo

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone igure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microph

measurements

visual microphone

microphone arrays

electrostatic microphone: overview of measuring microphones

electrostatic microphone

principle of operatio equivalent network

power supply

overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

measurements

visual microphone

microphone arrays

$1^{\prime\prime} = 1$ inch = 25.4 mm

measuring microphones

size	freq.range	level.range
1"	2 Hz - 18 kHz	10 - 146 dB
1/2''	4 Hz - 20 kHz	15 - 146 dB
1/4"	4 Hz - 70 kHz	30 - 170 dB
1/8''	6 Hz - 140 kHz	43 - 175 dB

electrostatic microphone

- principle of operatio equivalent network
- overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

dynamic microphone

electrostatic

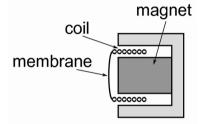
- principle of operation equivalent network power supply
- microphones

dynamic microphone

principle of operation

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

dynamic microphone: principle of operation

principle of operation

dynamic microphone: principle of operation

induced voltage U = uBI

- *u*: velocity of the membrane/coil
- B: magnetic induction
- *I*: length of the wire of the coil
- \rightarrow operation at resonance

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation

equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

dynamic microphone: equivalent network (example)

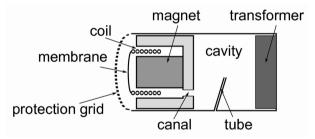
electrostatic microphone

- principle of operatio equivalent network power supply overview measuring
- microphones

dynamic microphone

equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

dynamic microphone: basic structure

basic structure:

dynamic microphone: elements

electrostatic microphone

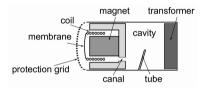
principle of operation equivalent network power supply overview measuring

dynamic microphone principle of operat

equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

Microflown optical microphon

measurements

visual microphone

microphone arrays

 p_1, p_2 sound pressure in front of protection grid and at end of tube M_{A1} acoustical mass of the air in front of grid M_{A2}, R_{A2} acoustical mass / resistance of holes in grid C_{A3} acoustical compliance of air between grid and membrane m, s mass of membrane and coil, stiffness of membrane

dynamic microphone: elements

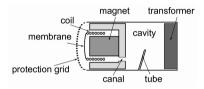
electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays general

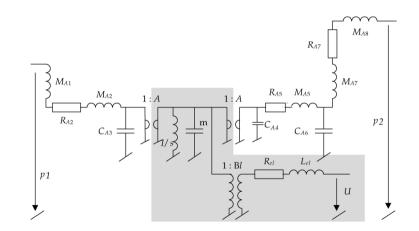
 C_{A4} acoustical compliance of air between membrane and magnet M_{A5}, R_{A5} acoustical mass and resistance of the damped canal C_{A6} acoustical compliance of the rear cavity M_{A7}, R_{A7} acoustical mass and resistance of tube M_{A8} acoustical mass of the moving air in front of the tube end

electrostatic microphone

- principle of operatio equivalent network
- overview measuring microphones

dynamic microphone

- principle of operation
- equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

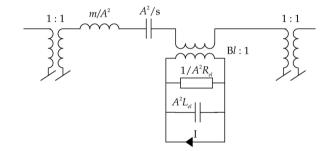
- Microflown
- measurements
- visual microphone
- microphone arrays

dynamic microphone: complete equivalent network

electrostatic microphone

- principle of operation equivalent network power supply overview measuring microphones
- dynamic microphone
- equivalent network

directivity


omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone

dynamic microphone: dual conversion

elimination of the gyrators by dual conversion with r=1/A

original output voltage \rightarrow short-circuit current

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

- principle of operation
- equivalent network

directivity

omnidirectional microphor figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown
- measurements
- visual microphone

microphone arrays

dynamic microphone: simplified equivalent network

- simplifications:
 - omit 1:1 transformers
 - $\blacktriangleright \text{ set } p_1 = p_2$
 - obviously o.k. for large wave lengths
 - doesn't matter at high frequencies as tube represents a high impedance

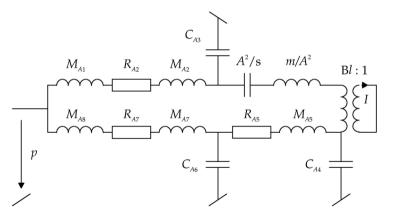
electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation

equivalent network


directivity

omnidirectional microphor figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

dynamic microphone: simplified $(p_1 = p_2)$ equivalent network

electrostatic microphone

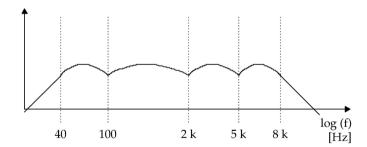
principle of operation equivalent network power supply overview measuring microphones

dynamic microphone principle of operat

equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

dynamic microphone: frequency response

suitable distribution of resonances \rightarrow "flat" frequency response

log |Frequenzgang|

electrostatio

- principle of operation equivalent network power supply
- overview measurinį microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropl
- measurements
- visual microphone
- microphone arrays

microphone directivity

electrostatic microphone

principle of operation equivalent network power supply overview measuring misraphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

Microphone directivity

adjustable by:

- membrane configuration with respect to sound field
- \rightarrow independent of conversion principle!

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone

igure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

omnidirectional microphone

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

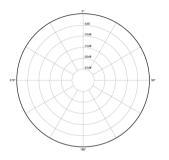

omnidirectional microphone

figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- ontical microphon
- measurements
- visual microphone microphone arrays
- general

omnidirectional microphone

- omnidirectional
- membrane is exposed to sound field by one side only
- senses sound pressure (scalar quantity, no directivity)
- caution: sound field distortion by the microphone body at high frequencies

electrostatic microphone

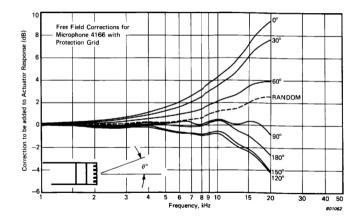
principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone


igure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphe
- measurements
- visual microphone
- microphone arrays

omnidirectional microphone

example: sensitivity as $f(\phi)$ for a 1/2 inch capsule:

electrostatic

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone

figure of eight microphone

cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphe
- measurements
- visual microphone
- microphone arrays

figure of eight microphone

electrostatic microphone

principle of operation equivalent network power supply overview measuring

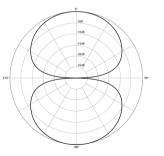
dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone

figure of eight microphone


cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

figure of eight microphone

- figure of eight directivity $U \sim \cos(\phi)$
- both sides of the membrane are equally exposed to the sound field
- \blacktriangleright senses pressure difference on both sides \rightarrow pressure gradient relative to membrane normal direction

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone

figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphone

measurements

visual microphone

Figure of eight microphone

relation between pressure gradient grad p and sound particle velocity v:

$$\mathsf{grad} p = -
ho rac{\partial \mathbf{v}}{\partial t}$$

sinusoidal time dependency in complex writing:

 $\mathrm{grad}\underline{p}=-\rho j\omega\underline{v}$

• figure of eight microphone \approx velocity sensor

 $\blacktriangleright~\omega$ proportional frequency dependency has to be compensated for

electrostatic microphone

- principle of operatio equivalent network power supply
- overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity disentional microphone

exotic transducers

- Microflown optical microphe
- measurements
- visual microphone
- microphone arrays

cardioid microphone

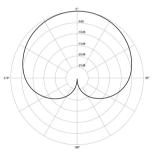
electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

cardioid microphone

- cardioid directivity: $U \sim 0.5(1 + \cos(\phi))$
- both sides of the membrane are exposed differently to the sound field

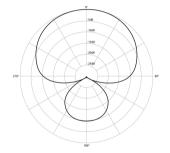
electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

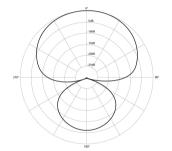
dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers


- Microflown
- optical microphone
- measurements
- visual microphone
- microphone arrays

cardioid microphone

further cardioid patterns:

supercardioid

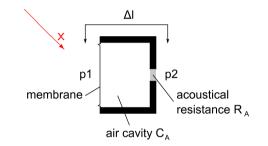
hypercardioid

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

xotic transducers

- Microflown
- measurements
- visual microphone microphone arrays

cardioid microphone: realization

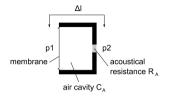
assumption: incident plane wave in x-direction with angle α rel. to microphone axis: p₁ = p̂e^{j(ωt-kx)} where: k: wave number, k = 2π/λ = ω/c
 path length difference front-rear port = Δ/cos(α)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

cardioid microphone: realization

with

$$p_1 = \hat{p} e^{j(\omega t - k x)}$$

follows for the rear port sound pressure p_2 :

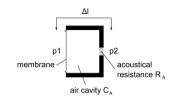
$$p_{2} = p_{1} + \frac{\partial \left(\hat{p}e^{j(\omega t - kx)}\right)}{\partial x} \Delta I \cos(\alpha) = p_{1} \left(1 - j\frac{\omega}{c} \Delta I \cos(\alpha)\right)$$

electrostatic microphone

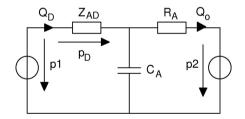
principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network


directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

cardioid microphone: realization

equivalent network:

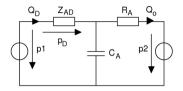
with impedance of the membrane: Z_{AD}

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

cardioid microphone: realization

equations for potential quantities:

$$p_1 = Q_D \left(Z_{AD} + rac{1}{j\omega C_A}
ight) - rac{Q_0}{j\omega C_A}$$
 $p_2 = -Q_0 \left(R_A + rac{1}{j\omega C_A}
ight) + rac{Q_D}{j\omega C_A}$

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements

visual microphone

microphone arrays

cardioid microphone: realization

for the sound pressure difference on both sides of the membrane follows:

$$p_D = Q_D Z_{AD} = \frac{Z_{AD} \left(p_1 R_A + \frac{p_1 - p_2}{j \omega C_A} \right)}{Z_{AD} R_A - j \frac{R_A + Z_{AD}}{\omega C_A}}$$

and with
$$p_2 = p_1 \left(1 - j \frac{\omega}{c} \Delta / \cos(\alpha)\right)$$
:

$$p_D = p_1 \frac{Z_{AD} \left(R_A + \frac{\Delta I \cos(\alpha)}{cC_A} \right)}{Z_{AD} R_A - j \frac{R_A + Z_{AD}}{\omega C_A}}$$

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

for

exotic transducers

optical microphones

measurements

visual microphone microphone arrays

cardioid microphone: realization

for suitable dimensioning one can assume:

 $Z_{AD} \gg R_A, \qquad \frac{1}{\omega C_A R_A} \gg 1$

and then p_D simplifies to:

$$p_D \approx p_1 j \omega C_A R_A \left(1 + \frac{\Delta I \cos(\alpha)}{c C_A R_A} \right)$$

 $\frac{\Delta l}{cC_A R_A} = 1$

the directivity corresponds to a classical cardioid. caution: $1/\omega$ - correction necessary

electrostatic microphone

- principle of operatio equivalent network power supply
- overview measurinį microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone

proximity effect

switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

proximity effect

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone

proximity effect

switchable directivity directional microphones

exotic transducers

- Microflown
- measurements

visual microphone

microphone arrays

proximity effect

directional microphones sense pressure gradient

$$\frac{\partial p}{\partial x} = -\rho \frac{\partial v_x}{\partial t}$$

• pressure gradient \rightarrow sound particle velocity

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

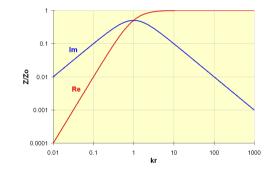
directivity

omnidirectional microphone figure of eight microphone cardioid microphone

proximity effect

switchable directivity directional microphones

exotic transducers


Microflown

measurements

visual microphone

proximity effect

impedance for spherical waves $\left(\frac{p}{v}\right)$:

b bass boost for velocity sensitive microphones \rightarrow proximity effect

general

electrostatic microphone

- principle of operatio equivalent network power supply
- overview measurin microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone

proximity effect

switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone microphone arrays
- general

example:

proximity effect

▶ amplification for r = 5 cm @ 100 Hz?

electrostatic microphone

- principle of operatio equivalent network power supply
- overview measurin microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone

proximity effect

switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- general

example:

proximity effect

▶ amplification for $r = 5 \text{ cm } @ 100 \text{ Hz}? \rightarrow 20 \text{ dB}$

electrostatic microphone

- principle of operatio equivalent network power supply
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

switchable directivity

electrostatic microphone

- principle of operation equivalent network power supply overview measuring microphones
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

switchable directivity

- motivation
 - universal microphone
 - convenient adjustment to a particular recording situation
- ▶ famous early example: U47 by Neumann, 1947

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

optical microphone

measurements

visual microphone

microphone arrays

switchable directivity

principle:

two cardioid capsules (back-to-back)

signal capsule $1 \rightarrow 1 + \cos \alpha$ signal capsule $2 \rightarrow 1 - \cos \alpha$

sum / difference of the capsule signals

combination	signal	directivity
<i>K</i> 1	$1 + \cos lpha$	cardioid
K1 + K2	$1+\cos\alpha+1-\cos\alpha=2$	omni
K1 - K2	$1 + \cos lpha - (1 - \cos lpha) = 2 \cos lpha$	8

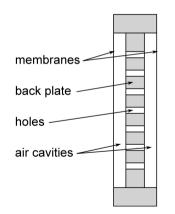
electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- microphone arrays

switchable directivity

basic construction: two membranes with common perforated (damped) back plate

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- microphone arrays

directional microphones

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone
- measurements
- visual microphone
- microphone arrays

requirement for high directivity ?

directional microphones

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone
- microphone arrays

directional microphones

requirement for high directivity:

- **>** simultaneous sound field sampling over an extended zone (rel. λ)
- phase sensitive summation
 - constructive superposition for desired direction
 - destructive superposition for unwanted direction

olutions:

- parabolic mirror
 - array of microphones (e.g. Microtech-Gefell KEM 970)
- shotgun microphone

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- -----
- measurements
- visual microphone
- microphone arrays

directional microphones

requirement for high directivity:

- **•** simultaneous sound field sampling over an extended zone (rel. λ)
- phase sensitive summation
 - constructive superposition for desired direction
 - destructive superposition for unwanted direction

solutions:

- parabolic mirror
- array of microphones (e.g. Microtech-Gefell KEM 970)
- shotgun microphone

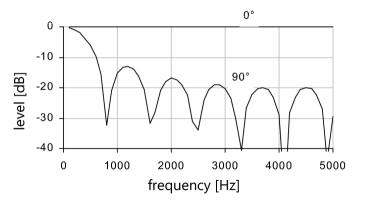
electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity


omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical incrophone
- measurements
- visual microphone
- microphone arrays

Directional microphones

example: shotgun microphone with tube of length 50 cm frequency response for 0° and 90° :

electrostatic microphone

- principle of operatio equivalent network power supply
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphone measurement visual microp
- microphone arrays

exotic transducers

electrostatio microphone

- principle of operatio equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

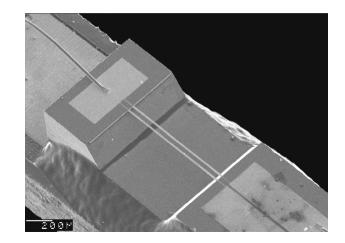
principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown


optical microphones

measurements

visual microphone

microphone arrays

- "hot-wire anemometer"
- wire temperature 200...400°

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

Microflown

sound particle velocity (microscopic wind) leads to different temperatures at the two wires

- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
- decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
 - relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
- decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
 - relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
 - decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
 - relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
 - decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
- relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
- decreasing sensitivity for higher frequencies
- no moving parts
 - frequency independent figure of eight directivity
 - relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
- decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
 - relative high self-noise (critical for audio applications)

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown

- optical microphones
- measurements
- visual microphone
- microphone arrays

- sound particle velocity (microscopic wind) leads to different temperatures at the two wires
- microphone signal is derived from temperature difference
- output signal is proportional to sound particle velocity
- decreasing sensitivity for higher frequencies
- no moving parts
- frequency independent figure of eight directivity
- relative high self-noise (critical for audio applications)

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphones
- measurements
- visual microphone
- microphone arrays

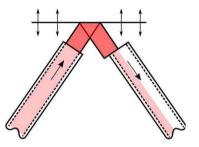
optical microphones

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network


directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

- measurements
- visual microphone

optical microphones

- metal-free membrane
- optical detection of the displacement
- insensitive to electric and magnetic fields
- \blacktriangleright current-less \rightarrow usage in explosive environments

general

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphon

measurements

visual microphone

microphone arrays

microphone measurements

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphone

measurements

visual microphone

microphone arrays

microphone measurements

general requirements regarding environment:

- \blacktriangleright free-field conditions \rightarrow anechoic chamber
- \blacktriangleright low-noise environment \rightarrow isolated box

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphone

measurements

visual microphone

microphone arrays

microphone measurements: quantities

relevant quantities:

- frequency response
- directivity
- maximal sound pressure / non-linear distortions
- self-noise

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphone

measurements

visual microphone

microphone arrays

microphone measurements: quantities

relevant quantities:

- frequency response
- directivity
- maximal sound pressure / non-linear distortions
- self-noise

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor

measurements

visual microphone

microphone arrays

Frequency response measurements

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphones

measurements

visual microphone

microphone arrays

Frequency response measurements

- excitation with help of a loudspeaker
- \blacktriangleright problem: non-flat frequency response of the loudspeaker \rightarrow need for a reference microphone
- simultaneous measurement reference and test microphone installed next to each other. Disadvantage: possible sound field distortion by the reference microphone, relevant at high frequencies.
- sequential measurement measurement of reference and test microphone one after the other. Disadvantage: increased measurement time, requirement for excellent reproducibility.

electrostatic microphone

principle of operation equivalent network power supply overview measuring miscophones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microph

measurements

visual microphone

microphone arrays

Frequency response measurements

specification of the frequency range of operation:

- by amplitude response plot
- by upper and lower limiting frequency for a deviation smaller than ±x dB (typ. 3 dB)

Sennheiser MKH 800

electrostatio microphone

- principle of operatio equivalent network power supply overview measuring
- dynamic
- principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor

measurements

visual microphone

microphone arrays

directivity

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

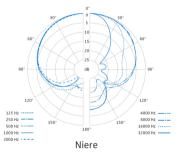
principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor


measurements

visual microphone

microphone arrays

directivity

- ► evaluated for discrete frequencies (typ. in octave steps) → no specific requirements regarding loudspeaker quality
- test microphone mounted on a turntable

Sennheiser MKH 800

electrostatic

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor

measurements

visual microphone

microphone arrays

Non-linear distortion \rightarrow maximal sound pressure

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown

measurements

visual microphone

microphone arrays

Non-linear distortion \rightarrow maximal sound pressure

- challenge: generation of very high amplitude sound pressure signals with little distortion
- trick: resonance system such as Helmholtz resonator (bass-reflex cabinet)
- typical reference frequency: 1 kHz
- specification: maximal sound pressure level (upper end of dynamic range) for non-linear distortion below a certain limit (0.5%, 1%)
- ▶ typical values for small-membrane microphones >140 dB

electrostatio microphone

principle of operatio equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown optical microphor

measurements

visual microphone

microphone arrays

Self-noise

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting → labeling: "dB(A)" or "according to IEC 651"
 ▶ defines lower end of dynamic range
- ▶ large-membrane audio microphones reach values well below 10 dB(A)
 ▶ alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
 - specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting → labeling: "dB(A)" or "according to IEC 651"
 ▶ defines lower end of dynamic range
- ▶ large-membrane audio microphones reach values well below 10 dB(A)
 ▶ alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting → labeling: "dB(A)" or "according to IEC 651"
 ▶ defines lower end of dynamic range
- ▶ large-membrane audio microphones reach values well below 10 dB(A)
 ▶ alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting → labeling: "dB(A)" or "according to IEC 651"
 ▶ defines lower end of dynamic range
- ▶ large-membrane audio microphones reach values well below 10 dB(A)
 ▶ alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting \rightarrow labeling: "dB(A)" or "according to IEC 651"
- defines lower end of dynamic range
 - large-membrane audio microphones reach values well below 10 dB(A)
 alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting \rightarrow labeling: "dB(A)" or "according to IEC 651"
- defines lower end of dynamic range
- ▶ large-membrane audio microphones reach values well below 10 dB(A)
 ▶ alternative frequency weighting: CCIR, ITU-R 468 → 11..14 higher levels

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones

measurements

visual microphone

microphone arrays

Self-noise

- evaluation of microphone signal without acoustical excitation
- specification: equivalent sound pressure that would produce the same microphone output voltage
- ▶ usually with A-weighting \rightarrow labeling: "dB(A)" or "according to IEC 651"
- defines lower end of dynamic range
- large-membrane audio microphones reach values well below 10 dB(A)
- ▶ alternative frequency weighting: CCIR, ITU-R 468 \rightarrow 11..14 higher levels

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic
- principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements

visual microphone

microphone arrays

The Visual Microphone

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements

visual microphone

microphone arrays

The Visual Microphone

The Visual Microphone:

TED Talk by Michael Rubinstein: See invisible motion, hear silent sounds. movie: TED Talk: The Visual Microphone

electrostatic microphone

- principle of operatio equivalent network power supply
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

microphone arrays

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphoner

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone

microphone arrays

microphone arrays

purpose:

- observation of the sound field with high spacial resolution
- source detection
- discrimination between several sources
- suppression of unwanted sources

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducer Microflown optical microphones

visual microphone

microphone arrays

microphone arrays

basic concept:

- several, spatially separated microphones
- phase sensitive combination of the microphone signals for the desired sensitivity pattern

$$\mathsf{output}(t) = \sum_{n=1}^N s_n(t) * h_n(t)$$

 $s_n(t)$: signal captured by microphone n $h_n(t)$: filter function applied to signal of microphone n

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

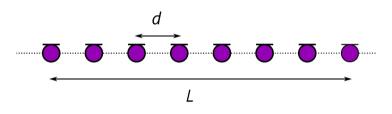
dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers Microflown optical microphones


measurements

visual microphone

microphone arrays

microphone arrays

1-dimensional array:

how to select the parameters L and d?

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

microphone arrays: fundamental relations

- $\blacktriangleright d \rightarrow aliasing$
- ▶ $L \rightarrow$ directivity, low frequency limit

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- measurements
- visual microphone

microphone arrays

selection / adjustment of filters $h_n(t) o beamforming$

beamforming (steering and shaping of directivity pattern)

 $\operatorname{output}(t) = \sum_{n=1}^{\infty} s_n(t) * h_n(t)$

- sampling of the surface of an extended source
- tracking of moving sources

microphone arrays: beamforming

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

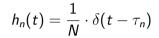
dynamic microphone

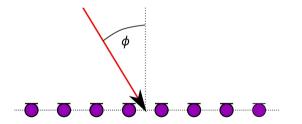
principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers


Microflown optical microphone


measurements

visual microphone microphone arrays general $\tau_n = ?$

microphone arrays: beamforming

simplest beamformer: delay-and-sum beamformer

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

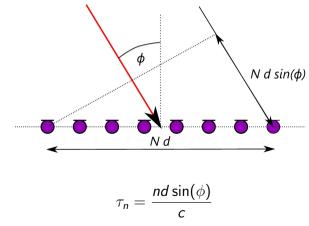
principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

Microflown


measurements

visual microphon

microphone array: general

microphone arrays: beamforming

delay-and-sum beamformer

valid for plane waves ightarrow focus in $\infty!$

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements

visual microphone

microphone arrays

microphone arrays: array forms

array geometry depends on the desired local resolution

- ▶ 1D \rightarrow linear array
- $\blacktriangleright~$ 2D \rightarrow cross shaped array, circular array, star-like array
- ▶ 3D \rightarrow spherical array

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

.

- array geometry depends on the desired local resolution
 - ▶ 1D \rightarrow linear array

microphone arrays: array forms

2D → cross shaped array, circular array, star-like array
 3D → spherical array

electrostatic microphone

- principle of operation equivalent network power supply overview measuring
- dynamic microphone
- principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements
- visual microphone
- microphone arrays

array geometry depends on the desired local resolution

 \blacktriangleright 1D \rightarrow linear array

microphone arrays: array forms

2D → cross shaped array, circular array, star-like array
 3D → spherical array

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements

visual microphone

microphone arrays

array geometry depends on the desired local resolution

 \blacktriangleright 1D \rightarrow linear array

microphone arrays: array forms

- \triangleright 2D \rightarrow cross shaped array, circular array, star-like array
- ▶ 3D \rightarrow spherical array

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

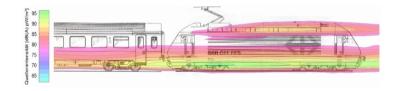
principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown
- optical microphone


measurements

visual microphone

microphone arrays general

microphone arrays: applications

► investigation of sound sources on a train (→ vertical distribution of emitted sound power)

evaluation shown here:

1 kHz third-octave, train speed: 100 km/h

electrostatic microphone

principle of operation equivalent network power supply overview measuring

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical micropho
- measurements

visual microphone

microphone arrays

\blacktriangleright investigation of sound sources of trucks \rightarrow separation of

- rolling noise
- motor noise
- noise of the exhaust system

microphone arrays: applications

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphon figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microphor
- measurements
- visual microphone
- microphone arrays

microphone arrays: applications

identification of dominating parts in a sound emitting structure

electrostatic microphone

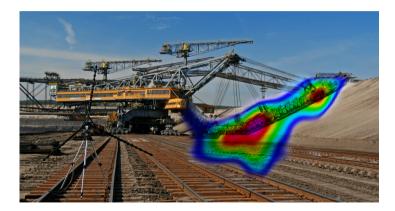
principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones


exotic transducers

- Microflown optical micropho
- measurements
- visual microphone

microphone arrays

microphone arrays: applications

identification of noise relevant parts of a mining machine

electrostatic microphone

principle of operation equivalent network power supply overview measuring microphones

dynamic microphone

principle of operation equivalent network

directivity

omnidirectional microphone figure of eight microphone cardioid microphone proximity effect switchable directivity directional microphones

exotic transducers

- Microflown optical microph
- measurements
- visual microphone
- microphone arrays

eth-acoustics-2