transduce principles electrodynami

electrostatic

radiation

directivity

velocity distribution of

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequen

Thiele-Small parameter

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics II: loudspeakers

Reto Pieren 2024

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeakers: transducer principles

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

transducer principles

membrane driver principles:

- ▶ electrodynamic
- electrostatic

transduce: principles

electrodynamic

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

electrodynamic transducer

transducer principles

electrodynamic

electrostatic

radiation

directivity radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- Thiele-Small parameters
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic transducer

excitation: force F acting on a wire of length ℓ carrying current i and located in a magnetic field B:

$$F = B \times \ell \cdot i$$

the other way round, a voltage U is induced for a wire moving with velocity u:

$$U = B \times \ell \cdot u$$

transducer principles electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- response
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrostatic transducer

transducer principles electrodynamic electrostatic

radiation

directivity radiated power velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequency response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

electrostatic transducer

excitation: electrostatic force F acting on a plate condenser of area S and distance x and for a voltage U:

$$F = \frac{\epsilon_0 S U^2}{2x^2}$$

with: $\epsilon_0:$ electric field constant = $8.85{\times}10^{-12}~\text{AsV}^{-1}\text{m}^{-1}$

▶ non-linear relation between force and voltage asks for biasing!
 ▶ ≈ linear behavior for small variations

transducer principles electrodynamic electrostatic

radiation

- directivity radiated power velocity distributio
- membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small parame
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

sound radiation by a moving membrane

transducer principles electrodynamic

electrostatic

radiation

directivity radiated power

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequency response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

sound radiation by a moving membrane

diffraction of plane wave at a circular opening (assuming Kirchhoff approximation):

movie: diffraction at circular opening

electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamie loudspeaker

equivalent network cabinets

electrical impedance

response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

directivity

transducer principles electrodynamic

radiation

directivity

radiated power velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequency response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

directivity

Calculation of sound pressure \check{p} for a circular piston

- ▶ of area S
- with velocity \check{v}_n
- \blacktriangleright in an ∞ wall

with help of the Rayleigh-Integral:

$$\check{p} = \frac{j\omega\rho}{2\pi} \int_{S} \check{v}_n \frac{1}{r} e^{-jkr} \mathrm{d}S$$

electrodynamic

radiation

directivity

radiated power velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Far field directivity for circular piston

for distances not too small: $1/r \approx r_0 = \text{const.}$

$$\check{p}(heta) pprox rac{\check{v}_n}{r_0} j k a^2
ho c rac{J_1(ka\sin heta)}{ka\sin heta}$$

where

- \check{v}_n : velocity of the piston
- *r*₀: reference distance
- k: wave number = $2\pi/\lambda$
- a: radius of piston
- J_1 : Bessel function
- θ : angle to the receiver position

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- response
- Thiele-Small paramet
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Directivity

Directivity of the circular piston radiator in the ∞ -wall:

ka = 1, e.g. a = 0.15 m, f = 360 Hz

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequence

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Directivity

Directivity of the circular piston radiator in the $\infty\mbox{-wall}:$

ka = 2, e.g. a = 0.15 m, f = 720 Hz

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- response
- Thiele-Small paramet
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Directivity

Directivity of the circular piston radiator in the ∞ -wall:

$$ka = 3$$
, e.g. $a = 0.15$ m, $f = 1080$ Hz

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence
- response
- incle binan paran
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Directivity

Directivity of the circular piston radiator in the ∞ -wall:

ka = 4, e.g. a = 0.15 m, f = 1440 Hz

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thee-onian paran
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Directivity

Directivity of the circular piston radiator in the ∞ -wall:

ka = 5, e.g. a = 0.15 m, f = 1800 Hz

principles electrodynamic

radiation

directivity

radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- r niele-omair param
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Directivity

Directivity of the circular piston radiator in the ∞ -wall:

ka = 10, e.g. a = 0.15 m, f = 3600 Hz

electrodynamic

radiation

directivity

radiated power

velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

radiated power

transducer principles electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution of membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance

response

I hiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

radiated power

factors that influence radiated power of a membrane?

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution o membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence response
- Thiele-Small parameters
- cabinet types
- -----
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

radiated power

radiation of a membrane depends on:

- membrane velocity (usually piston-like movement is assumed)
 - membrane area
 - surrounding of the membrane
 - medium
- frequency

transducer principles electrodynamic

radiation

radiated power

velocity distribution o membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency response
- Thiele-Small parameter
- cabinet types

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

radiated power

radiation impedance Z_{Ro} :

$$Z_{Ro} = \frac{p}{v}$$

where

- *p*: average sound pressure on the surface of the membrane*v*: velocity of the membrane (normal component)
 - describes loading of the membrane
 - calculation with wave theoretical methods
 - ▶ alternative definition (volume flow): $Z_R = \frac{p}{Q}$
 - \blacktriangleright radiation impedance is complex quantity \rightarrow active and reactive component

transducer principles electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequency response

Thiele-Small parameter

cabinet types

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

radiated power

radiated power W by moving membrane is

 $W = Q^2 Re[Z_R]$

with

Q: volume flow (product of velocity and membrane area) $Re[Z_R]$: real (active) part of radiation impedance

transducer principles

electrostatic

radiation

directivity

radiated power

velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

radiated power

examples of radiation impedances (rel. to ρc):

piston in ∞ -wall

free piston

transducer principles electrodynamic

electrostatic

radiation

directivity

radiated power

velocity distribution of membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequenc response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

radiated power

simulation of radiation impedances in equivalent electrical networks (frequency range with f^2 dependency):

 often series arrangement of *frequency dependent* resistance (real part) and inductance (imaginary part)

approximation of the load in networks: parallel arrangement

• resistance $R = \rho c$ (dominates above ka = 1)

• inductance $L = \rho a / \sqrt{2}$ (dominates below ka = 1)

electrodynamic

radiation

directivity

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance

sound pressure frequency response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

velocity distribution of a membrane

transducer principles electrodynamic electrostatic

radiation

directivity

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance

sound pressure frequend response

Fhiele-Small parameter

cabinet types

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

velocity distribution of a membrane

investigation of the membrane movement of a 20 cm woofer
 measurement method: Laser vibrometer (Doppler)

ransducer principles electrodynamic

radiation

- directivity
- velocity distribution of a
- membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

velocity distribution of a membrane

frequency: 218 Hz movie: frequency: 218 Hz

Velocity distribution of a membrane

transducer principles electrodynamic

radiation

directivity

velocity distribution of a

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequen

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

frequency: 656 Hz movie: frequency: 656 Hz

Velocity distribution of a membrane

transducer principles electrodynamic

radiation

directivity

velocity distribution of a

membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequen

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

frequency: 2000 Hz movie: frequency: 2000 Hz

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- response
- Thiele-Small paramet
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker

transducer principles

electrostatic

radiation

- directivity
- velocity distribution of

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- i niele-Small paramet
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: basic structure

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

basic structure

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynami loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure freque
- response
- Thiele-Small parameter
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Electrodynamic loudspeaker: equivalent network

transducer principles electrodynamic electrostatic

radiation

directivity radiated power velocity distribution of membrane

electrodynamic loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequent response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

elements to consider:

- M_{AR}, R_{AR} acoustical mass and resistance of the air on the rear side of the membrane corresponding to real and imaginary part of the radiation impedance
 - m, s mass of the membrane and the coil, stiffness of the membrane R_m mechanical friction (suspension of the membrane)
- M_{AV}, R_{AV} acoustical mass and resistance of the air on the front side of the membrane corresponding to real and imaginary part of the radiation impedance
 - R_E, L_E electrical resistance and inductance of the coil

transduce principles

- electrodynamic
- electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequence
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

- $B \times \ell$: force factor
- electrical interface:
 - ▶ source current \rightarrow force *F*
 - $\blacktriangleright \text{ membrane velocity} \rightarrow \text{induced voltage}$
transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

equivalent network

elimination of the gyrators by dual conversion with r = 1/A, omission of the 1:1 transformers

transduceı principles

- electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

amplitude response of volume flow Q?

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution or membrane

electrodynamie loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- response Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

amplitude response of volume flow Q:

- \blacktriangleright low frequencies: capacitor dominates \rightarrow $Q\sim\omega$
- resonance frequency: Q is limited by resistances
- \blacktriangleright high frequencies: inductances dominate \rightarrow $Q\sim 1/\omega$

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution o membrane

electrodynamic loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker

loudspeaker systems

equivalent network

- amplitude response of volume flow Q:
 - \blacktriangleright low frequencies: capacitor dominates \rightarrow $Q\sim\omega$
 - resonance frequency: Q is limited by resistances
 - high frequencies: inductances dominate $ightarrow Q \sim 1/\omega$

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- membrane

electrodynamie loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- Thiele-Small parameter
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

amplitude response of volume flow Q:

- \blacktriangleright low frequencies: capacitor dominates \rightarrow $Q\sim\omega$
- resonance frequency: Q is limited by resistances
- \blacktriangleright high frequencies: inductances dominate $ightarrow Q \sim 1/\omega$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- membrane

electrodynamic loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequen
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

equivalent network

amplitude response of volume flow Q:

- \blacktriangleright low frequencies: capacitor dominates \rightarrow $Q\sim\omega$
- resonance frequency: Q is limited by resistances
- \blacktriangleright high frequencies: inductances dominate \rightarrow $Q\sim 1/\omega$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequent
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

equivalent network

• radiated sound power $W = Q^2 \cdot Re[Z_R]$

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated pow
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network
- cabinets
- electrical impedance sound pressure frequer
- response
- enhinet tunes
- ontimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- W independent of frequency for $Q \sim 1/\omega$ and $Re[Z_R] \sim \omega^2$
 - ightarrow operation above resonance

equivalent network

- ightarrow
 ightarrow piston mounted in ∞ -wall
- \rightarrow upper limiting frequency: ka < 1

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynami loudspeaker

equivalent network

- cabinets
- electrical impedance sound pressure frequer
- response
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Electrodynamic loudspeaker: Nonlinearities

transducer principles electrodynamic

electrostatic

radiation

- directivity radiated nower
- velocity distribution of

electrodynamic loudspeaker

- equivalent network
- cabinets
- electrical impedance sound pressure freque
- response
- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Nonlinearities

- for large amplitudes, the element values will vary according to the membrane position
 - ightarrow
 ightarrow nonlinear behavior
 - critical:
 - stiffness of the outer and inner suspension
 - inductance of the moving coil L_E
 - ▶ force factor $B imes \ell$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynami loudspeaker

equivalent networl

cabinets

- electrical impedance sound pressure frequenc
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: mounting in a cabinet

transducer principles electrodynamic

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynami loudspeaker

equivalent networl

cabinets

- electrical impedance sound pressure frequen
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

mounting in a cabinet

- \blacktriangleright chassis in $\infty\text{-wall}$ realized by mounting in a cabinet
- changes:
 - no radiation impedance on rear side
 - ▶ increased stiffness due to enclosed air in the cabinet \rightarrow acoustical compliance C_A

transducer principles electrodynamic

electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

- total capacitance of series resonance circuit is lowered
- increased resonance frequency
- the smaller the volume, the higher the resonance frequency
- \blacktriangleright \rightarrow design rule: cabinet volume not too small and:
 - filling with porous material \rightarrow isothermal behaviour \rightarrow effective volume increased by 15%

transducer principles

electrostatic

radiation

- directivity
- velocity distribution
- membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

- ► total capacitance of series resonance circuit is lowered
- increased resonance frequency
- the smaller the volume, the higher the resonance frequency
- \blacktriangleright \rightarrow design rule: cabinet volume not too small and:
 - filling with porous material \rightarrow isothermal behaviour \rightarrow effective volume increased by 15%

transducer principles

electrostatic

radiation

- directivity
- velocity distribution o

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

- total capacitance of series resonance circuit is lowered
- increased resonance frequency
- the smaller the volume, the higher the resonance frequency
- \blacktriangleright \rightarrow design rule: cabinet volume not too small and:
 - filling with porous material \rightarrow isothermal behaviour \rightarrow effective volume increased by 15%

transducer principles

electrostatic

radiation

- directivity
- velocity distribution
- membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

- total capacitance of series resonance circuit is lowered
- increased resonance frequency
- the smaller the volume, the higher the resonance frequency
- \blacktriangleright \rightarrow design rule: cabinet volume not too small and:
 - filling with porous material \rightarrow isothermal behaviour \rightarrow effective volume increased by 15%

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

- ▶ total capacitance of series resonance circuit is lowered
- increased resonance frequency
- the smaller the volume, the higher the resonance frequency
- \blacktriangleright \rightarrow design rule: cabinet volume not too small and:
 - \blacktriangleright filling with porous material \rightarrow isothermal behaviour \rightarrow effective volume increased by 15%

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated powe
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequence response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

• potential problems introduced by the cabinet (compared to the ∞ -wall):

- mechanical vibrations of the cabinet enclosure \rightarrow booming
- diffraction at the edges
- standing waves (resonances) in the cabinet

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated powe
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequence response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

▶ potential problems introduced by the cabinet (compared to the ∞-wall):

- \blacktriangleright mechanical vibrations of the cabinet enclosure \rightarrow booming
- diffraction at the edges

mounting in a cabinet

standing waves (resonances) in the cabinet

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequenc response
- Thiele-Small paramete
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

equivalent network so far:

further steps:

- combination of elements of the same type
- dual conversion of the complete network with r = 1/A
- ▶ ignore real part of the radiation impedance (o.k. for low frequencies)

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequen
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

quantity of interest: volume flow Q, appears as voltage U'_S :

$$U'_S = rac{Q}{A}$$

principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network

cabinets

- electrical impedance sound pressure frequent response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

mounting in a cabinet

elimination of transformer by impedance scaling with $(B imes \ell)^2$

quantity of interest: volume flow Q is transformed into voltage U_S :

$$U_{S} = (B imes \ell) U'_{S} = (B imes \ell) rac{Q}{A}$$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- membrane

electrodynami loudspeaker

equivalent network cabinets

electrical impedance

- sound pressure frequent response Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: electrical impedance

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

equivalent network cabinets

electrical impedance

- sound pressure frequen response Thiele-Small parameter
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrical impedance

transducer principles electrodynamic

electrostatic

radiation

- directivity radiated power
- membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance

sound pressure frequency response

- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: sound pressure frequency response

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance

sound pressure frequency response

- Thiele-Small paramete cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

sound pressure frequency response

- restriction to low frequencies
 - \blacktriangleright \rightarrow omnidirectional radiation

$$p(d) = \sqrt{rac{W
ho_0 c}{4\pi d^2}} = rac{Q\sqrt{\operatorname{Re}[Z_R]
ho_0 c}}{\sqrt{4\pi} d}$$

where

p(d): sound pressure in distance dW: radiated sound power

Q: volume flow of the membrane (velocity times area) $Re[Z_R]$: Real part of the radiation impedance

transducer principles electrodynamic

electrostatic

radiation

directivity radiated power

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance

sound pressure frequency response

Thiele-Small parameters

antimiantions

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Sound pressure frequency response

radiation impedance (approximation for low frequencies, mounted in a cabinet):

$$\operatorname{Re}[Z_R] \approx \frac{\rho_0 c}{2} (ka)^2 \frac{1}{a^2 \pi} = \frac{\rho_0 \omega^2}{2\pi c}$$

with

k: wave numbera: radius of the membraneω: angular frequency

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance

sound pressure frequency response

- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

Sound pressure frequency response

determination of
$$Q$$
 from $U_{\mathcal{S}} = (B imes \ell) rac{Q}{A}$

neglecting
$$L_{E}$$
:

$$\frac{U_S}{U} \approx \frac{j\omega L_R R_R}{-\omega^2 L_R R_R C_R R_E + j\omega (L_R R_R + L_R R_E) + R_R R_E}$$

transducer principles

electrodynamie

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance

sound pressure frequency response

with

- Thiele-Small paramete cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Sound pressure frequency response

$$\frac{p(d)}{U} \approx \frac{\rho_0 a^2}{d\sqrt{8}B\ell} \frac{1}{j} \frac{1}{R_E C_R} \frac{-\omega^2 L_R C_R}{-\omega^2 L_R C_R + j\omega \frac{L_R R_R + L_R R_E}{R_R R_E} + 1}$$

frequency dependency \rightarrow high-pass function 2. order:

$$G(j\omega) = rac{-\omega^2 T_c^2}{-\omega^2 T_c^2 + j\omega rac{T_c}{Q_{ au c}} + 1}$$

 $T_c = \frac{1}{\omega_c}$ ω_c : lower limiting frequency of the high-pass filter Q_{TC} : quality factor of the high-pass filter

transduce principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance

sound pressure frequency response

- Fhiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Sound pressure frequency response

p(d)/U for different values of quality factor Q_{TC} :

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynami loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: Thiele-Small parameters

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Thiele-Small parameters

Thiele-Small parameters for the characterization of a free chassis: resonance frequency f_s in Hz : lower end of frequency range of usage compliance equivalent volume V_{AS} in I : stiffness of the membrane and suspension, expressed as equivalent air volume of equal stiffness

transducer principles

electrostatic

radiation

directivity radiated power velocity distributior

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency response

Thiele-Small parameters

cabinet types optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

mechanical Q factor Q_{MS} : mechanical damping of the resonance (by R_R) electrical Q factor Q_{ES} : electrical damping of the resonance (by R_E and possible output resistance of voltage source)

total Q factor Q_{TS} : $Q_{TS} = \frac{Q_{MS}Q_{ES}}{Q_{MS}+Q_{ES}}$ membrane area A in m2 DC-resistance R_E in Ohm force factor $B \times \ell$ in $T \times m$

Thiele-Small-Parameters

transducer principles

electrodynamic

radiation

- directivity
- radiated powe
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

can be determined from two electrical impedance measurements

case a): free chassis

Thiele-Small-Parameters

case b): chassis mounted in a cabinet of small volume or alternatively loaded with additional mass put on the membrane

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Thiele-Small-Parameters: mounted in a cabinet

free chassis specified by f_S , Q_{TS} , V_{AS}

behavior of chassis mounted in a cabinet of volume V_B :

$$f_c = f_s \sqrt{rac{V_{AS}}{V_B} + 1}$$
 $Q_{TC} = Q_{TS} \sqrt{rac{V_{AS}}{V_B} + 1}$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Thiele-Small-Parameters: chassis mounted in a cabinet amplitude responses for different cabinet volumes:

Chassis: fs = 19 Hz; QTS = 0.32; VAS = 200 I

transducer principles electrodynamic

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynami loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Electrodynamic loudspeaker: velocity and displacement of the membrane

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

cabinet types

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

velocity and displacement of the membrane

- ▶ in the range of operation: membrane velocity $v \sim \frac{1}{r}$
- ▶ → membrane displacement: $x \sim \frac{1}{f^2}$
- \blacktriangleright \rightarrow maximal excursion at lower end of frequency range of operation

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

▶ in the range of operation: membrane velocity $v \sim \frac{1}{f}$

velocity and displacement of the membrane

- ▶ → membrane displacement: $x \sim \frac{1}{f^2}$
- \blacktriangleright \rightarrow maximal excursion at lower end of frequency range of operation

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response

Thiele-Small parameters

- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- ▶ in the range of operation: membrane velocity $v \sim \frac{1}{f}$
- ▶ → membrane displacement: $x \sim \frac{1}{f^2}$
- \blacktriangleright \rightarrow maximal excursion at lower end of frequency range of operation

velocity and displacement of the membrane

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

- equivalent network
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

electrodynamic loudspeaker: bass reflex cabinet

transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters

cabinet types

- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

bass reflex cabinet

- extension of frequency range of operation to lower frequencies
- strategy: implementation of an additional resonance:
 - ► acoustical compliance: air volume in cabinet: C_A
 - > acoustical mass: cylinder of air in tube: M_p
- near and at resonance: strongest oscillations of air column
 - ightarrow
 ightarrow relevant sound radiation

transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters

cabinet types

- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Bass reflex cabinet

Spice simulation: chassis: $f_s = 31$ Hz; $Q_{TS} = 0.3$; $V_{AS} = 118$ l

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent networl cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters

cabinet types

- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Bass reflex cabinet

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters

cabinet types

- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

Bass reflex cabinet

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated powe
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Fhiele-Small parameters

cabinet types

- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Bass reflex cabinet

possible problems:

- unsatisfying transient behavior
- possible air flow noise at end of tube
 - to overcome by passive membrane systems
 - realization of mass by mechanical means

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

Electrodynamic loudspeaker: Bandpass cabinet

electrodynamic

radiation

directivity

velocity distribution of

electrodynamic

equivalent network

electrical impedance

sound pressure frequenc response

Thiele-Small parameters

cabinet types

optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeake systems

Bandpass cabinet

- sub-woofer with acoustical low-pass filtering
- bandpass cabinet with chassis mounted in the interior of the cabinet

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

electrodynamic loudspeaker: feed-back

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

feed-back

- ▶ aim of feed-back systems:
 - control of oscillation at resonance
 - reduction of non-linearities (large membrane excursions)

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated powe
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Feed-back

- observation of membrane movement:
 - measurement of membrane velocity by additional moving coil
 - measurement of membrane position by capacitive sensor
 - measurement of membrane position by optical means

transducer principles electrodynamic

electrostatic

radiation

- directivity
- radiated power
- membrane

electrodynami loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Electrodynamic loudspeaker: Control of membrane velocity

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution (membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Control of membrane velocity

- cancellation of driving coil DC resistance
 - powering by amplifier with negative output resistance
- ▶ → direct control of membrane velocity $U_S \approx U$

transducer principles

electrodynamic

radiation

- directivity radiated power
- velocity distribution o
- membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequer
- response
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Control of membrane velocity

excellent transient behavior

- \blacktriangleright electrical $1/f\mbox{-}correction$ necessary to adjust for $Q\sim 1/f$
- \blacktriangleright control effect gets lost for high frequencies as L_E becomes important
- caution: $R_E R_A > 0 \rightarrow$ stability condition!
- ► $|R_E| \approx |R_A|$ is difficult to achieve (compensation of temperature variation of R_E)

transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Control of membrane velocity

realization example: Studer A723

- negative output resistance:
 - \blacktriangleright increase of output current \rightarrow increase of output voltage

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Electrodynamic loudspeaker: Digital Equalizing

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Digital Equalizing

will this work?

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Digital Equalizing

- impulse response of loudspeaker: h(t)
- inverse filter g(t) where $g(t) * h(t) = \delta(t)$
- pre-filtering of audio signal with g(t)
- but:
 - ▶ physical limitations $(1/0 \rightarrow \infty)$
 - h(t) depends on radiation angle
 - h(t) depends on membrane excursion (nonlinearities)

transduce principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

transducer principles electrodynamic electrostatic

radiation

directivity radiated power

velocity distribution of a membrane

electrodynamic loudspeaker

equivalent network cabinets

electrical impedance sound pressure frequent response

Thiele-Small parameter

cabinet types

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

horn loudspeaker

- improved impedance matching (membrane movement \rightarrow air)
- significantly higher efficiency
- more pronounced directivity

transducer principles

electrodynamic

radiation

directivity radiated power velocity distribution

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence response
- Thiele-Small parameters
- cabinet types
- horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

common horn shape: exponential function:

 $S(x) = S_T \cdot e^{mx}$

where

S(x): cross sectional area at x S_T : cross sectional area at throat (x = 0) m: geometrical constant

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent networl cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameter
- cabinet types

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

wave equation for the exponential horn:

$$\frac{\partial^2 p}{\partial t^2} - c^2 m \frac{\partial p}{\partial x} - c^2 \frac{\partial^2 p}{\partial x^2} = 0$$

guess for
$$\underline{p}(t)$$
:

$$\underline{\rho}(t)=\hat{
ho}e^{a imes}e^{j\omega t}$$

with coefficient a:

$$a=-\left(rac{m}{2}+jrac{\sqrt{4(\omega/c)^2-m^2}}{2}
ight)$$

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- . Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeake systems

horn loudspeaker

determination of sound particle velocity: \rightarrow relation between *p* and *v*:

$$\frac{\partial p}{\partial x} = -\rho \frac{\partial v_x}{\partial t}$$

in complex writing:

$$\underline{v} = -\frac{1}{j\omega\rho}\frac{\partial \underline{p}}{\partial x}$$

with \underline{p} inserted:

$$\underline{v} = \frac{1}{j\omega\rho} \left(\frac{m}{2} + j \frac{\sqrt{4(\omega/c)^2 - m^2}}{2} \right) \underline{p}$$

transducer principles

electrostatic

radiation

directivity radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- rniele-Small param cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

radiation impedance:

$$\underline{Z}_{Ro} = \frac{\underline{p}}{\underline{v}} = \frac{2j\omega\rho}{m + j\sqrt{4(\omega/c)^2 - m^2}}$$
discussion of \underline{Z}_{Ro} :
$$2(\omega/c) < m \qquad \text{Re}\left[\underline{Z}_{Ro}\right] = 0$$
$$2(\omega/c) \ge m \qquad \text{Re}\left[\underline{Z}_{Ro}\right] = \rho c \sqrt{1 - \frac{m^2}{4(\omega/c)^2}}$$

transducer principles electrodynamic

radiation

- directivity
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent networl cabinets
- electrical impedance sound pressure frequency response
- Thiele-Small parameters
- ontimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

horn loudspeaker

exemplary radiation impedance for m = 3.7:

- frequency range of operation: constant impedance
 - \rightarrow volume flow $Q \approx$ constant (\rightarrow at resonance with strong damping)
- caution: non-linear distortions due to high flow amplitudes in the throat

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeake systems

horn loudspeaker

consequences of finite horn length?

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

- practical design rules (reflections at the end can be ignored) if:
 - length of the horn $> 3\lambda$ and
 - circumference at the end $> \lambda$

transducer principles electrodynamic

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

compression driver (principle):

acoustical transformer:

 \blacktriangleright low velocity of large membrane \rightarrow high velocity in narrow throat

transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequent
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

horn loudspeaker

compression driver (practical design):

- phase plugs:
 - suppression of cavity resonances
 - ▶ to obtain in-phase superposition of velocities in throat cross section

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- i mere-oman parame
- cabinet types
- horn loudsneake

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

electrostatic loudspeaker

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence
- response
- Thiele-Small paramet
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeake systems

electrostatic loudspeaker

- \blacktriangleright push-pull principle \rightarrow sandwich structure:
 - two perforated stationary electrodes (acoustically transparent)
 - lightweight stretched membrane in between (0.2 g/dm²)

transducer principles electrodynamic

electrostatic

radiation

- directivity
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

- ▶ bias voltage U_p needed (linearisation of $F \sim U^2$)
- excellent transient behavior (lightweight and homogeneously driven membrane)
- $\blacktriangleright\,$ only small excursions possible \rightarrow large membrane areas needed
- weak at bass frequencies
- increasing directivity at high frequencies (large membrane area)
- room surfaces behind the speaker cause reflections

electrostatic loudspeaker
transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

magnetostatic loudspeaker

magnetostatic loudspeaker

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequer
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

transduce principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

transducer principles

electrodynamic electrostatic

radiation

- directivity
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

- radiation of the full audio frequency range (20 Hz ... 20 kHz) with one chassis is problematic as
 - ▶ radiation at low frequencies requires large membrane excursion or large membrane areas \rightarrow in conflict with upper limiting frequency (kr = 2)
 - Doppler distortions (frequency modulations of high frequency signal components by low frequencies)

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

solution:

- subdivision of frequency range into several bands by frequency dividing network and radiation by different specialized chassis
- typical number of bands: 2 or 3

transducer principles electrodynamic

electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency response
- Thiele-Small parameter
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

potential difficulties:

- destructive interferences in the transition region due to:
 - differences in phase response of the chassis
 - \blacktriangleright differences in propagation distance: chassis \rightarrow listener

solutions:

- adjustment of phase response
- adjustment for equal propagation distance by geometrical means
- optimal: concentric dual chassis

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated powe
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

power handling:

- ► limited by:
 - max. membrane excursion \rightarrow specified by peak power
 - power dissipation (heating) \rightarrow specified by average power

electrodynamic

radiation

directivity radiated power velocity distributior

electrodynamic loudspeaker

- equivalent networ cabinets
- electrical impedance sound pressure frequence
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

magnetostatic loudspeaker

loudspeaker systems

loudspeaker systems

continuous power testing with standard third-octave spectrum according to IEC 268:

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent netwo cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker systems

cumulated power for the spectrum according to IEC 268:

caution: maximum power handling of a chassis is usually specified as power of the whole system!

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence
- Thiele-Small paramete
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

loudspeaker measurements

frequency response of the electrical impedance at the terminals

- frequency response of sound pressure on axis
- impulse response of sound pressure on axis
- cumulative decay spectrum of sound pressure on axis
- directivity of sound pressure for various discrete frequencies

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameter
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- frequency response of the electrical impedance at the terminals
 frequency response of sound pressure on axis
 - impulse response of sound pressure on axis
- cumulative decay spectrum of sound pressure on axis
- directivity of sound pressure for various discrete frequencies

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- Thiele-Small parameter
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- frequency response of the electrical impedance at the terminals
 - frequency response of sound pressure on axis
 - impulse response of sound pressure on axis
 - cumulative decay spectrum of sound pressure on axis
 - directivity of sound pressure for various discrete frequencies

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence
- Thiele-Small paramete
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- frequency response of the electrical impedance at the terminals
- frequency response of sound pressure on axis
- impulse response of sound pressure on axis
- cumulative decay spectrum of sound pressure on axis
- directivity of sound pressure for various discrete frequencies

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc response
- Thiele-Small parameter
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

- frequency response of the electrical impedance at the terminals
- frequency response of sound pressure on axis
- impulse response of sound pressure on axis
- cumulative decay spectrum of sound pressure on axis
- directivity of sound pressure for various discrete frequencies

transducer principles electrodynamic

electrostatic

radiation

- directivity radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

cumulative decay spectrum of sound pressure

description of the transient behavior as a function of frequency
 experiment: excitation with tone burst signal

transducer principles electrodynamic

electrostatic

radiation

directivity radiated power velocity distribution

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

cumulative decay spectrum

- post-oscillation of the membrane produces sound pressure signal $s_\omega(t)$

$$s_{\omega}(t) = H_{\omega}(t)\sin(\omega t)$$

with

- $H_{\omega}(t)$: modulation of amplitude ω : angular frequency of the excitation signal
- ightarrow waterfall diagram of $H_{\!\omega}(t)$

transducer principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

cumulative decay spectrum

transducer principles

electrostatic

radiation

directivity radiated power velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

cumulative decay spectrum

efficient generation by calculating FFT of time-windowed impulse response:

transducer principles electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequend response
- Thiele-Small parameter
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

cumulative decay spectrum

example of a measurement of a mid-range speaker:

transduce principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

exotic transducers

transducer principles

electrostatic

radiation

- directivity
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

NXT - distributed mode - loudspeaker

transducer principles

electrodynamic electrostatic

radiation

- directivity radiated power
- velocity distribution membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

history:

- 1991 first patent by Ken Heron of Britain's Defence Evaluation and Research Agency (DERA)
- British company NXT got a licence on the principle of operation
 - further investigation of the concept and development of the corresponding technology

Distributed mode - loudspeaker

transducer principles electrodynamic

radiation

- directivity radiated power
- membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- . Thiele-Small parameters
- cabinet types
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Distributed mode - loudspeaker: principle

- NXT speakers consist of large panels
- drivers excite a great many of partial oscillations (bending waves) \rightarrow panel oscillates with 'arbitrary' local velocity distribution
- ► oscillation pattern leads to incoherent (energetic) superposition at a receiver → omnidirectional radiation characteristics (figure-of-eight in case of mounting in free space)

transducer principles

electrostatic

radiation

- directivity
- velocity distribution of a

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- response
- Thiele-Small paramete
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Distributed mode - loudspeaker

construction:

- large panels e.g. 60x60 cm
- excitation by one or several drivers

transducer principles electrodynamic

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response
- i niele-oman param
- cabinet types
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Distributed mode - loudspeaker

typical amplitude response:

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

Distributed mode - loudspeaker

typical impulse response [ms units]:

transducer principles

electrodynamic

radiation

- directivity radiated power
- velocity distribution of

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequenc
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Distributed mode - loudspeaker

applications:

- ▶ invisible P.A. systems (e.g. speaker arrays mounted in a ceiling)
- ▶ in case of special requirements (fire retardant, cleanable)
- optical-acoustical double-usage (e.g. surface for optical projection acts as speaker as well)

transducer principles electrodynami

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequence
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Air motion transformer

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequency
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

history:

Oskar Heil, USA

Air motion transformer

transducer principles electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequer
- response
- enhinet tunes
- optimizations
- horn loudspeaker
- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

Air motion transformer: principle

- ▶ folded plastic foil between permanent magnets (large air gap → strong magnets required)
- conductors along the folds (up and down)
- \blacktriangleright force across the membrane surface \rightarrow folds are opened and closed

transducer principles

electrodynamic electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance sound pressure frequen
- response Thiole-Small parameter
- cabinet types
- optimizations

horn loudspeaker

electrostatic loudspeaker

- magnetostatic loudspeaker
- loudspeaker systems

air motion transformer

advantages:

- \blacktriangleright small membrane movement \rightarrow efficient volume variation \rightarrow high volume flow
- ▶ typical transformation ratio: 1:5
- excellent transient behavior

transduce principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

air motion transformer

impulse response eton:

transduce principles

electrodynamic

radiation

- directivity
- radiated power
- velocity distribution of a membrane

electrodynamie loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequenc response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeake systems

air motion transformer

impulse response visaton tweeter:

transducer principles

electrostatic

radiation

- directivity
- radiated power
- velocity distribution of membrane

electrodynamic loudspeaker

- equivalent network cabinets
- electrical impedance
- sound pressure frequency response
- Thiele-Small parameters
- cabinet types
- optimizations

horn loudspeaker

- electrostatic loudspeaker
- magnetostatic loudspeaker
- loudspeaker systems

eth-acoustics-2