mechanical systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics II: electrical-mechanical-acoustical analogies

Reto Pieren 2024

Motivation

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

- microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems
- $\blacktriangleright \rightarrow$ analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- \blacktriangleright \rightarrow introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
- excellent tools available for analysis of electrical networks

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Motivation

microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems

- \blacktriangleright \rightarrow analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- \blacktriangleright \rightarrow introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
 - excellent tools available for analysis of electrical networks

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Motivation

- microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems
- $\blacktriangleright \ \rightarrow$ analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- \blacktriangleright \rightarrow introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
 - excellent tools available for analysis of electrical networks

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Motivation

- microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems
- $\blacktriangleright \ \rightarrow$ analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- \blacktriangleright \rightarrow introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
 - excellent tools available for analysis of electrical networks

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Motivation

- microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems
- $\blacktriangleright \ \rightarrow$ analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- $\blacktriangleright \to$ introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
- excellent tools available for analysis of electrical networks

Motivation

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

- microphones and loudspeakers consist of coupled mechanical, acoustical and electrical subsystems
- $\blacktriangleright \ \rightarrow$ analysis has to consider all subsystems in an integral way
- the fundamental differential equations have identical form in all systems
- $\blacktriangleright \to$ introduction of analogies and conversion of mechanical and acoustical systems into electrical ones
- excellent tools available for analysis of electrical networks

mechanical systems

- describing quantitie
- mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

mechanical systems

mechanical systems

describing quantities

- mechanical elements Mechanical sources Mechanical resonance spring pendulum
- acoustical systems describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

- At a specific point of a mechanical system, the two quantities of interest are:
 - ▶ velocity $u = \frac{dx}{dt}$

Describing quantities

► force F

From u, further quantities are derived to describe the movement:

- displacement $x = \int u dt$
- ▶ acceleration $a = \frac{du}{dt}$

describing quantities mechanical elements

- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

mechanical elements

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources Mechanical resonance -

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Mechanical mass

ideal mass:

ports 1 and 2:

- \blacktriangleright incompressible \rightarrow each point of the mass has identical velocity
- ▶ physical description: $F_{res} = m \cdot a$ (Newton)

$$u_1 = u_2 = u$$
$$F_1 - F_2 = m \frac{du}{dt}$$

mechanical systems describing quant

- mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Spring ideal spring:

- \blacktriangleright stiffness *s* independent of excursion *x*
- physical description: $F = s \cdot x$ (Hook's law)
- no force difference along the spring

$$F_1 = F_2 = F$$
$$F = s \int (u_1 - u_2) \, \mathrm{d}t$$

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources Mechanical resonance soring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Friction

ideal friction:

- proportionality between friction force and velocity
- physical description: $F = R \cdot u$
- no force difference along the friction element

mechanical systems describing quantities mechanical elements

Mechanical sources

spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

Examples mechanical networks

Examples acoustical networks

distributed elements

cylindrical vs. conical tubes

Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

ideal link:

Links

- connecting element for mechanical building blocks
- no mass and incompressible

mechanical systems describing quantities mechanical elements

- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Lever

ideal lever:

- frictionless and massless
- mechanical transformer

 $F_1 l_1 - F_2 l_2 = 0$ $u_1 l_2 + u_2 l_1 = 0$

mechanical systems

describing quantities mechanical elements

Mechanical sources

Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

Mechanical sources

Mechanical sources:

- force source
 - ▶ example: conductor in a magnetic field \rightarrow force $\sim B \times I$ but independent of velocity
- velocity source
 - example: motor with a flywheel \rightarrow velocity independent of load (force)

resonance system: spring pendulum

- systems describing quantiti mechanical elemen
- Mechanical resonance spring pendulum
- acoustical systems
- describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion
- thin absorbers
- back

- R S S
- given: external force: $F(t) = \hat{F} \sin(\omega t)$
- unknown: movement of mass
 - excursion x(t)
 - velocity u(t) = dx/dt
 - acceleration $a(t) = d^2 x/dt^2$

mechanical systems describing quantit mechanical elemen Mechanical source

Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances Examples mechar

networks Examples acoustical

networks

distributed elements

cylindrical vs. conical tubes

Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

resonance system: spring pendulum: solution?

equilibrium of forces:

$$F_{acceleration} + F_{friction} + F_{spring} = F_{spring}$$

differential equation for x in complex writing for harmonic excitation:

$$mrac{d^2x}{dt^2} + Rrac{dx}{dt} + sx = \hat{F}e^{j\omega t}$$

mechanicai systems describing quantition mechanical elemen

Mechanical sources

Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

general solution of the differential equation:

resonance system: spring pendulum: solution?

$$x(t) = \frac{\hat{F}e^{j\omega t}}{(j\omega)^2 m + j\omega R + s} = \frac{\hat{F}e^{j\omega t}}{j\omega \left(j\omega m + R + \frac{s}{j\omega}\right)}$$

nechanical systems

- mechanical elements
- Mechanical resonance -

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum: solution?

with

$$Z_m = j\omega m + R + \frac{s}{j\omega}$$

we obtain:

$$x(t) = \frac{\hat{F}e^{j\omega t}}{j\omega Z_m}$$
$$u(t) = \frac{\hat{F}e^{j\omega t}}{Z_m}$$
$$a(t) = \frac{j\omega\hat{F}e^{j\omega t}}{Z_m}$$

mechanical systems

- mechanical elements
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum: solution?

amplitude responses:

mechanical systems

- describing quantities
- mechanical element
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

resonance system: spring pendulum

consequences for microphones:

- majority of mics use a membrane (mechanical spring-mass resonance system)
- condition for flat amplitude response:
 - operation below resonance if electrical output is proportional to membrane excursion
 - operation at resonance if electrical output is proportional to membrane velocity

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum

consequences for microphones:

- majority of mics use a membrane (mechanical spring-mass resonance system)
- condition for flat amplitude response:
 - operation below resonance if electrical output is proportional to membrane excursion
 - operation at resonance if electrical output is proportional to membrane velocity

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum

consequences for microphones:

 majority of mics use a membrane (mechanical spring-mass resonance system)

condition for flat amplitude response:

- operation below resonance if electrical output is proportional to membrane excursion
- operation at resonance if electrical output is proportional to membrane velocity

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum

consequences for microphones:

- majority of mics use a membrane (mechanical spring-mass resonance system)
- condition for flat amplitude response:
 - operation below resonance if electrical output is proportional to membrane excursion
 - operation at resonance if electrical output is proportional to membrane velocity

mechanical systems

- describing quantities
- mechanical elements
- Mechanical resonance -
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

resonance system: spring pendulum

consequences for microphones:

- majority of mics use a membrane (mechanical spring-mass resonance system)
- condition for flat amplitude response:
 - operation below resonance if electrical output is proportional to membrane excursion
 - operation at resonance if electrical output is proportional to membrane velocity

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

acoustical systems

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

describing quantities

fundamental acoustical quantities:

- sound pressure p
- sound particle velocity v or volume flow $Q = \int_{S} v dS$

movie: rohr-open5-4

mechanica systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Acoustical elements

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Acoustical mass

Acoustical mass:

where

 ρ : density of air

- accelerated but not compressed air
- ▶ realization: tube of length *I*, diameter *d* where $\lambda \gg I$ and $\lambda \gg d$

$$\Delta F =
ho A l rac{dv}{dt}$$
 Newton

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Acoustical compliance

Acoustical compliance:

- compressed but not accelerated air
- ▶ realization: cavity V with opening area A (largest dimension $I \ll \lambda$)

Acoustical compliance

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance spring pendulum

acoustical systems

Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes

where

c: speed of sound

Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

experiment: virtual piston in opening A with applied force F
 piston sinks in by ∆l = ^F/_s (s: stiffness of the compliance)
 with the assumption of adiabatic behavior (no temperature exchange):

$$s = c^2
ho rac{A^2}{V}$$

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

. .

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

position of the opening is irrelevant

Acoustical compliance

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonanc spring pendulum

acoustical systems

Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversion

thin absorbers

back

Acoustical resistance

Acoustical resistance:

- element introduces losses (conversion of sound energy into heat)
- realization: porous material, small tube

resistance of a small tube:

$$\Delta p = v \frac{8 l \eta}{r^2}$$

where

- Δp : sound pressure difference on both sides
- v: sound particle velocity
- *I*: length of the tube
- *r*: radius of the tube ($r \ll l$)
- $\eta:$ dynamic viscosity of air: $1.82\times10^{-5} \rm N sm^{-2}$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

- acoustical resistance of a tube is always accompanied by an acoustical mass
 - mass behavior can be neglected for small diameters and low frequencies

Acoustical resistance

mechanica systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

analogies
mechanical systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

- Impedance
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

	potential quantity	now quantity
electrical system:	voltage	current
mechanical system:	velocity <i>u</i>	force F
acoustical system:	sound pressure <i>p</i>	volume flow Q

matel model

 \rightarrow dual analogy would be possible as well

Analog quantities

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Analog quantities

Amplitude scaling:

- conversion of acoustical and mechanical quantities into electrical ones requires amplitude and unit conversion factors
- arbitrary amplitude conversion factors are allowed
- here: = 1

mechanical systems

- describing quantities
- mechanical element
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

- Impedance
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Analog quantities

mechanical \rightarrow electrical:

$$egin{array}{ll} U = G_1 u & \mbox{with} & G_1 = 1 rac{\mbox{Vs}}{\mbox{m}} \ I = rac{1}{G_2} F & \mbox{with} & G_2 = 1 rac{\mbox{N}}{\mbox{A}} \end{array}$$

mechanical systems

- describing quantities
- mechanical element
- Mechanical sources
- Mechanical resonance -

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

- Impedance
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

acoustical \rightarrow electrical:

Analog quantities

$$U = G_3 p$$
 with $G_3 = 1 rac{{
m Vm}^2}{{
m N}}$
 $I = rac{1}{G_4} Q$ with $G_4 = 1 rac{{
m m}^3}{{
m As}}$

Impedances: general

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Conversion of mechanical and acoustical elements into analog electrical ones is performed using impedance definition:

$$\mathsf{impedance} = rac{\mathsf{potentialQuantity}}{\mathsf{flowQuantity}}$$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Impedances: mechanical mass

impedance Z of the mechanical mass:

$$Z = \frac{u}{F} = \frac{u}{m\frac{du}{dt}}$$

with
$$u = u_0 e^{j\omega t}$$
 follows $\frac{du}{dt} = u_0 j\omega e^{j\omega t}$ and finally

$$Z = \frac{1}{j\omega m}$$

• mechanical mass \triangleq electrical capacitance

inertia of the mass is understood relative to reference system at rest

 capacitors always at ground potential

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Impedances: mechanical spring

impedance Z of the mechanical spring:

$$Z = \frac{u}{F} = \frac{u}{s \int u dt}$$

with $u = u_0 e^{j\omega t}$ follows $\int u dt = u_0 \frac{1}{j\omega} e^{j\omega t}$ and finally
 $Z = j\omega \frac{1}{s}$

- mechanical spring
$$riangleq$$
 electrical inductance

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

impedance Z of a mechanical friction element:

Impedances: mechanical friction

$$Z = \frac{u}{F} = \frac{u}{Ru} = \frac{1}{R}$$

▶ mechanical friction element \triangleq electrical resistance

mechanical systems

- describing quantities mechanical elements
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Impedances: acoustical mass

impedance Z of the acoustical mass:

$$Z = \frac{p}{Q} = \frac{\frac{\Delta F}{A}}{Av} = \frac{\rho A I \frac{dv}{dt}}{A A v}$$

with
$$v=v_0e^{j\omega t}$$
 follows $rac{dv}{dt}=v_0j\omega e^{j\omega t}$ and finally

$$Z = j\omega \frac{\rho I}{A}$$

▶ acoustical mass \triangleq electrical inductance

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Impedance: acoustical compliance

impedance Z of the acoustical compliance:

$$Z = \frac{p}{Q} = \frac{\frac{\Delta F}{A}}{Av} = \frac{c^2 \rho \frac{A^2}{V} \Delta I}{AAv} = \frac{c^2 \rho \frac{A^2}{V} \int v dt}{AAv}$$

with $v = v_0 e^{j\omega t}$ follows $\int v dt = v_0 \frac{1}{j\omega} e^{j\omega t}$ and finally

$$Z = \frac{c^2 \rho}{j \omega V}$$

► acoustical compliance \triangleq electrical capacitance

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Impedance: acoustical resistance

impedance Z of the acoustical resistance:

$$Z = \frac{p}{Q} = \frac{8I\eta}{\pi r^4}$$

where

I: length of the tube

- *r*: radius of the tube ($r \ll l$)
- $\eta:$ dynamic viscosity in air = 1.82 $\times 10^{-5}~\rm Nsm^{-2}$
 - ► acoustical resistance \triangleq electrical resistance

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanic networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

mpedances: overview	

	electrical	mechanical	acoustical
Z = R	resistance	resistance	resistance
$Z = \frac{1}{j\omega C}$	capacitor	mass	compliance
$Z = j\omega L$	inductance	spring	mass

mechanical systems

- describing quantities
- mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

potential and flow quantities

Impedances

- Examples mechanic networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Impedances: overview

	electrical	mechanical	acoustical
Z = R	R	$R=rac{1}{R_m}G_1G_2$	$R=R_mG_3G_4$
$Z = \frac{1}{j\omega C}$	С	$C = m rac{1}{G_1 G_2}$	$C = rac{V}{ ho c^2} rac{1}{G_3 G_4}$
$Z = j\omega L$	L	$L = \frac{1}{s}G_1G_2$	$L = \frac{\rho I}{A} G_3 G_4$

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Examples of mechanical networks

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance -

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

combinations of mechanical mass and spring:

Example: mechanical resonance circuit

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance -

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

combinations of mechanical mass and spring:

Example: mechanical resonance circuit

Example: mechanical resonance circuit

mechanical systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversion

thin absorbers

back

- sinusoidal force excitation
- analysis of the mechanical spring pendulum with help of an equivalent electrical circuit.

Example: mechanical spring pendulum

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

potential and flow quantities

Impedances

Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tubes

x = F_F/s
 u = F_R/R
 a = F_M/m

Measurement of acoustical impedances

coupling

interfaces

thin absorbers

back

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tube
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

 \blacktriangleright strategy in case of sinusoidal vibration \rightarrow implementation of an additional resonance system

Example: mechanical vibration damper

Example: mechanical vibration damper

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances

Examples mechanical networks

- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversion

thin absorbers

back

- additional series resonance circuit
- \blacktriangleright at resonance: impedance \rightarrow 0
- short-circuit for the excitation force

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Examples of acoustical networks

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

interfaces

thin absorbers

back

Example: acoustical resonance circuit

combination of acoustical mass and compliance:

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversion

thin absorbers

back

Example: acoustical resonance circuit

combination of acoustical mass and compliance:

С

 \rightarrow parallel resonance circuit

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tube
- Measurement of acoustica impedances

 \rightarrow

coupling

interfaces

thin absorbers

back

Example: acoustical resonance circuit

combination of acoustical mass and compliance:

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversion

thin absorbers

back

Example: acoustical resonance circuit

combination of acoustical mass and compliance:

 \rightarrow series resonance circuit

С

mechanical systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

muffler:

Example: muffler

- no damping for low frequency air flow
- high damping for high frequency sound
- ightarrow ightarrow acoustical low pass filter

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Example: acoustical transmission line

tubes (cross sect. area = A, $d \ll \lambda$) with length $> \lambda$:

- ▶ subdivision of the tube into small sections of length I ($I \ll \lambda$)
- representation of each section by mass and compliance properties
- equivalent network: L, C, L T-section with

$$L = \frac{\rho l}{2A}$$
$$C = \frac{Al}{\rho c^2}$$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements
- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Example: acoustical transmission line

numerical example:

- hard terminated tube of length 24 cm
- cross sectional area $A = 10^{-4} \text{ m}^2$
- discretization: I = 0.04 m

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

Examples acoustical networks

- distributed elements cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

interfaces Dual conversion

thin absorbers

back

Spice simulation of the voltage at the hard/open termination:

Example: acoustical transmission line

resonance frequencies expected from theory: $\frac{1\lambda}{4} = 0.24m \rightarrow 354 \text{ Hz}, \ \frac{3\lambda}{4} = 0.24m \rightarrow 1063 \text{ Hz}$ $\frac{5\lambda}{4} = 0.24m \rightarrow 1771 \text{ Hz}, \ \frac{7\lambda}{4} = 0.24m \rightarrow 2479 \text{ Hz}$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

distributed acoustical elements

mechanical systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- acoustical systems
- describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

modeling methods of the acoustical behavior of long tubes:

distributed acoustical elements

- 1. sequence of short sections, each represented by lumped elements
- 2. introduction of a distributed acoustical element \rightarrow four-pole

distributed acoustical elements

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks

distributed elements

- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion
- thin absorber

back

assumption: two plane waves traveling in opposite directions

$$\check{p}(x)=Ae^{-jkx}+Be^{jkx}$$

$$\check{\mathbf{v}}(\mathbf{x}) = \frac{A}{
ho c} e^{-jk\mathbf{x}} - \frac{B}{
ho c} e^{jk\mathbf{x}}$$

distributed acoustical elements

mechanical systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks

distributed elements

- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

definition:

•
$$\check{p}(x=0) \equiv \check{p}_1$$
 and $\check{p}(x=d) \equiv \check{p}_2$
• $\check{v}(x=0) \equiv \check{v}_1$ and $\check{v}(x=d) \equiv \check{v}_2$

mechanical systems

describing quantities mechanical elements Mechanical sources Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

distributed acoustical elements

insert definition:

- *p*(x = 0) = *p*₁ and *p*(x = d) = *p*₂
 v(x = 0) = *v*₁ and *v*(x = d) = *v*₂
- in:

$$\check{p}(x)=Ae^{-jkx}+Be^{jkx}$$

$$\check{v}(x) = rac{A}{
ho c} e^{-jkx} - rac{B}{
ho c} e^{jkx}$$

resolving for \check{p}_2 and \check{v}_2

mechanica systems

- describing quantities mechanical elements Mechanical sources
- spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

distributed acoustical elements

yields the four-pole equations:

$$\check{p}_2 = \frac{\check{p}_1}{2}e^{-jkd} + \frac{\check{p}_1}{2}e^{jkd} + \frac{\check{v}_1\rho c}{2}e^{-jkd} - \frac{\check{v}_1\rho c}{2}e^{jkd}$$
$$= \check{p}_1\cosh(jkd) - \check{v}_1\rho c\sinh(jkd)$$

$$\begin{split} \check{v}_2 &= \frac{1}{\rho c} \frac{\check{p}_1}{2} e^{-jkd} - \frac{1}{\rho c} \frac{\check{p}_1}{2} e^{jkd} + \frac{\check{v}_1}{2} e^{-jkd} + \frac{\check{v}_1}{2} e^{jkd} \\ &= -\check{p}_1 \frac{1}{\rho c} \sinh(jkd) + \check{v}_1 \cosh(jkd) \end{split}$$

mechanical systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks

with:

Examples acoustical networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

distributed acoustical elements

representation of the above four-pole relations by T-type circuit:

$$Z_1 = j\rho c \frac{1 - \cos(kd)}{\sin(kd)}$$
$$Z_2 = \frac{-j\rho c}{\sin(kd)}$$
mechanica systems

- describing quantities mechanical elements Mechanical sources
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks

distributed elements

- cylindrical vs. conical tube
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

distributed acoustical elements

application example: impedance at the entrance of tube of length d with hard termination:

$$\frac{\check{p}_1}{\check{v}_1} = Z_1 + Z_2$$

$$\frac{\check{p}_1}{\check{v}_1} = \frac{j\rho c - j\rho c \cos(kd) - j\rho c}{\sin(kd)} = -j\rho c \cot(kd)$$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum
- acoustical systems
- describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements

cylindrical vs. conical tubes

Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Input impedances of cylindrical and conical tubes

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements

cylindrical vs. conical tubes

Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

brass instruments: playable at frequencies for which input impedance Z is maximal

Input impedances of cylindrical and conical tubes

- \blacktriangleright simulation of Z by Spice analysis of the equivalent electrical network
- termination at open end: short circuit

mechanical systems

- describing quantities
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

- potential and flo quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements

cylindrical vs. conical tubes

Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Input impedances of cylindrical and conical tubes

60 40

50

100

150

-15 to 15 cm -7 to 15 cm -3 to 15 cm -1.5 to 15 cm -0.5 to 15 cm

200

250

300

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

Measurement of acoustical impedances

mechanical systems

- describing quantities mechanical elements
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

investigation of unknown acoustical impedances

Measurement of acoustical impedances

- e.g. quality control of wind instruments
- \blacktriangleright e.g. audiometric tests \rightarrow input impedance of the middle ear

how to do this?

mechanical systems

- describing quantities mechanical elements
- Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

measurement methods

- 1. combination of sound pressure and sound particle velocity sensors, e.g. $\mu {\rm Flown}$
- 2. two pressure sensors and known acoustical resistance

Measurement of acoustical impedances

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces Dual conversior

thin absorbers

back

Measurement of acoustical impedances

method with two pressure sensors and known acoustical resistance

possible evaluation strategies:

- ▶ loudspeaker signal controlled for constant difference $p_1 p_2 \rightarrow p_2 \sim Z$
- calculation from measured spectra

mechanical systems

- describing quantities mechanical elements
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

coupling of mechanical, acoustical and electrical systems

mechanica systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

interfaces

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

linking of different subsystems:

interfaces

- transformation of different physical quantities with help of interfaces:
 - type 1: conversion of potential quantity into potential quantity and flow quantity into flow quantity
 - type 2: conversion of potential quantity into flow quantity and vice versa

mechanica systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

interfaces: transformer

interface type 1: transformer

relations for the transformer:

$$U_2 = nU_1 \tag{1}$$
$$I_2 = \frac{1}{n}I_1 \tag{2}$$

mechanica systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorber

back

interface: gyrator

interface type 2: gyrator

relations for the gyrator:

$$U_2 = mI_1 \tag{3}$$
$$I_2 = \frac{1}{m}U_1 \tag{4}$$

mechanica systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interface

Dual conversion

thin absorber

back

Dual conversion

mechanical systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

interfaces

Dual conversion

thin absorbers

back

Dual conversion

motivation: elimination of gyrators

- \blacktriangleright selection of an arbitrary conversion factor r
- dual conversion of a suitable region of the network (cut in half all gyrators)
- \blacktriangleright gyrators \rightarrow transformers
- \blacktriangleright series arrangement \rightarrow parallel arrangement
- \blacktriangleright parallel arrangement \rightarrow series arrangement
- ▶ $L \rightarrow C$, $C \rightarrow L$, $R \rightarrow 1/R$

mechanical systems

- describing quantities mechanical element
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
- Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

interface

Dual conversion

thin absorber

back

Dual conversion

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

interface

Dual conversion

thin absorber

back

Dual conversion

mechanica systems

- describing quantities mechanical elements
- Mechanical resonance

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanica networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

application: thin absorber in front of a hard wall

mechanica systems

- describing quantities mechanical elements Mechanical sources Mechanical resonance
- spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

discussion of the behavior of a thin porous layer in front of a hard wall with help of an equivalent network for normal incidence

Thin absorber in front of a hard wall

 \rightarrow equivalent electrical network?

Thin absorber in front of a hard wall

mechanical systems

- describing quantities mechanical elements
- Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

- describing quantities
-

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustica networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustica impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

Thin absorber in front of a hard wall

how to maximise absorption?

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorbers

back

▶ absorption: dissipated power according to $i_R \cdot u$

Thin absorber in front of a hard wall

max. absorption for

$$Z_S \to 0$$

- $R_S = Z_0$
- $m \to \infty$

mechanical systems

- describing quantities mechanical elements Mechanical sources
- Mechanical resonance spring pendulum

acoustical systems

describing quantities Acoustical elements

analogies

- potential and flow quantities
- Impedances
- Examples mechanical networks
- Examples acoustical networks
- distributed elements
- cylindrical vs. conical tubes
- Measurement of acoustical impedances

coupling

- interfaces
- Dual conversion

thin absorber

back

eth-acoustics-2