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Chapter 1

Acoustic fundamentals

1.1 Introduction: Acoustics and sound

Acoustics is the science of sound. Typical questions deal with the generation of sound, the propagation
and interaction with matter and the perception by humans. The term sound stands for mechanical
oscillations with wave-like propagation. Sound waves can propagate in air, in liquids or in solid bodies.
Figure 1.1 shows plane wave propagation in an open ended tube as a movie sequence.

Figure 1.1: Movie pictures of the sound propagation in a long and open tube. The sound waves are
generated by the moving piston shown on the left. The dots depict air particles. Of special interest is the
local density of the particles which corresponds to sound pressure and the speed of the particles which
corresponds to sound particle velocity. It should be noted that on average there is no net movement of
the particles.

Corresponding to the perceptional capabilities of the human ear, three di�erent frequency ranges are
distinguished. The range of hearing stretches from about 16 Hz to 16 kHz. Lower frequencies are
called infra-sound, higher frequencies are called ultra-sound.

The �eld of acoustics can be subdivided into several special topics such as:

Theoretical acoustics analytical and numerical methods for sound �eld calculations.

Nonlinear acoustics nonlinear e�ects that occur at events of extremely high sound pressure such as
explosions or sonic booms of objects that move faster than the speed of sound.
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Underwater acoustics sound propagation in water, sonar systems, seismic explorations.

Ultrasound non destructive test procedures for materials, medical applications.

Vibrations vibrational behavior of bodies, sound radiation of vibrating structures.

Noise control description and modeling of noise sources, investigations on noise protection measures.

Room acoustics assessment, planing and prediction of sound �elds in rooms.

Building acoustics noise control in buildings, transmission loss of building structures.

Electroacoustics transducers (microphones, loudspeakers), recording devices, public address systems,
signal processing in acoustics.

Acoustics of the ear structure of the ear, characteristics of the ear, perception and subjective evalu-
ation of noise.

1.2 Basic sound wave phenomena

1.2.1 Geometrical spreading

Sound wave fronts that origin from a source with �nite extension spread with growing distance over an
increasing surface. Correspondingly the amplitude of the sound wave decreases (Figure 1.2).

Figure 1.2: Geometrical spreading of a pulse shaped sound wave (time progresses from left to right).
The location dependent sound pressure is color coded where intense red corresponds to high positive
values and intense blue stands for high negative values.

1.2.2 Re�ection of sound waves

If a sound wave hits an object, the free propagation is disturbed. At least a portion of the incident
wave will be thrown back that i.e. will be re�ected. If the re�ecting object is large and �at, a specular
re�ection occurs. In this case the billiard rule angle of incidence = angle of re�ection holds. The
re�ected wave has a distinct orientation and has the same temporal characteristics as the incident wave
(Figure 1.3).

Figure 1.3: Re�ection of a pulse shaped sound wave at a large smooth surface.
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1.2.3 Scattering of sound waves

If the size of the re�ecting object is small or the re�ecting surface is signi�cantly structured in depth
(compared to the wave length), the re�ection is no longer specular but scattering or di�use. Re�ected
waves represent no distinct direction and are smeared over time (Figure 1.4).

Figure 1.4: Re�ection or scattering of a pulse shaped sound wave at several small objects.

1.2.4 Interference of sound waves

If two or more sound waves superpose, the resulting wave has sound pressure and sound velocity corre-
sponding to the sum of the individual pressures and velocities. This summation has to be understood
for each point in space and time. If the individual waves have identical frequency, their relative phase
decides wether they amplify or attenuate each other. If the phase di�erence between two waves is small,
an ampli�cation occurs and the interference is called constructive. If the phase di�erence tends to 180◦

the waves attenuate each other and the interference is called destructive (Figure 1.5).

Figure 1.5: Superposition of two sound sources emitting sinusoidal waves resulting in location speci�c
constructive or destructive interference.

1.2.5 Di�raction of sound waves

Di�raction describes the phenomenon that waves are bent around obstacles (Figure 1.6). The de�ection
into the geometrical shadow is stronger for lower frequencies.

Figure 1.6: Di�raction of a pulse shaped sound wave at an edge (time progresses from left to right).
The edge of the barrier is the origin of a secondary wave.
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1.3 Fundamental quantities

1.3.1 Sound pressure, sound particle displacement and sound velocity

One of the consequences of the hull of air surrounding the earth is a static pressure. This atmospheric
pressure is highest at sea level and decreases with height. On average the atmospheric pressure is
about 100'000 Pa. A variation in altitude of 1 m results in a change of about 12 Pa. The atmospheric
pressure is superimposed by small �uctuations as a consequence of sound waves. The human ear is only
sensitive to these variations. Consequently these fast �uctuations relative to the atmospheric pressure
got a special name. The corresponding quantity is called sound pressure (dt: Schalldruck) and is de�ned
as (Eq. 1.1):

p(t) = P (t)− Patm (1.1)

where
p(t): sound pressure
P (t): momentary air pressure
Patm: atmospheric pressure

The production of local pressure variations leads to waves that travel with the speed of sound. Sound
waves transport energy by the interaction of adjacent elements. Therefore they require matter with
a mass and spring characteristics. In air (airborne sound) sound waves are always longitudinal waves
which means that the gas particles move back and forth in the propagation direction. The movement
of the gas particles is described by the sound particle displacement ζ (dt: Schallausschlag) and by the
sound particle velocity v⃗ (dt: Schallschnelle). The sound particle velocity v⃗ is a vector which points in
the propagation direction. The displacement and the velocity are related by Eq. 1.2.

v(t) =
dζ

dt
(1.2)

Sound pressure and sound particle velocity represent the two fundamental quantities to describe
acoustical processes.

A sound �eld describes the acoustical conditions in a region in space. A complete description of a
sound �eld requires in principle knowledge of sound pressure and sound particle velocity at every point
in space. However as sound particle velocity can be related to the sound pressure gradient (see below),
the velocity �eld can be calculated from complete information about sound pressure alone.

Typical numerical values

sound pressure normal speech produces in 1 m distance typical root mean squared sound pressure
values ptyp,rms of about 0.1 Pa. At frequencies around 1 kHz sound pressure values pmin,rms of 2
×10−5Pa are just audible. The threshold of pain of the human auditory system is at pmax,rms ≈
100 Pa.

sound particle displacement at a frequency of 1 kHz the above indicated sound pressure values
correspond to sound particle displacements of ζtyp,rms ≈ 4× 10−8 m, ζmin,rms ≈ 8× 10−12 m and
ζmax,rms ≈ 4× 10−5 m.

sound particle velocity in a plane wave the sound pressure values from above correspond to the
following particle velocities: vtyp,rms ≈ 2.5× 10−4 m/s, vmin,rms ≈ 5× 10−8 m/s and vmax,rms ≈
0.25 m/s.

1.3.2 Sound intensity and sound power

The energy transport related to a sound wave can be described by the sound intensity (dt: Schallinten-

sit�'at) I⃗. The intensity indicates the amount of sound energy per unit time or sound power that passes
through an orthogonal unit area. The sound intensity is a vector and points in the same direction as
the sound particle velocity. The absolute value equals the product of sound pressure and sound particle
velocity (taking into account a possible phase shift).

I = pv [W/m2] (1.3)
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The bar in Eq. 1.3 indicates averaging in time. In the vicinity of sound sources or re�ectors there is
usually a phase shift between p and v. In extreme cases this can lead to low intensity values although
sound pressure and sound particle velocity have both high amplitudes. The physical interpretation is
that air moves back and forth without signi�cant compression. In other words there is a lot of reactive
power but only little e�ective power.

If the sound intensity is known, the sound power W passing through an area S is given by the integral
in Eq. 1.4.

W =

∫
S

I⃗dS⃗ [W ] (1.4)

The multiplication denotes the scalar product of the intensity vector I⃗ and the orthogonal vector of
the area element dS⃗. The sound power W corresponds to the total radiated power of the source if the
area S encloses the source completely.

The sound power of typical sources is very small as shown in Table 1.1.

sound power [W]
human voice, normal 7×10−6

human voice, max. 2×10−3

violin, fortissimo 1×10−3

Hi-Fi loudspeaker (10 W el.) 0.1
jackhammer 1
organ, fortissimo 10
orchestra (75 persons) 70
airplane Boeing 747 6'000
airplane FA-18 200'000

Table 1.1: Examples of sound sources and their emitted sound power.

1.3.3 Impedance

The ratio of sound pressure and sound particle velocity is de�ned as acoustical impedance Z (dt.
Impedanz).

Z =
p̌

v̌
(1.5)

The symbol .̌ stands for the complex amplitude that contains an amplitude and a phase information.
In general the impedance Z is a complex quantity.

1.3.4 Volume velocity

In the discussion of sound radiation the quantity volume velocity Q (dt: Schall�uss) plays an important
role. It indicates the amount of sound that passes through a certain area (Eq. 1.6). The multiplication
stands for the scalar product of the sound particle velocity and orthogonal vector of the area element
dS⃗.

Q =

∫
S

v⃗dS⃗ (1.6)

1.4 Fundamental equations

1.4.1 Wave equation

The wave equation is the fundamental di�erential equation that describes in a compact form the physics
of sound �elds. For their derivation the interactions between sound pressure and sound particle velocity
will be formulated.
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Interaction between sound pressure and sound particle velocity

The e�ect of sound pressure on sound particle velocity is investigated in a small cube with dimensions
∆l ·∆l ·∆l. It is assumed that the sound pressure p on all six faces of the cube is known. Given this
we are looking for the behavior of the sound particle velocity v⃗ in the cube (Fig. 1.7).

Figure 1.7: Situation to investigate the interaction between sound pressure p and sound particle velocity
v⃗ in a small cube.

The consequence of pressure di�erences on opposite sides of the cube is an acceleration a of the air
with mass m in between. Once the acceleration is known, the sound particle velocity can be deduced
easily. The relevant physical equation is Newton's law (1.7).

Fres = m · a (1.7)

The resulting force Fres corresponds to the pressure di�erence multiplied by the area. The acceleration
equals the time derivative of the sound particle velocity in the corresponding direction. Here this is
shown for the x coordinate direction (1.8).

∆l2(px0 − px1) = m
∆vx
∆t

(1.8)

The mass of the cube is related to density ρ as:

m = ∆l3 · ρ (1.9)

Eq. 1.8 becomes

∆l2(px0 − px1) = ∆l3 · ρ∆vx
∆t

(1.10)

Finally with division by the volume of the cube ∆l3 it follows from Eq. 1.10

px0 − px1
∆l

= ρ
∆vx
∆t

(1.11)

Eq. 1.11 can be written as separated di�erential equations for the three directions in space:

∂p

∂x
= −ρ∂vx

∂t
∂p

∂y
= −ρ∂vy

∂t

∂p

∂z
= −ρ∂vz

∂t
(1.12)

or in vector equation form:

grad(p) = −ρ∂v⃗
∂t

(1.13)
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Interaction between sound particle velocity and sound pressure

The e�ect of sound particle velocity on sound pressure is again investigated in a small cube with
dimensions ∆l ·∆l ·∆l. It is assumed that the sound particle velocity v⃗ is given on all six faces of the
cube. We are looking for the behavior of the sound pressure p in the cube (Fig. 1.8).

Figure 1.8: Situation to investigate the interaction between sound particle velocity v⃗ and sound pressure
p in a small cube.

A di�erence in sound particle velocity on two opposite sides of the cube results in a change of the cube
volume ∆V . This volume change is connected to a change in pressure ∆P . Assuming an adiabatic
process, the relation between ∆V and ∆P is described by the Poisson law (1.14). The assumption of
an adiabatic process is usually ful�lled for sound in air. This implies that there is no heat exchange
between the sound wave and the surrounding. However in special cases such as a loudspeaker box
�lled with porous material the process is no longer adiabatic but isothermal. For adiabatic processes
an expansion of the gas leads to a pressure decrease and a cooling of the gas.

PV κ = constant (1.14)

with
P : pressure of the gas
V : volume
κ: adiabatic exponent, for air κ = 1.4

For small variations the Poisson law in Eq. 1.14 can be linearized. A small pressure variation ∆P is
related to a small volume change ∆V :

(P0 +∆P )(V0 +∆V )κ = P0V
κ
0 (1.15)

The �rst term in Eq. 1.15 can be rewritten as

P0 +∆P = P0

(
1 +

∆P

P0

)
(1.16)

For small changes ∆V compared to V the expression (V0 + ∆V )κ can be expanded into a series.
Ignoring the higher order elements of the series one gets:

(V0 +∆V )κ ≈ V κ0 +∆V κV κ−1
0 = V κ0

(
1 + κ

∆V

V0

)
(1.17)

(1.15) and (1.17) in (1.14) yields:

P0

(
1 +

∆P

P

)
V κ0

(
1 + κ

∆V

V0

)
≈ P0V

κ
0 (1.18)(

1 +
∆P

P0

)(
1 + κ

∆V

V0

)
≈ 1 (1.19)

∆P

P0
≈ −κ∆V

V0
− κ

∆P

P0

∆V

V0
(1.20)
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The product ∆P∆V can be ignored under the assumption of small quantities. So �nally we get:

∆P

P0
≈ −κ∆V

V0
(1.21)

The linearized form of the Poisson Equation (1.21) connects in a simple way the pressure variation and
the volume variation due to the sound particle velocity di�erences on all sides of the cube. Let the
volume of the cube at time t be

V (t) = V0 = ∆l3 (1.22)

Short time later the volume is

V (t+∆t) = [∆l +∆t(vx1 − vx0)] · [∆l +∆t(vy1 − vy0)] · [∆l +∆t(vz1 − vz0)] (1.23)

The products of two and three sound particle velocity di�erences become very small and can be ne-
glected:

V (t+∆t) ≈ ∆l3 +∆l2∆t(vx1 − vx0) + ∆l2∆t(vy1 − vy0) + ∆l2∆t(vz1 − vz0) (1.24)

The volume change ∆V during the time step ∆t is

∆V = V (t+∆t)− V (t) ≈ ∆l2∆t(vx1 − vx0) + ∆l2∆t(vy1 − vy0) + ∆l2∆t(vz1 − vz0) (1.25)

Insertion of Eq. 1.25 in Eq. 1.21 gives

∆P =
−κP0

∆l3
[
∆l2∆t(vx1 − vx0) + ∆l2∆t(vy1 − vy0) + ∆l2∆t(vz1 − vz0)

]
(1.26)

or

∆P

∆t
= −κP0

(
vx1 − vx0

∆l
+
vy1 − vy0

∆l
+
vz1 − vz0

∆l

)
(1.27)

It should be noticed that the variation of the pressure ∆P equals the sound pressure change ∆p.
Translated into a di�erential equation, Eq. 1.27 results in

∂p

∂t
= −κP0

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
(1.28)

or abbreviated

∂p

∂t
= −κP0div(v⃗) (1.29)

The two equations 1.12 and 1.28 represent the fundamental physical relations for acoustical processes.
The wave equation combines these two relations into one single di�erential equation. For its derivation,
the equations 1.12 are di�erentiated with respect to the three coordinates x, y and z, Eq. 1.28 is
di�erentiated regarding to t. One gets:

∂2p

∂x2
= −ρ ∂

2vx
∂t∂x

=∗) −ρ ∂
2vx
∂x∂t

∂2p

∂y2
= −ρ∂

2vy
∂t∂y

=∗) −ρ∂
2vy
∂y∂t

∂2p

∂z2
= −ρ∂

2vz
∂t∂z

=∗) −ρ∂
2vz
∂z∂t

(1.30)

*) theorem of Schwarz
and

∂2p

∂t2
= −κP0

(
∂2vx
∂x∂t

+
∂2vy
∂y∂t

+
∂2vz
∂z∂t

)
(1.31)

insertion of 1.30 in 1.31 results in the wave equation:
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∂2p

∂t2
=
κP0

ρ

(
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

)
(1.32)

or

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

ρ

κP0

∂2p

∂t2
(1.33)

The wave equation (1.33) represents a relation between the derivatives of sound pressure with respect
to space and time. From experience follows that a local sound �eld disturbance propagates as a sound
wave. It is postulated that the disturbance propagates with the speed of sound c. The one-dimensional
sound �eld can be written as an arbitrary function with argument of form (x− ct) where x is the space
coordinate and t is time. Insertion into the wave equation (1.33) yields for the speed of sound c:

1 =
ρ

κP0
c2 (1.34)

or

c =

√
κ
P0

ρ
(1.35)

It turns out that c is almost independent of pressure and density as these two quantities compensate
each other to large extent in the term P0/ρ. The speed of sound is almost identical on top of the
Himalaya and at sea level. The impedance on the other hand is considerably lower at high altitudes
which means that the sound pressure produced by a vibrating body is smaller.

With the speed of sound c the wave equation for the sound pressure p can be written as

△p = 1

c2
∂2p

∂t2
(1.36)

where
△p: three dimensional Laplace operator.

For a cartesian coordinate system the Laplace operator is

△p = ∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
(1.37)

For cylindrical coordinates the Laplace operator is given by

△p = ∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂ϕ2
+
∂2p

∂z2
(1.38)

The wave equation is the basis for the description of sound �elds. The equation has to be ful�lled for
each point in space. The speci�cation of a concrete problem makes it necessary to indicate boundary
conditions such as the velocity distribution of a vibrating surface or the acoustical impedance of �eld
limiting areas. The solution for the sound �eld is found as the function that ful�lls both the wave
equation and the boundary conditions at the same time.

For the application of the wave equation one has to bear in mind that the equations used for its
derivation were found by linearization of the fundamental physical equations. Strictly speaking the
wave equation is no longer valid for high pressure or velocity values. An explicit application of the non
linear behavior of air is the usage of modulated high frequency sound for public address systems. The
high frequency waves that can be emitted focused to a narrow angle in space demodulate in the air
and produce in this way the hearable audio signal1.

The speed of sound c and the density ρ0 of the air depend on temperature. As good approximation
one can write

1F. Joseph Pompei, The Use of Airborne Ultrasonics for Generating Audible Sound Beams, Journal of the Audio
Engineering Society, vol. 47, p. 726-731 (1999).
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c ≈ 343.2

√
T

293
(1.39)

and

ρ0 ≈ ρref
PaT0
P0T

(1.40)

where
T : temperature in Kelvin
Pa: air pressure in Pascal [Pa]
T0: 293 K
P0: 101325 Pa
ρref : 1.186 kg/m3

A more accurate expression (1.42) for the speed of sound can be found by taking into account the
parameters temperature, pressure, humidity and CO2 concentration

2. Besides the temperature in�uence
there is a weak dependency on humidity (Fig. 1.9).

c(t, P, xw, xc) = a0 + a1t+ a2t
2 + (a3 + a4t+ a5t

2)xw + (a6 + a7t+ a8t
2)P (1.41)

+(a9 + a10t+ a11t
2)xc + a12x

2
w + a13P

2 + a14x
2
c + a15xwPxc

where
t: temperature in degrees Celsius
P : air pressure in Pascal
xw: water vapour mole fraction, where xw ≈ (h/P )(1.00062 + 3.14 × 10−8P + 5.6 ×
10−7t2)exp(1.2811805× 10−5T 2 − 1.9509874× 10−2T + 34.04926034− 6.3536311× 103T−1)
h: relative humidity as a fraction (0 < h < 1)
T : temperature in Kelvin = t+ 273.15
xc: CO2 mole fraction, typical value: = 0.000314
a0 = 331.5024, a1 = 0.603055, a2 = −0.000528, a3 = 51.471935, a4 = 0.1495874, a5 =
−0.000782, a6 = −1.82 × 10−7, a7 = 3.73 × 10−8, a8 = −2.93 × 10−10, a9 = −85.20931, a10 =
−0.228525, a11 = 5.91 × 10−5, a12 = −2.835149, a13 = −2.15 × 10−13, a14 = 29.179762, a15 =
0.000486

The formula is valid for t between 0 and 30◦ C, for P between 75'000 and 102'000 Pa and for xw
between 0 and 0.06.

1.4.2 Sinusoidal waves

Waves with sinusoidal time dependency play an important role for theoretical considerations. Such
waves are characterized by their frequency f or their angular frequency ω or their period length T .

f =
1

T
(1.42)

ω = 2πf (1.43)

A �xed point on a sinusoidal wave train travels one wave length λ within the time T (Fig. 1.10).
Therefore

λ = cT =
c

f
(1.44)

Often usage of wave number k it is helpful where

k =
2π

λ
(1.45)

2Owen Cramer, The variation of the speci�c heat ratio and the speed of sound in air with temperature, pressure,
humidity, and CO2 concentration, Journal of the Acoustical Society of America, vol. 93, p.2510-2516 (1993).
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Figure 1.9: Speed of sound c for an air pressure of 1013 hPa as a function of air humidity with
temperature as parameter.

Figure 1.10: Sinusoidal wave with period length T in time and wave length λ in space.

1.4.3 Complex representation of sinusoidal quantities

Quantities with sinusoidal behavior may be represented as pointers in the complex plane. The pointer
has a certain length - corresponding to the amplitude - and rotates according to angular frequency with
constant angular velocity counter clockwise. The angle of the pointer at t = 0 corresponds to the initial
phase ϕ. The pointer marks a complex number with an imaginary part that describes the sine function
of the quantity (Fig. 1.11). The real part describes the corresponding cosine function.
The quantity p with sinusoidal variation:

p(t) = p̂ sin (ωt+ ϕ) (1.46)

is represented by the pointer p:

p(t) = p̂ej(ωt+ϕ) (1.47)

Calculations with complex pointers are often easier to perform than dealing with sine and cosine func-
tions.

1.4.4 Helmholtz equation

With the restriction to sinusoidal time dependencies, the wave equation simpli�es to the Helmholtz
equation. The sinusoidal excitation of a sound �eld (assumed to be linear) yields sinusoidal time
dependencies for all �eld variables. It is therefore su�cient to indicate the amplitudes and phase
relations in each �eld point.
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Figure 1.11: Representation of a quantity with sinusoidal dependency as imaginary part of a rotating
pointer in the complex plane.

In complex writing the sound pressure p can be written as product of a complex, location-dependent

amplitude function p̌(location) and an oscillation term ejωt (Eq. 1.48).

p(location, t) = p̌(location)ejωt (1.48)

For the Laplace operator can be written

△p = △p̌ejωt (1.49)

and

∂2p

∂t2
= −ω2p̌(location)ejωt (1.50)

Insertion of (1.49) and (1.50) in (1.36 ) yields the Helmholtz equation (1.51):

△p̌+ ω2

c2
p̌ = 0 (1.51)

The complex amplitude function p̌ is only a function of the position in space.

1.5 Solutions of the wave equation

1.5.1 Plane waves

A plane wave is the simplest wave type. The sound �eld variables p and v⃗ are both in phase and
depend only on one space coordinate. For propagation in the x-direction, all points in the y, z plane
have identical values of p and v⃗. Most relevant for plane waves is the fact that there is no geometrical
divergence. Plane waves occur e.g. in tubes with a diameter that is much smaller than the wave
length. Far away from sources of limited size, the waves can usually be approximated as plane waves
with good accuracy.

The solutions of the one-dimensional wave equation

∂2p

∂x2
=

1

c2
∂2p

∂t2
(1.52)

represent the set of possible sound pressure dependencies. All functions p(x, t) that ful�ll Eq. 1.52
have the form

p(x, t) = f(ct± x) (1.53)

In the above equation f stands for an arbitrary function. The one dimensional wave equation is thus
ful�lled if the argument of f has the form ct± x. A certain value of the argument can be obtained by
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adapting the time or the space variable - time and space are thus exchangeable. The minus sign in the
argument stands for a wave propagating in positive x direction (to the right), a plus sign is a wave in
the negative x direction (to the left).

It is often convenient to describe the arbitrary function f as the superposition of sine waves according to
the theorem of Fourier. It is usually su�cient to solve a certain problem by investigating the behavior
for a sine wave of arbitrary frequency. In complex representation according to 1.48 we can write for the
sound pressure p:

p(x, t) = p̂ej(−kx+ϕ)ejωt (1.54)

where
p̂: amplitude of the sine oscillation
ϕ: constant phase term

The sound particle velocity can be determined from sound pressure with Eq. (1.12). The plane wave in
the x direction causes the air particles to move back and forth in the x direction. There is no movement
in the y and the z direction. The sound particle velocity in x is in complex notation

vx(x, t) = v̌xe
jωt (1.55)

where
v̌x: complex, location dependent amplitude function.

Inserting (1.54) and (1.55) in (1.12) yields

p̂jkej(−kx+ϕ)ejωt = v̌xρjωe
jωt (1.56)

With ω = kc one gets

v̌xe
jωt =

1

ρc
p̂ej(−kx+ϕ)ejωt (1.57)

or

vx(x, t) =
1

ρc
p(x, t) (1.58)

In a plane wave sound pressure and sound particle velocity are in phase and the ratio of their amplitudes
(corresponding to the impedance Z0) is

Z0 = ρc (1.59)

1.5.2 Spherical waves

Spherical waves can be thought of emitted by a point source. They propagate spherically in all
directions. The two dimensional analogue are water waves that occur as the results of a local
distortion, for example a stone falling into the water. Due to symmetry reasons the sound pressure and
the amplitude of the sound particle velocity have to be constant on a spherical surface with arbitrary
radius and a center that coincides with the source point. The vector of the sound particle velocity
points in radial direction outwards.

As a guess for the solution of the sound pressure in spherical waves the approach for plane waves is
assumed and complemented with a 1/r (r: Radius) amplitude dependency (1.60).

p(r, t) =
1

r
p̂ej(−kr+ϕ)ejωt (1.60)

The validity of Eq. 1.60 can be proved with help of the Helmholtz equation. In spherical coordinates
the equation for a sound �eld variable that depends on the radius only is

∂2p̌

∂r2
+

2

r

∂p̌

∂r
+ k2p̌ = 0 (1.61)
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In analogy to plane waves the sound particle velocity can be deduced from sound pressure with help of
Eq. 1.12. The radial component is found as

vr(r, t) = p(r, t)

(
1

ρc
+

1

jωρr

)
(1.62)

For the impedance ZK of spherical waves follows

ZK = ρc
jkr

1 + jkr
(1.63)

ZK depends on frequency and distance. For large distances (compared to the wave number k) ZK
approaches the value of plane waves. If the distance gets small and smaller both real and imaginary
part of ZK drop o� (Fig. 1.12).
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Figure 1.12: Real and imaginary part of the impedance for spherical waves. The abscissa is scaled as
product kr with k: wave number = 2π/λ and r: distance. The ordinate shows the impedance relative
to the value for plane waves Z0 = ρc.

The model for an ideal source that emits spherical waves is a small (relative to the wave length) pulsating
sphere. A sphere with radius r0 and surface velocity vr in radial direction produces a volume velocity
Q of

Q = 4πr20vr (1.64)

With Eq. 1.63 and under the assumption kr0 ≪ 1, the sound pressure on the surface of the sphere is
found as

p̌(r0) = v̌r(r0)ρcjkr0 (1.65)

Following Eq. 1.60 the spherical wave approach can be rewritten as follows with the stipulation that
the phase is now referred to the surface of the sphere:

p(r, t) =
1

r
p̂ej(−k(r−r0)+ϕ)ejωt (1.66)

Comparison of Eq. 1.65 with 1.66 yields

1

r0
p̂ej(ϕ) = v̌r(r0)ρcjkr0 (1.67)

or

p̂ej(ϕ) =
Q

4π
ρcjk (1.68)

Amplitude and phase can be found as:
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p̂ =
Q

4π
ρck

ϕ =
π

2
(1.69)

Considering the fact that r0 is very small compared to the wave length, the di�erence r − r0 in Eq.
1.66 can be approximated as r. With this the sound pressure p̌(r) at distance r from a point source
with volume velocity Q is found as

p̌(r) =
jkρcQe−jkr

4πr
(1.70)

1.5.3 Cylindrical waves

Sound pressure, sound particle velocity and impedance for cylindrical waves can be determined analo-
gously to the case of spherical waves. The sound pressure dependency with distance r results as

pcyl. ∼
1√
r

(1.71)

Similarly to spherical waves, cylindrical waves show a near �eld and a far �eld. However, the transition
is at kr ≈ 1 in contrast to kr ≈ 2 for spherical waves.

1.6 Sound pressure and sound power for point sources

By de�nition, ideal point sources radiate sound equally in all directions. If the sound pressure p(r) at
distance r in the far �eld (not too close to the source) is known, the sound power W of the source can
be found as follows:

The impedance Z in the far �eld is

Z =
p(r)

v(r)
= ρc (1.72)

The intensity Irms(r) at distance r from the source is

Irms(r) = prms(r)vrms(r) =
p2rms(r)

ρc
(1.73)

The totally emitted sound power can be found by integration of the intensity (1.73) over a closed
surface S that encloses the source.

W =

∫
S

I⃗dS⃗ (1.74)

Most naturally, S is chosen as surface of a sphere with center at the position of the source. In this case
the intensity is constant over S and the integration yields:

W = Irms(r)4πr
2 =

p2rms(r)

ρc
4πr2 (1.75)

1.7 Superposition of point sources

Here the sound pressure at a receiver position is investigated in the case of several active sound sources.
As long as the amplitudes of the sound �eld variables are not too large (linear case) the superposition
principle holds for sound pressure and sound particle velocity. This implies that the sound pressure at
a receiver corresponds to the sum of the sound pressures resulting for each single source.

Two cases have to be distinguished:

15



In the �rst case the sources radiate coherently, that is to say there is a �xed phase relation between the
sources. Here the resulting pressure equals the phase sensitive addition of the pressure contributions of
each source. It is most bene�cial to perform this addition using the complex representation of sound
pressure.

In the second case the sources radiate incoherent signals, that is to say it is impossible to conclude
from the time signal of one source to the time signal of any other source. In this case the superposition
simpli�es in the sense that intensities can be summed up. The resulting mean squared pressure equals
the sum of the squared pressure contributions of each source.

1.7.1 Superposition of incoherently radiating point sources

Incoherently radiating point sources distributed along a straight line

An in�nite row of equally distributed point sources along a straight line is considered (Fig. 1.13).

a

d
Q0 Q1Q-2

E

Figure 1.13: Situation of an in�nite row of incoherently radiating point sources Q−∞ . . . Q+∞. The
receiver E is located in distance a from the line.

The mean squared pressure p2rms,n at the receiver E caused by source n is

p2rms,n =
K

a2 + (nd)2
(1.76)

where
K: constant to describe the source strength

The superposition of all sources yields

p2rms,tot =

+∞∑
n=−∞

p2rms,n = K

+∞∑
n=−∞

1

a2 + (nd)2
= K

1

d2

+∞∑
n=−∞

1
a2

d2 + n2
(1.77)

From symmetry follows that the sum from −∞ to +∞ in Eq. 1.77 can be written as two times the
sum from 1 to +∞ and a correction for the term for n = 0.

A good formulary tells us that

cothx =
1

x
+

2x

π2

+∞∑
n=1

1
x2

π2 + n2
(1.78)

With substitution of xπ = a
d , Eq. 1.78 can be rewritten as

+∞∑
n=1

1
a2

d2 + n2
=
πd

2a
coth

(πa
d

)
− d2

2a2
(1.79)

Finally Eq. 1.77 can be written as

p2rms,tot =
K

d2
πd

a
coth

(πa
d

)
=
Kπ

ad
coth

(πa
d

)
(1.80)

For the discussion of Eq. 1.80, two cases have to be distinguished:
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πa
d small (small distances) in this case the approximation holds: coth

(
πa
d

)
≈ d

πa . It follows for

p2rms,tot ≈ K
a2 or prms,tot ≈

√
K
a . The dependency of p(a) with distance corresponds to 1/a, just

as for a point source. In the proximity of the row of point sources the pressure at the receiver is
dominated just by the source that is nearest.

πa
d large (large distances) in this case the approximation holds: coth

(
πa
d

)
≈ 1. It follows for

p2rms,tot ≈ Kπ
ad or prms,tot ≈

√
Kπ
d

1√
a
. The dependency of p(a) with distance corresponds to

1/
√
a, just as for a line source.

The transition between the two distance regimes can be localized where the two approximations yield
the same result:

a =
d

π
(1.81)

Incoherent radiating point sources distributed along a line of �nite length

If the row of point sources has limited length, there is for large distances a transition from the line
source behavior to a point source behavior. The mathematical proof is easiest if the separation between
the point sources tends to 0. The summation corresponds then to an integration over a distinct range.
The �nal result is a transition distance a = L/π if L is the length of the point source row.

Incoherent radiating point sources distributed over an area of �nite size

The distance dependency of an incoherent radiating rectangular area of length L and width B (L > B)
can be described by three regions according to Table 1.2.

a < B/π plane wave behavior (sound pressure independent of distance)
B/π < a < L/π line source behavior
L/π < a point source behavior

Table 1.2: Distance dependency of sound pressure for incoherent radiating rectangular areas. a depicts
the distance, L is the length and B is the width of the radiating area.

1.7.2 Superposition of coherently radiating point sources

Dipole radiator

The dipole radiator consists of two coherently radiating point sources of equal amplitudes but opposite
phase. The sound pressure at a receiver point is given as the phase sensitive addition of the contributions
of the two point sources (Fig. 1.14).

With (1.60) the sound pressure in E can be written as:

p(r, t) = p̂

(
1

r1
e−jkr1 − 1

r2
e−jkr2

)
ejωt (1.82)

At low frequencies and in the far �eld, that is to say for ∆r ≪ r and k∆r ≪ 1, r1 and r2 can be
approximated as:

r1 ≈ r − ∆r

2
(1.83)

r2 ≈ r +
∆r

2
(1.84)

With this follows
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r

r2+

-

E

φ

∆ro

∆r

Figure 1.14: Geometry of a dipole with the receiver E.

p(r, t) ≈ p̂
e−jkr

r

(
ejk∆r/2

1− ∆r
2r

− e−jk∆r/2

1 + ∆r
2r

)
ejωt (1.85)

= p̂
e−jkr

r

(
cos(k∆r/2) + j sin(k∆r/2)

1− ∆r
2r

− cos(−k∆r/2) + j sin(−k∆r/2)
1 + ∆r

2r

)
ejωt

Making use of approximations for small arguments (cos ϵ ≈ 1 and sin ϵ ≈ ϵ) yields

p(r, t) ≈ p̂
e−jkr

r

(
1 + jk∆r/2

1− ∆r
2r

− 1− jk∆r/2

1 + ∆r
2r

)
ejωt (1.86)

= p̂
e−jkr

r

((
1 + jk∆r

2

) (
1 + ∆r

2

)
−
(
1− jk∆r

2

) (
1− ∆r

2

)
1−

(
∆r
2r

)2
)
ejωt

Under the far �eld assumption, the denominator in the brackets on the right hand side can be approxi-
mated as 1:

p(r, t) ≈ p̂
e−jkr

r

(
∆r

r
(r + jkr)

)
ejωt (1.87)

With ∆r ≈ ∆r0 cosϕ follows:

p(r, t) ≈ p̂
∆r0 cosϕ

r2
(r + jkr)e−jkrejωt (1.88)

For k ≫ 1 that is to say f ≫ 50 Hz Eq. 1.88 simpli�es to

p(r, t) ≈ p̂
jk∆r0 cosϕ

r
e−jkrejωt (1.89)

It should be noted that the amplitude term in (1.89) is proportional to k and therefore to frequency.
The dipole radiation is very ine�cient at low frequencies.

1.8 Re�ection of sound waves at acoustically hard surfaces

1.8.1 Specular re�ection

The presence of an acoustically hard surface implements a boundary condition for the normal component
of the sound particle velocity with

vn = 0 (1.90)
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An elegant concept to deal with such a boundary condition is the introduction of one or more additional
equivalent sources. These sources are set and adjusted in order for their superposition with the original
source to satisfy the boundary condition. With this in mind the re�ection of sound waves at a large,
acoustically hard surface can be treated with the concept of a mirror source. The corresponding
additional source is placed at the mirrored position of the original source. The e�ect of the re�ector
can then be replaced by the contribution of this additional source. The mirror source emits the same
signal as the original source (Fig. 1.15).

d
=

2d

Figure 1.15: Replacement of a re�ecting surface by a mirror source.

1.8.2 Source directivity for limited radiation angles

Sources located close to acoustically hard surfaces no longer radiate in all directions. For a broadband
source the limitation of radiation to a solid angle Φ results in an ampli�cation corresponding to the
ratio 4π/Φ. For example, a source next to a corner appears with an sound power ampli�ed by a factor
8.

1.8.3 Di�use re�ection

The directivity of di�use re�ections of sound waves is often described by Lambert's law, originally
developed in Optics. It assumes that the re�ection intensity I(ϕ) in direction ϕ is independent of the
incident direction and proportional to the cosine of ϕ (1.91) where ϕ is understood relative to the
normal direction (Fig. 1.16).

I(ϕ) = I0 cosϕ (1.91)

φIo

Figure 1.16: cosϕ dependency of the intensity of a di�use re�ection assuming Lambert's law.

1.9 Doppler e�ect

In case of moving sources or moving receivers (relative to each other) a frequency shift occurs. This
e�ect is named after Ch. Doppler (1803-1852, Vienna) who discovered and explained the phenomenon.
The e�ect is omnipresent in daily life, for example in connection with passing cars. The Doppler e�ect
plays an important role in sound radiation by loudspeakers that consists of only one membrane.

The mathematical discussion shall be based on the situation in Fig. 1.17. A point source Q is in x = 0
at time t = 0. Q moves in positive x direction with speed vQ. It is assumed that Q emits a pure tone
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of frequency f0. We are looking for the frequency f that is registered at a receiver point E at distance
d under an angle ϕ relative to the x direction.

Figure 1.17: Situation to investigate the Doppler frequency shift.

The frequency f is determined by evaluation of the time interval T between two sound pressure maxima.
A sound pressure maximum emitted at position Q reaches the receiver at time t = d/c. The next sound
pressure maximum is emitted at positionQ′ at time t = T0 = 1/f0. Consequently this maximum reaches
the receiver at time t = T0 + d′/c. With this the time interval between two maxima at the receiver is

T = T0 +
d′

c
− d

c
(1.92)

For the frequency f at the receiver position follows:

f =
1

1
f0

− d−d′
c

(1.93)

where d′ is found as

d′ =
√
d2 − 2dvQT0 cosϕ+ v2QT

2
0 (1.94)

If the receiver is located on the x-axis (ϕ = 0), Eq. 1.94 simpli�es to

d′ = d− vQT0 (1.95)

and Eq. 1.93 becomes

f = f0
c

c− vQ
(1.96)

1.10 Sonic boom

Sources that move faster than the speed of sound produce a sonic boom. Typical examples are air
planes, projectiles or the end of a whipcord in action. Fig. 1.18 shows the development of such a boom
(Mach's cone). At time 0 the source is in position Q0. After time t the source has reached position
Q3. After time t the wave front emitted in Q0 corresponds to a sphere of radius ct. The wave fronts
emitted from source positions between Q0 and Q3 are correspondingly smaller spheres. The envelope
of all wave fronts forms a cone with very high sound pressure. The opening angle α of the cone is

sinα =
c

v
(1.97)

The tip of the cone moves with the source. At the moment where the cone reaches the receiver, a
sharp bang is heard.
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Figure 1.18: Development of Mach's cone for a source moving faster than the speed of sound.

1.11 dB - scale

1.11.1 Quantities expressed as levels

An important characterization of the behavior of a system is the ratio of the power at the output y
and the power at the input x. Instead if indicating this ratio linearly, often the logarithm of base 10 is
used. The corresponding unit is [Bel].

log10

(
powerY
powerX

)
[Bel] (1.98)

The Bel scale is very coarse. It is often more appropriate to introduce a factor of 10 yielding tenth of
a Bel or decibel [dB].

10 log10

(
powerY
powerX

)
[dB] (1.99)

It is very common to express the acoustic quantities such as sound pressure, sound intensity and
sound power in the decibel scale. If doing so the quantities get the name level as an appendix (sound
pressure level, ...). One of the reasons to use the dB scale is the fact that the sensation of the
human ear follows basically a logarithmic law. To express sound �eld variables as levels, they have
to be converted to power proportional quantities (if necessary) and related to reference values as follows:

Sound pressure level Lp

p0 = 2 × 10−5Pa is chosen as sound pressure reference value. This corresponds to the threshold of
hearing at 1 kHz.

Lp = 10 log10

((
prms

p0

)2
)

[dB] (1.100)

Sound intensity level LI

The reference value for sound intensity is I0 = 10−12W/m2.

LI = 10 log10

(
I

I0

)
[dB] (1.101)

Sound power level LW

The reference value for sound power is W0 = 10−12W .

LW = 10 log10

(
W

W0

)
[dB] (1.102)
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The above reference values are chosen in such a way that for a plane wave the sound pressure level
and the sound intensity level match within 0.1 dB. For a point source follows from (1.75), (1.100) and
(1.102) that sound power level and sound pressure level are identical in a distance of approximately 0.3
m

1.11.2 Consequences of the dB scale

Using the dB scale signi�es that the range of hearing is transformed to sound pressure levels between
0 and 120 dB. A constant dB step corresponds to a constant variation in sensation. Furthermore, a
multiplication of physical quantities becomes a simple summation in the dB domain.

1.11.3 Subtlety of the dB scale

The question of the relevance of a change of x dB can be answered for example with help of the human
auditory sensation according to Table 1.3.

change in sound pressure level sensation
< 2 dB not audible
2. . .4 dB just audible
5. . .10 dB clearly audible
> 10 dB very convincing

Table 1.3: Sensation for changes in sound pressure level for the human hearing.

An other hint regarding the relevance of level di�erences can be derived from tolerances of modern
sound level meters. The overall uncertainty of such devices in the order of 1 dB.

1.11.4 Computations involving dB quantities

Special care is needed when calculations involve dB quantities. The addition of dB values corresponds
to a multiplication of the physical quantities. Very often a summation of physical quantities is needed.
In this case the dB values �rstly have to be converted back to linear quantities before the operation can
be applied. It has to be considered, what quantities add up. In case of coherent signals the summation
goes for sound pressure, in case of incoherent contributions the corresponding sound pressure square
values have to be summed up. Often the result is then again converted and expressed as a level.

1.11.5 Typical values of sound pressure levels

Table 1.4 indicates typical sound pressure levels at a certain distance for di�erent sound sources.

sound source sound pressure level
tick of an alarm clock in 0.5 m 30 dB
human voice in 2 m 60 dB
road tra�c in 10 m (1000 vehicles/h, 80 km/h) 70 dB
jet air plane in 100 m 120 dB

Table 1.4: Some typical sound pressure level values.

1.12 Classi�cation of acoustical signals

Acoustical signals can be subdivided into few fundamental types. In daily life they almost never
occur in pure form, but often one or the other fundamental type can be identi�ed as predominant.
The following �gures show the basic signal types (on the left: time dependency, on the right: spectrum).
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complex tonal sound (Klang): time depen-
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white noise (weisses Rauschen): time depen-
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pink noise ( rosa Rauschen): time dependency pink noise: spectrum
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500 Hz octave band �ltered noise: time de-
pendency

500 Hz octave band �ltered noise: spectrum
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500 Hz third octave band �ltered noise: time
dependency

500 Hz third octave band �ltered noise: spec-
trum
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bang (Knall): time dependency bang: spectrum
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tone burst: time dependency tone burst: spectrum
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dependency of the frequency variation.
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1.13 Standing waves

1.13.1 Superposition of waves traveling in opposite directions

The superposition of two sine waves of equal frequency and amplitude but opposite directions results
in a standing wave. For a mathematical investigation the two waves are introduced in complex writing:

p
1
(x, t) = p̂ej(ωt−kx) (1.103)
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p
2
(x, t) = p̂ej(ωt+kx) (1.104)

The sum yields:

p
tot
(x, t) = p

1
(x, t) + p

2
(x, t) = p̂ejωt

(
e−jkx + ejkx

)
= p̂ejωt (cos(−kx) + j sin(−kx) + cos(kx) + j sin(kx)) = p̂ejωt2 cos(kx) (1.105)

The superposition of the two waves is no longer a propagating wave but a harmonic oscillation that is
modulated in space with cos(kx). As a consequence at certain locations maxima and at other locations
minima arise.

1.13.2 Quarter wave length resonators

An example for the application of standing waves is the quarter wave length (λ/4) resonator. It consists
of a tube with an acoustically hard termination at one end. At the end with the hard termination the
sound waves are perfectly re�ected. If the sound wave length equals four times the length of the tube,
a sound pressure minimum results at the open end of the tube. This is in con�ict with sound pressure
of the excitation outside the tube. The tube has to react with a high ampli�cation resulting in high
pressures at the terminated end. If a pressure microphone is placed at this position its sensitivity can
easily be increased by more than 20 dB for the resonance frequencies fres,i according to Eq. 1.106.

fres,i =
2i− 1

4

c

L
(1.106)

where
i: 1,2,3,...
c: speed of sound
L: length of the tube

Fig. 1.19 shows an example of a measured frequency response for a microphone placed at the end of
such a tube.
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Figure 1.19: Measured frequency response at the closed end of a tube of length 66 cm relative to
a microphone placement in free �eld. In the experiment the distance between the source and the
microphone was 130 cm. At the resonance frequencies (129 Hz, 387 Hz, ...) the tube produces very
high ampli�cations. Besides the resonances a small ampli�cation of typically 6 dB can be observed due
to the fact that the tube acts as a sonde microphone. Indeed the sound �eld is observed at the location
of the open end of the tube which was approximately in half the distance compared to the free �eld
reference measurement.
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1.14 Sound �eld calculations

Generally sound �eld calculations are seeking for space-time dependencies of the sound �eld variables
of interest. These solutions have to ful�ll the wave equation and the situation speci�c boundary
conditions. The boundary conditions are de�ned by the source and the presence of possible surfaces
with their corresponding impedance. Often the solutions are not searched in the time domain. In many
cases it is easier to handle the problem in the frequency domain. To do so the task is formulated for
an arbitrary frequency. In this case the Helmholtz equation (1.51) can be used instead of the wave
equation. Analytical solutions for sound �elds can only be found for special situations. In the general
case, approximations or numerical solutions based on strategies such as Finite Elements or Boundary
Elements have to be applied.

1.14.1 General problem of re�ection

The general problem of re�ection cares about the resulting sound �eld if a sound wave is re�ected at
an object. If the sound wave length is larger than the dimensions of the object the re�ection process is
usually called scattering.

In the mathematical description the re�ecting or scattering object introduces a boundary condition on
the object surface. This easily done for so called locally reacting surfaces which can be described by a
surface impedance (p/v⃗n). Many materials can be handled as a locally reacting surfaces. On the other
hand there are structures that behave as extended reacting surfaces with a relevant amount of sound
propagation in the material itself. An example for a medium with extended reaction is ballast that is
used in the superstructure of railway lines. Here we will restrict the discussion to locally reacting surfaces.

In the most simple case of an acoustically hard surface the boundary condition simpli�es to

vn = 0 or
∂p

∂n
= 0 (1.107)

where
vn: sound particle velocity component perpendicular to surface
∂p/∂n: partial derivative of the sound pressure in direction perpendicular to the surface

Outside the re�ecting object the resulting sound �eld has to ful�ll the wave equation. In the view of
the frequency domain, the corresponding condition is the Helmholtz equation. It is a good idea to split
up the resulting sound pressure �eld p̌ in an incident p̌e and a re�ected (or scattered) p̌s component:

p̌ = p̌e + p̌s (1.108)

Usually the incident wave p̌e is known and the problem lies in the determination of the re�ected
component p̌s. The Helmholtz equation has to be ful�lled for the total sound �eld p̌. With the two
parts p̌e and p̌s the Helmholtz equation becomes:

△(p̌e + p̌s) + k2(p̌e + p̌s) = 0 (1.109)

Eq. 1.109 can be rewritten as

△p̌e + k2p̌e +△p̌s + k2p̌s = 0 (1.110)

The Helmholtz equation has also to be ful�lled for the incident wave p̌e alone. Therefore

△p̌s + k2p̌s = 0 (1.111)

It follows that the re�ected wave has to ful�ll the Helmholtz equation as well. In addition, the re�ected
wave has to ensure that the boundary condition at the surface of the object is ful�lled. In case of an
acoustically hard object this implies that v̌n = 0. With v̌n,e as the normal component of the sound
particle velocity of the incident wave and v̌n,s as the normal component of the sound particle velocity
of the re�ected wave follows v̌n,s = −v̌n,e. This condition can be formulated for the sound pressure
with help of Eq. 1.12:

∂p̌s
∂n

= jωρv̌n,e (1.112)
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1.14.2 Kirchho�-Helmholtz Integral and Boundary Element Method

With help of Green's theorem the Helmholtz equation (1.51) can be transformed into an integral
equation (1.113), called the Kirchho� - Helmholtz integral.

p̌(x, y, z, ω) =
1

4π

∫
S

(
jωρv̌S(ω)

e−jωr/c

r
+ p̌S(ω)

∂

∂n

e−jωr/c

r

)
dS (1.113)

What Eq. 1.113 says is that the complex amplitude function p̌ at any point P in space can be
calculated if the normal component of the sound particle velocity v̌S and the sound pressure p̌S is
known on a closed surface S. The point P can be located inside or outside of S. r is the distance
between P and the surface element dS, ∂/∂n stands for the derivative in the direction perpendicular
to the surface3. The surface S may lie partially in the in�nity. Furthermore it can be shown that the
Kirchho� Helmholtz integral holds even for points P on the surface S itself. Though in this case Eq.
1.113 yields p̌/2.

With help of the Kirchho� Helmholtz integral (KHI), typical radiation problems can be solved for
vibrating bodies that are acoustically hard. It is usually assumed that the mechanical vibration is
known on the surface of the body. With this knowledge the problem is completely speci�ed.

The sound particle velocity on the surface corresponds to the normal component of the speed of the
mechanical vibration. With this information the �rst term of the KHI is known. The sound pressure on
the body surface as the second �eld variable necessary to evaluate the KHI is unknown at this point.
However it is possible to express the sound pressure by the KHI itself. By discretization of the body
surface, a �nite number of pressure variables can be introduced. This discretization has to be �ne
compared to the shortest wave length of interest. Typically 6 to 10 points per wave length have to
be chosen. With the pressure variables and the KHI, a system of equations can be set up and solved.
Once the pressure is known on the surface, the KHI allows for the calculation of the sound pressure
at any point in space outside the vibrating body. The numerical implementation of this procedure is
called Boundary E lement Method or short BEM4.

1.14.3 Applications of the Kirchho�-Helmholtz Integral

Rayleigh Integral for the sound radiation of a piston in an in�nitely extended wall

In the following it is assumed that an in�nitely extended and acoustically hard wall at rest contains a
limited region S with given normal component of the velocity v̌n(x, y). As the wall acts as a re�ector
the problem can be transformed into an equivalent one with eliminated wall but an additional mirror
source. The mirror source makes sure that the resulting normal component of the sound particle
velocity component vanishes on the wall outside S. The translational back and forth movement of the
region S has thus to be replaced by a pulsating movement where the front and back side both move in
phase outwards and inwards. S can be interpreted as a body with variable thickness mounted in free
space (Fig. 1.20).

The sound pressure on the surface of the piston is unknown but due to symmetry, the values are
identical on both sides. In the evaluation of the Kirchho�-Helmholtz integral the contribution of the
sound pressure is multiplied with the derivative of a distance function in the outward direction. Therefore
the pressure contributions add up to 0 and can thus be omitted. On the other hand, the contribution
of the velocity is identical for both sides of the piston S. It is su�cient to perform the integration over
one side only and multiply the result by 2. The remaining relation is called Rayleigh integral:

p̌(x, y, z, ω) =
jωρ

2π

∫
S

v̌n(x, y, ω)
e−jkr

r
dS (1.114)

3The derivative of the function f in a point a⃗ in direction n⃗ is given by: limβ→0
f(a⃗+βn⃗)−f(a⃗)

β
where n⃗ is a vector

of length 1.
4Ochmann M., Wellner F. Berechnung der Schallabstrahlung dreidimensionaler schwingender K�'orper mit Hilfe eines

Randelemente-Mehrgitterverfahrens. Acustica 73 (1991) pp 177 - 190.
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Figure 1.20: Situation of sound radiation of a piston in an in�nitely extended wall.

Kirchho�'s approximation to handle di�raction problems

The situation to discuss here is a in�nitely extended screen with an opening S and an incident plane wave
(Fig. 1.21). If the normal component of the sound particle velocity v̌n(x, y) over S is known, the sound
�eld behind the screen can be calculated by applying the Rayleigh integral. Kirchho�'s approximation
assumes that the sound particle velocity in the opening is identical to the situation without screen.
This simpli�cation becomes more and more critical as the opening gets smaller compared to the wave
length. Figure 1.22 shows the calculated sound pressure �eld behind an opening using Kirchho�'s
approximation.

Figure 1.21: Situation of a plane wave incident on a screen with an opening.

Kirchho�'s approximation to handle problems of re�ections at small screens

The wave that is re�ected at an acoustically hard screen can be determined with help of Kirchho�'s
approximation as well. The screen introduces the boundary condition of vanishing resulting normal
component of the sound particle velocity. Kirchho�'s approximation for the sound pressure lies in
the assumption that the pressure doubles in front of the screen and vanishes at the back side. The
re�ected sound wave has to ensure that these conditions are ful�lled.
This is accomplished by a re�ected sound particle velocity distribution on the screen that has equal
amplitude but opposite direction compared to the incident wave. Kirchho�'s approximation ignores
boundary e�ects. It is further assumed that the sound particle velocity is homogeneous over the screen.
The sound pressure of the re�ection contribution has to be identical in amplitude and phase to the
incident sound pressure on the front side of the screen. On the rear side, the re�ected sound pressure
has equal amplitude but opposite phase.
Knowing sound particle velocity and sound pressure of the re�ection on the surface of the screen, the
re�ected sound �eld can be calculated at any point by evaluating the Kirchho�-Helmholtz integral
over the front and back side of the screen.

28



Figure 1.22: Sound pressure �eld behind a screen with an opening of diameter 25 cm. The calculation
assumes an incident plane wave from left to right and Kirchho�'s approximation. Shown are the
frequencies 500, 1000, 2000 and 4000 Hz. The sound pressure is color coded. Compared to the sound
pressure of the incident wave the ampli�cation due to focusing e�ects in hot spots can reach +6 dB.

Figure 1.23 shows the situation for an incident plane wave with sound pressure p and sound particle
velocity v. With vSSv and vSSr and pSSv and pSSr as sound particle velocities and sound pressures of
the re�ected wave on the front (v) and the rear (r) side of the screen it can be written:

vSSv = v

vSSr = −v
pSSv = p

pSSr = −p (1.115)

With the Kirchho�-Helmholtz integral the sound pressure of the re�ected wave is given as

p̌streu(x, y, z, ω) =
1

4π

∫
S

(
jωρv̌SS(ω)

e−jωr/c

r
+ p̌SS(ω)

∂

∂n

e−jωr/c

r

)
dS (1.116)

As vSSv and vSSr have identical amplitude and opposite sign, their contributions cancel each other
during integration over the front and rear side of the screen. Sound pressure behaves di�erently. The
derivative of the distance function yields opposite signs for the front and rear side. As pSSv and pSSr
have opposite signs as well they add up constructively. Instead of integrating over the front and the
rear side, the integration can be restricted to the front side and the result is multiplied with a factor of
2. Figure 1.24 shows the result of such a calculation.

Huygens elementary sources and the construction of Fresnel zones

As shown above the calculation of the re�ection at a screen or the di�raction at an opening requires
the evaluation of the Kirchho�-Helmholtz or the Rayleigh integral. This integration corresponds to
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Figure 1.23: Re�ection of a sound wave at a screen. Note that the sound particle velocity normal
components are oriented in the outward direction.
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Figure 1.24: Kirchho�-Helmholtz integral calculation of the frequency response of the normal incident
re�ection at a screen of dimensions 2×2 m. The source is at 5 m, the receiver at 10 m distance to
the re�ector. The discretization used in the calculation was set to 1/10 of the wave length under
consideration. At low frequencies the re�ection is weak. Actually it is more likely a scattering in all
directions. At high frequencies the sound pressure of the re�ected wave tends to -10 dB as expected
for the in�nitely extended re�ector.

a summation of the contributions of monopole and dipole sources on the surface S. In a qualitative
sense this concept was already proposed by Huygens. He introduced elementary sources on the front
of a wave to extrapolate the wave front at a later time. By this concept, a fundamental understanding
of wave phenomena such as di�raction can be obtained.

Fresnel developed this concept in a more quantitative manner. In many cases the amplitude changes
only slowly during the integration over the surface S. As a �rst approximation it is therefore su�cient
to take care of the phase change alone. A further simpli�cation is the classi�cation of the phase in just
two categories +1 (0 . . . 180◦) and -1 (180 . . . 360◦). With this the integration reduces to additions
and subtractions of amplitudes. With the smallest phase assumed as 0, the phase classes can be
enumerated. The phase of the nth class lies in the interval (n − 1) × 180◦...n × 180◦. +1 -classes
(positive contributions) have odd n, even n stand for -1 -classes (negative contributions).

A region on the surface S for which the contributions belong to the nth class, is called the nth
Fresnel zone5. The dimension of a Fresnel zone is frequency dependent. For low frequencies the
Fresnel zones are large, for high frequencies the zones are small. On a plane surface the Fresnel

5Cremer L., Fresnels Methoden zur Berechnung von Beugungsfeldern, Acustica, vol. 72, p.1-6 (1990).
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zones are elliptic rings. The sound pressure at a receiver point is given as sum and di�erences of
contributions that are proportional to the area of the Fresnel zones and inversely proportional to
the distance. Thereby most of the contributions do cancel each other. Finally what remains is the
contribution of half of the �rst zone. Consequently for a plane sound wave that passes a screen with an
opening that corresponds to the �rst Fresnel zone, an ampli�cation by a factor of 2 or +6 dB is expected.

The �rst Fresnel zone can be regarded as the relevant region for a re�ection. If the re�ector is smaller
than half of the �rst Fresnel zone, the amplitude of the re�ected sound pressure scales with the cor-
responding area ratio. Sometimes the �rst Fresnel zone is de�ned as the region for a maximum phase
shift of only a quarter of a wave length. This automatically accounts for the fact that only half of the
area of the �rst λ/2-Fresnel zone remains as net contribution for a total re�ection.

Interpretation of the Kirchho�-Helmholtz integral with monopole and dipole sources

The Kirchho�-Helmholtz integral

p̌(x, y, z, ω) =
1

4π

∫
S

(
jωρv̌S(ω)

e−jωr/c

r
+ p̌S(ω)

∂

∂n

e−jωr/c

r

)
dS (1.117)

can be rewritten with the following considerations:

k =
2π

λ
=
ω

c
⇒ e−jωr/c = e−jkr (1.118)

∂

∂n

(
e−jkr

r

)
=

1

r2

(
r
∂

∂n

(
e−jkr

)
− e−jkr

∂r

∂n

)
=

1

r2

(
−jkr ∂r

∂n
e−jkr − e−jkr

∂r

∂n

)
=

1

r2
e−jkr(−jkr − 1)

∂r

∂n
(1.119)

In (1.119) ∂r/∂n corresponds to the projection of r on the normal direction n⃗. So we get
∂r/∂n = − cosϕ where ϕ is the angle between the normal direction n⃗ and the direction to the receiver
point (x, y, z).

Therewith the Kirchho�-Helmholtz integral becomes:

p̌(x, y, z, ω) =
1

4π

∫
S

(
jωρv̌S(ω)

e−jkr

r
+ p̌S(ω)

1 + jkr

r2
cosϕe−jkr

)
dS (1.120)

The integrand in (1.120) is composed of two parts. The �rst term corresponds to the sound pressure
produced by an omnidirectional monopole source. The second term is the contribution of a dipole
source with the dipole axis pointing in the surface normal direction. The Kirchho�-Helmholtz integral
can thus be interpreted as summation of monopole and dipole contributions distributed over the surface
S. The strength of the monopole sources is given by the normal component of the surface sound particle
velocity, the strength of the dipole sources is determined by the sound pressure on S. Eq. 1.120 is
the mathematical basis to synthesize a three dimensional sound �eld by controlling sound pressure and
sound particle velocity on a closed surface 6,7.

1.14.4 Method of Finite Di�erences

The method of �nite di�erences is a widely used approach to numerically solve di�erential equations.
For sound �eld calculations the region of interest has to be discretized su�ciently �ne and represented
by a �nite number of grid points. The relevant di�erential equations are then approximated by linear
equations for the �eld variables in the grid points. Thereby derivatives translate into di�erences.

6A. J. Berkhout, A Holographic Approach to Acoustical Control, Journal of the Audio Engineering Society, vol. 36,
n.12, p.977-995 (1988).

7Diemer de Vries, Sound Reinforcement by Wave�eld Synthesis: Adaption of the Synthesis Operator to the Loudspeaker
Directivity Characteristics, Journal of the Audio Engineering Society, vol. 44, n.12, p.1120-1131 (1996).
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Finite di�erences in the frequency domain

The sound �eld calculation in the frequency domain is usually based on the Helmholtz equation 8.
The system of equations that has to be established uses the unknown amplitudes and phase values of
the sound �eld variable (usually sound pressure) in each grid point. The parameters of the equations
are determined by application of the Helmholtz equation and the boundary conditions. In most cases
the information about the boundary is given in form of impedances (ratio of sound pressure and
sound particle velocity). As sound pressure and sound particle velocity are related to each other by a
di�erential equation, it is possible to get rid of one variable in order to describe the boundary condition
with one �eld variable alone.

In complex writing sound pressure and sound particle velocity read as

p = p̌ejωt (1.121)

v = v̌ejωt (1.122)

where p̌ and v̌ represent complex amplitude functions. The impedance Z is

Z =
p̌

v̌
(1.123)

With (1.12) one gets for one direction (here: x)

∂p̌

∂x
ejωt = −ρjωv̌ejωt (1.124)

∂p̌

∂x
= −ρjω p̌

Z
(1.125)

The angular frequency ω can be expressed with the wave number k as:

ω = 2π
c

λ
= kc (1.126)

By inserting Eq. (1.126) in (1.125) one �nally gets

∂p̌

∂x
= −ρcjk p̌

Z
(1.127)

Eq. (1.127) represents an impedance boundary condition with only sound pressure as variable. With
this the system of linear equations for the n complex pressure values (amplitude and phase) can be
established. In general this makes it necessary to invert an n × n matrix for each frequency. Taking
into account that the grid spacing has to be in the order of 1/6 of the shortest wavelength of interest,
it becomes clear that the method is restricted to small volumes or low frequencies. The method is not
very �exible as only homogeneous and equidistant grids can be applied.

Finite di�erences in the time domain

It is possible and often bene�cial to apply the �nite di�erences concept in the time domain 9,10. The
result of such a simulation is an impulse response that contains information about all frequencies. An
other advantage is that fact that an iterative, time-step wise updating scheme can be used without the
necessity of solving a system of equations. However a di�culty with the time domain formulation is the
speci�cation of boundary conditions. Typically these are de�ned as impedances in the frequency domain.
An exact transformation to the time domain would require a convolution operation which is very ex-
pensive in the sense of computational e�ort. Therefore appropriate approximation are usually used 11,12.

8Alfredson R.J., A Note on the Use of the Finite Di�erence Method for Predicting Steady State Sound Fields. Acustica
28 (1973) pp 296 - 301.

9D. Botteldooren, Finite-di�erence time-domain simulation of low-frequency room acoustic problems, Journal of the
Acoustical Society of America, vol. 98, p.3302-3308 (1995).

10S. Sakamoto, H. Tachibana, Numerical study on sound propagation from depressed/semi-underground roads, Pro-
ceedings inter-noise 2001.

11B. Van den Nieuwenhof, J.-P. Coyette, Treatment of frequency-dependent admittance boundary conditions in transient
acoustic �nite/in�nite-element models, Journal of the Acoustical Society of America, vol. 110, p.1743-1751 (2001)

12Benoit Van den Nieuwenhof, Jean-Pierre Coyette, Treatment of frequency-dependent admittance boundary conditions
in transient acoustic �nite-in�nite-element models, Journal of the Acoustical Society of America, vol. 111, p.1743-1751
(2001).
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The method of F inite D i�erences in the T ime Domain (FDTD) is based on Eq. 1.12 and 1.29. In
cartesian coordinates these equations read as:

∂p

∂x
= −ρ∂vx

∂t
(1.128)

∂p

∂y
= −ρ∂vy

∂t
(1.129)

∂p

∂z
= −ρ∂vz

∂t
(1.130)

−∂p
∂t

= κP0

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
(1.131)

The region of interest is covered with a regular grid. The sound pressure is evaluated at grid positions
< i∆x, j∆y, k∆z > where i, j, k are whole-numbered indices and ∆x,∆y,∆z are the discretization
widths in the three coordinate directions. The sound particle velocity component in the x-direction is
evaluated at grid points < (i± 0.5)∆x, j∆y, k∆z >, the y-component at < i∆x, (j ± 0.5)∆y, k∆z >
and the z-component at < i∆x, j∆y, (k±0.5)∆z >. The Figure 1.25 shows the grid in two dimensions.
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Figure 1.25: FDTD discretization of the region of simulation in the two dimensional case. Sound
pressure is investigated at < i∆x, j∆y >, the sound particle velocity components in the x and the
y-direction at < (i± 0.5)∆x, j∆y > and < i∆x, (j ± 0.5)∆y >. The dashed line marks the border of
the region where boundary conditions have to be de�ned.

The original di�erential equations of the sound �eld are approximated by �nite di�erences. Besides a
spacial discretization, a temporal discretization has to be introduced for that purpose. Sound particle
velocity is evaluated at times t = (l + 0.5)∆t, sound pressure is evaluated at times t = l∆t (l being a
running index). The corresponding di�erence equations become:

v[l+0.5]
x (i+ 0.5, j, k) = v[l−0.5]

x (i+ 0.5, j, k)− ∆t

ρ∆x

(
p[l](i+ 1, j, k)− p[l](i, j, k)

)
(1.132)

v[l+0.5]
y (i, j + 0.5, k) = v[l−0.5]

y (i, j + 0.5, k)− ∆t

ρ∆y

(
p[l](i, j + 1, k)− p[l](i, j, k)

)
(1.133)

v[l+0.5]
z (i, j, k + 0.5) = v[l−0.5]

z (i, j, k + 0.5)− ∆t

ρ∆z

(
p[l](i, j, k + 1)− p[l](i, j, k)

)
(1.134)

p[l+1](i, j, k) = p[l](i, j, k)− ρc2∆t

∆x

(
v[l+0.5]
x (i+ 0.5, j, k)− v[l+0.5]

x (i− 0.5, j, k)
)

−ρc
2∆t

∆y

(
v[l+0.5]
y (i, j + 0.5, k)− v[l+0.5]

y (i, j − 0.5, k)
)

−ρc
2∆t

∆z

(
v[l+0.5]
z (i, j, k + 0.5)− v[l+0.5]

z (i, j, k − 0.5)
)

(1.135)
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For points at the border of the simulation region, boundary conditions have to be de�ned. A di�culty
is the handling of an open space. At the border of the region of calculation, total re�ection occurs.
To avoid unwanted artifacts, a zone with damped propagation has to be introduced. A very e�cient
method is the perfectly matched layer, originally proposed for electro-magnetic �eld calculations
13. Without signi�cant restrictions it can be assumed that the boundary conditions need only be
formulated at grid points where the sound particle velocity is evaluated. A local reaction condition
is usually assumed which means that the boundary conditions makes a statement about the ratio
of sound pressure and the normal component of the sound particle velocity. This corresponds to an
impedance that is usually frequency dependent.

If the possible frequency dependency is restricted, the formulation of the boundary conditions simpli�es
dramatically. Here it is assumed that the impedance can be described with Eq. 1.136. In 14 a more
subtle second order extension is discussed.

Z(ω) = a−1
1

jω
+ a0 + a1jω (1.136)

where
a−1, a0, a1: positive real numbers.

For the Fourier transform in the frequency domain it can be written:

P (ω) = Z(ω)V (ω) = V (ω)a−1
1

jω
+ V (ω)a0 + V (ω)a1jω (1.137)

where
P (ω): Fourier transform of the sound pressure time history
V (ω): Fourier transform of the sound particle velocity time history

Equation 1.137 translates into the time domain as:

p(t) =

∫ t

−∞
a−1vn(τ)dτ + a0vn(t) + a1

dvn(t)

dt
(1.138)

As already mentioned it is assumed that the boundary condition is de�ned at a grid point where the
sound particle velocity is evaluated. In these points Eq. 1.132 to 1.134 have to be replaced accordingly.

Exemplarily this is demonstrated here for the sound particle velocity component in the x-direction
with the assumption, that the border runs through the grid point < (i+ 0.5)∆x, j∆y, k∆z > and the
simulation region lies on the left (at lower x values).

As for any point in space, Eq. 1.139 has to be full�lled for the boundary point < (i +
0.5)∆x, j∆y, k∆z > as well.

∂p

∂x
= −ρ∂vx

∂t
(1.139)

In contrast to the symmetrical approximation from above (1.132), a onesided approximation for (1.139)
is used here:

v[l+0.5]
x (i+ 0.5, j, k) = v[l−0.5]

x (i+ 0.5, j, k)− 2∆t

ρ∆x

(
p[l](i+ 0.5, j, k)− p[l](i, j, k)

)
(1.140)

In Eq. 1.140 the sound pressure at the point < (i + 0.5)∆x, j∆y, k∆z > is unknown. However with
knowledge of the boundary condition (1.138) this unknown sound pressure can be expressed with the
sound particle velocity:

13J. P. Berenger, A perfectly matched layer for the absorption of electro magnetic waves, Journal of Computational
Physics, vol. 114, p.185-200 (1994)

14K. Heutschi, M. Horvath, J. Hofmann, Simulation of Ground Impedance in Finite Di�erence Time Domain Calculations
of Outdoor Sound Propagation, Acta Acustica united with Acustica, vol. 91, 35-40 (2005).
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p[l](i+ 0.5, j, k) = a−1∆t

(
l∑

m=−∞
v[m−0.5]
x (i+ 0.5, j, k)

)
+ a0v

[l]
x (i+ 0.5, j, k) +

+a1
v
[l+0.5]
x (i+ 0.5, j, k)− v

[l−0.5]
x (i+ 0.5, j, k)

∆t
(1.141)

In Eq. 1.141 a Term with the sound particle velocity at time l occurs. As sound particle velocity values
are evaluated at times .+0.5, this value has to approximated as average of the two temporal neighbors:

v[l]x =
v
[l+0.5]
x + v

[l−0.5]
x

2
(1.142)

Finally Eq. 1.140 can be dissolved for the wanted value v
[l+0.5]
x (i+ 0.5, j, k) by insertion of Eq. 1.141

and 1.142. Eq. 1.143 is the replacement of Eq. 1.132 as updating equation.

v[l+0.5]
x (i+ 0.5, j, k) = v[l−0.5]

x (i+ 0.5, j, k)
ρ∆x− a0∆t+ 2a1
ρ∆x+ a0∆t+ 2a1

+

+p[l](i, j, k)
2∆t

ρ∆x+ a0∆t+ 2a1
−

l∑
m=−∞

v[m−0.5]
x (i+ 0.5, j, k)

2a−1(∆t)
2

ρ∆x+ a0∆t+ 2a1
(1.143)

The in�nite sum in Eq. 1.143 makes it necessary to introduce an additional register to accumulate the
corresponding contributions over time.

If the region of simulation lies on the right side of the boundary the updating equation for the sound
particle velocity is found as:

v[l+0.5]
x (i+ 0.5, j, k) = v[l−0.5]

x (i+ 0.5, j, k)
ρ∆x− a0∆t+ 2a1
ρ∆x+ a0∆t+ 2a1

−

−p[l](i+ 1, j, k)
2∆t

ρ∆x+ a0∆t+ 2a1
−

l∑
m=−∞

v[m−0.5]
x (i+ 0.5, j, k)

2a−1(∆t)
2

ρ∆x+ a0∆t+ 2a1
(1.144)

The equations for the two other coordinate directions are found by adapting the corresponding indices.

A possible initial condition to investigate the impulse response is a smooth and continuous sound
pressure distribution at and around the source position as given in Eq. 1.145. It has to be ensured that
no aliasing occurs, neither in space nor in time.

p[0](i, j, k) = e−((0.3(i−iS))2+(0.3(j−jS))2+(0.3(k−kS))2) (1.145)

with
iS , jS , kS : indices of the grid point of the source position.

Finally the set of di�erence equations represents an updating scheme to determine new sound particle
velocity and sound pressure values from the corresponding old ones. Observing the reaction on an
impulse excitation, the temporal evolution of the sound �eld at each grid point is obtained. These
impulse responses represent the complete information about the system. By application of a Fourier
transformation the frequency responses can easily be calculated.

Figure 1.26 shows an example of a FDTD simulation.

1.14.5 Method of �nite elements

As in many disciplines Finite Elements can successfully be applied for sound �eld calculations
15,16. The �nite element method is especially well suited for bounded domains, however it is

15W. J. Anderson, Numerical Acoustics, Multimedia study guide (CD-ROM), Ann Arbor, Automated Analysis Corpo-
ration (1996).

16G. Dhatt, G. Touzot, The Finite Element Method Displayed, John Wiley & Sons (1984).
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Figure 1.26: 2D FDTD simulation of the temporal evolution of the sound �eld in a road gallery (cross
sectional view) after excitation with a pressure pulse. Dark red corresponds to high positive, dark blue
to high negative sound pressure.

possible to handle in�nite domains as well with help of so called in�nite elements. The underlying
equations are usually formulated in the frequency domain, but time domain approaches are also possible.

In the following the principles of the �nite element method are introduced for a general 3-dimensional
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bounded domain. The sound �eld variable of interest is usually sound pressure. It is assumed that the
time dependency is sinusoidal with angular frequency ω. Consequently the search of the sound �eld
reduces to the determination of the the complex amplitude p̌ as a function of the location.

The general problem can be formulated by the Helmholtz equation and three possible boundary condi-
tions as follows:

∇2p̌+ k2p̌ = 0 in the considered volume V (1.146)

p̌ = p̄ on the surface S1 (1.147)

v̌n = v̄n → ∂p̌

∂n
= −jρωv̄n on the surface S2 (1.148)

v̌n
p̌

= An =
1

Zn
→ ∂p̌

∂n
= −jρωAnp̌ on the surface S3 (1.149)

where
k: wave number = ω

c
p̄: prede�ned sound pressure
v̄n: prede�ned normal component of the sound particle velocity
An: prede�ned admittance
Zn: prede�ned impedance

S1, S2 and S3 form the total surface S that encloses the �eld volume completely. With the �nite
element procedure an approximate solution p̌′ for the true pressure p̌ is searched. The quality of the
approximation is measured with help of the residues that correspond to the di�erences between the
actual and the nominal values:

RV = ∇2p̌′ + k2p̌′ (1.150)

RS1 = p̄− p̌′ (1.151)

RS2 = −∂p̌
′

∂n
− jρωv̄n (1.152)

RS3 = −∂p̌
′

∂n
− jρωAnp̌

′ (1.153)

where
RV : residuum for the considered volume V
RS1

: residuum for the surface S1 with prede�ned sound pressure p̄
RS2 : residuum for the surface S2 with prede�ned normal component of the sound particle velocity v̄n
RS3 : residuum for the surface S3 with prede�ned admittance An

The approximate solution p̌′ is searched for the condition of a vanishing weighted average sum of the
residues: ∫

V

WRV dV +

∫
S1

WRS1dS +

∫
S2

WRS2dS +

∫
S3

WRS3dS = 0 (1.154)

with
W : weighting function

The weighting function W in Eq. 1.154 can be chosen arbitrarily. However the solution p̌′, that ful�lls
Eq. 1.154 depends on W . On the surface S1 the boundary condition speci�es the sound pressure p̄.
It is most plausible to choose there p̌′ identical to p̄. Consequently on S1 the residuum RS1

vanishes
independently of W . As will be seen later it is bene�cial to chose W in such a way that it takes the
value 0 on S1. Inserting the residues in Eq. 1.154 yields:

∫
V

W∇2p̌′dV +

∫
V

Wk2p̌′dV −
∫
S2

W

(
∂p̌′

∂n
+ jρωv̄n

)
dS−

∫
S3

W

(
∂p̌′

∂n
+ jρωAnp̌

′
)
dS = 0 (1.155)
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The �rst summand in Eq. 1.155 can be rewritten with the �rst Green's formula:∫
V

W∇2p̌′dV = −
∫
V

gradW • gradp̌′dV +

∮
S

W
∂p̌′

∂n
dS (1.156)

where
•: scalar product

In Eq. 1.156 the integration over the surface S can be written as sum of the integrals over the partial
surfaces S1, S2 and S3. Finally Eq. 1.155 becomes:

−
∫
V

gradW •gradp̌′dV +

∫
V

Wk2p̌′dV +

∫
S1

W
∂p̌′

∂n
dS−

∫
S2

Wjρωv̄ndS−
∫
S3

WjρωAnp̌
′dS = 0 (1.157)

In Eq. 1.157 the integration over S1 vanishes as the weighting function W was chosen to 0 on S1.

The next step is the discretization. That fore the whole region of interest is subdivided into small
elements. These elements may vary in size and may have di�erent shapes (Fig. 1.27). By suitable
element selection, an optimal adaption to the geometry of interest is possible. This �exibility is an
essential advantage compared to the equidistant discretisation in the �nite di�erences method.

Figure 1.27: Examples of 2D and 3D �nite elements.

An element describes a small part of the �eld region of interest. In three dimensions these can be
cubes, tetrahedrons and so on. Suitable shapes in two dimensions are triangles and four-sided forms.
An element is de�ned by nodes that are typically located at the corners. The elements have to cover
the whole simulation region. Some elements share a common boundary and some have the same nodes.
For each element M , so called interpolation functions or shape functions Ni are determined where M
corresponds to the number of the nodes of the element. The interpolation functions Ni depend on
location and describe the �eld variable p̌′ within the element from the values at the nodes (1.158).
Outside of the element the functions Ni vanish.

p̌′(x, y, z) =

M∑
i=1

p̌′iNi(x, y, z) (1.158)

with
p̌′i: sound pressure in node i
Ni(x, y, z): interpolation function i

The �nite element algorithms di�er in the choice of the weighting functions W . A common approach
is the so called Galerkin method. Thereby the weighting functions are identical to the interpolation
functions. The formula 1.157 represents one equation for each element and node. These equations
contain information about each isolated element only. In a so called assembling procedure the
equations are put together under consideration of the fact that some elements have common nodes.
This process introduces the situation geometry. In the last step the resulting system of equations has
to be solved for the �eld variable sound pressure in each node.

As already mentioned above the �nite element method is very well suited for bounded domains. Open
domains can be treated with the idea of in�nite elements17,18. An alternative approach for unbounded

17D. S. Burnett, A three-dimensional acoustic in�nite element based on a prolate spheroidal multipole expansion.
Journal of the Acoustical Society of America, vol. 96, p.2798-2816 (1994).

18D. S. Burnett, R. L. Holford, An ellipsoidal acoustic in�nite element. Comput. Methods Appl. Mech. Eng. vol. 164,
p.49-76 (1998).
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domains (which means nothing is re�ected back) is the introduction of an arbitrary boundary where the
boundary conditions corresponds to the free �eld impedance Z = ρc. For plane waves this works �ne,
however in the general case a certain impedance discontinuity will occur, resulting in some re�ected
sound energy.

Within the concept of �nite elements it is possible to account for locally varying medium properties and
thus propagation conditions. Furthermore coupled structure �uid systems can be treated, taking into
account e.g. the force of the sound wave that is acting on a structure.

1.14.6 Acoustical Holography

As already discussed, the Helmholtz equation can be transformed into the Kirchho�-Helmholtz integral
by use of Greens theorem. For that purpose the free �eld Green's function is applied. The Kirchho�-
Helmholtz integral expresses the sound pressure in an arbitrary point in three dimensional space by the
integral evaluated on a closed surface S. For certain geometries of S, other Green's functions may be
applied that deliver simpler �eld descriptions. A case of such a specially chosen surface is a plane that
is closed in in�nity in form of a hemisphere (Figure 1.28).

source

S

Figure 1.28: The surface S encloses the source completely. S consists of a plane and a hemisphere
with in�nite radius.

Using Sommerfeld's radiation condition, the contribution of the integral over the hemisphere of S can
be neglected, meaning that the integral has to be evaluated over the plane only. An adapted Green's
function that takes the mirror source into account yields an integral formulation with sound pressure
alone, the contribution of the sound particle velocity vanishes. The sound pressure at any point in space
on the right hand side of the plane (in the half space not occupied by the source) is then given as 19:

p̌(x, y, z, ω) = j

∫
S

p̌S(ω) cosϕ

(
1− j

kr

)
e−jkr

λr
dS (1.159)

where
p̌S(ω): sound pressure (amplitude and phase) on the plane S
λ: wavelength
ω: angular frequency
k: wave number = 2π/λ
r: distance of the point of interest (x, y, z) to the point on the plane
ϕ: angle between the direction from the point on the plane to the point of interest and the normal
direction of the plane

Most remarkable in Eq. 1.159 is the fact that a 3D sound pressure �eld is determined by the sound
pressure distribution over a 2D plane. This is the essential property of holography where an interference
pattern in a photography can store information about a 3D object.

In a practical applications of acoustical holography sound pressure (with respect to phase and
amplitude) is determined in a plane at discrete grid points. The sampling region has to be large enough
so that the sound pressure outside can be neglected. The sampling can be performed simultaneously

19Jorgen Hald, STSF - a unique technique for scan-based Near-�eld Acoustic Holography without restrictions on
coherence, Br�'uel + Kjaer Technical Review, no. 1, (1989).
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with an array of microphones or sequentially with one microphone that is moved from one sampling
position to the other. In this case a reference is needed to determine the phase.

In some cases one is interested in the conversion of the values measured in one plane to the sound
pressure in an other plane. This operation can be performed very e�ciently by a spacial Fourier
transformation 20. This calculation can be performed for target planes that are close to the source.
By this procedure the near �eld of an extended source can be investigated. In such a plane partial
sources can be detected easily. Information about sound particle velocity can be deduced by using the
corresponding relation of the gradient of the sound pressure (Eq. 1.12).

1.14.7 Equivalent sources technique

In some cases the method of equivalent sources can be a very e�cient strategy to �nd approximate so-
lutions for sound �elds de�ned by boundary conditions and a driving source. Cases with rigid boundaries
are especially well suited. The basic idea is to introduce auxiliary sources in order to satisfy the boundary
conditions. To adjust the position and strength of the auxiliary sources an optimization procedure is
needed. The quality of a solution is measured as the sum of the squared error at discrete points on the
boundary. In general the error can not be made zero because the number of auxiliary sources is usually
much lower than the number of test points on the boundary. The art in the application of the method
is to �nd reasonably good solutions with a low number of auxiliary sources 21.

1.14.8 Principle of reciprocity

In a homogeneous medium at rest the so called principle of reciprocity holds for acoustical quantities
such as sound pressure or sound particle velocity 22,23. The principle states that the e�ect at a receiver
point that is produced by a source is identical if source and receiver are exchanged. In free �eld
situations the validity of the principle is obvious. However the interchangeability is maintained even if
arbitrary boundaries such as walls and re�ectors are introduced. In general the principle of reciprocity
is violated for sound propagation outdoors due to the fact that the medium is not at rest and not
homogeneous.

A remarkable consequence of this principle is the so called time-reversed acoustics. 24,25. In a typical
experiment �rstly the sound emitted by a source is registered at several receivers in the vicinity. Then
the recorded signals at each receiver are emitted time-inverted (backwards) at these former receiver
positions. In accordance with the principle of reciprocity the emitted signals will focus perfectly in
the original source position. This focussing e�ect is especially pronounced if sources and receivers are
omnidirectional.

Although experiments with time-reversed acoustics are usually performed with several microphones
and consequently several loudspeakers, the principle can also be applied with a single microphone and
loudspeaker. However in this case re�ections are needed to produce relevant focusing ampli�cations.
It is assumed that the source emits a short pulse. The receiver will then record the impulse response
of the system. The principle of reciprocity states that this impulse response from the source to the
receiver is identical to the impulse response from the receiver to the source. If the time-inverted
impulse response signal is emitted at the original receiver position, the signal that results at the original
source position corresponds to the convolution of the time-inverted impulse response with the impulse
response. This operation yields the autocorrelation function of the impulse response with a distinct
peak at the corresponding point in time.

Time-reversed acoustics can be found e.g. in medical applications for diagnosis purposes and in me-
chanical treatments such as destroying of kidney stones.

20Maynard, J. D. et al., Near�eld acoustic holography. I: Theory of generalized holography and the development of
NAH, J. Acoustical Society of America, vol. 78, p. 1395- (1985).

21M. E. Johnson, An equivalent source technique for calculating the sound �eld inside an enclosure containing scattering
objects. Journal of the Acoustical Society of America, vol. 104, p.1221-1231 (1998).

22Allan D. Pierce, Acoustics, published by the Acoustical Society of America (1989).
23M. Heckl, H.A. M�'uller, Taschenbuch der Technischen Akustik, Springer-Verlag (1994).
24M. Fink, Zeitumkehr-Akustik, Spektrum der Wissenschaft, p.68-74, M�'arz (2000).
25M. Fink, Time-Reversed Acoustics, Physics Today, vol.50, p.34-40 (1997).
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1.15 Production of sound

Audible sound pressure can be understood as AC component of the absolute air pressure. The generation
of sound makes thus in one form or the other a time varying excitation necessary. Possible sound
generation mechanisms are:

� abrupt relaxation of compressed air (bursting balloon)

� abrupt gas production (explosion)

� modulated air �ow (siren)

� oscillating air column (organ pipe, acoustical laser 26...)

� vibrating body (loudspeaker membrane, tuning fork)

� abrupt local heating of air (lightening and thunder)

1.15.1 Relaxation of compressed air

A possible source to produce an impulse-like sound is a bursting balloon. The balloon �lled with air
represents a volume of higher pressure. At the moment of bursting this over-pressure can propagate in
all directions. Thereby peak levels may exceed 125 dB in a distance of 1 m.

1.15.2 Abrupt gas production (explosion)

The muzzle blast of a �re arm is the result of an abrupt gas production. An other example is the
air bag widely applied in cars. In case of an accident a small explosion is ignited that in�ates a bag
to mechanically protect the passenger. On the other hand the in�ating bag leads to very high sound
pressure peaks that may damage the ear 27. The linear peak ranges up to 167 dB, the linear event or
exposure level is about 139 dB. These values surpass the SUVA limiting values for impulsive noise by
6 to 8 dB.

1.15.3 Modulated air �ow

A modulated air �ow can produce very high sound pressure values. Probably the most common
application of this principle is a siren. In its simplest form a siren consists of a perforated rotating disk
that controls the passage of an air �ow. The speed of revolution and the geometry of the holes in the
disk de�ne the frequency of the generated sound.

An other application is the so called air�ow speaker. This speaker consists of a unit that contains
air under high pressure. By a valve that is controlled by the audio signal an air�ow producing very
high sound pressure can be established. A major challenge with air�ow speakers is the suppression of
unwanted �ow noise that appears at the nozzle.

1.15.4 Oscillating air column

The air column in a tube represents a system of resonances that can be used to generate tones. Here
the system of an organ pipe shall be discussed in some detail.

The organ pipe is excited at one end to maintain the oscillation at the resonance frequency while the
other end is terminated by a certain impedance ZL. It is assumed that the tube has the length L. The
region of interest ranges thus from x = 0 to x = L where the excitation is at x = 0 (Figure 1.29). In
a �rst step the impedance seen at the input (x = 0) will be determined.

It is assumed that the wave length is much larger than the diameter of the tube. With this in mind the
sound propagation can be described as an incident and a re�ected plane wave running in x-direction.
Sound pressure and sound particle velocity are in phase everywhere, their ratio corresponds to ρc.

26Echos, The newsletter of the Acoustical Society of America, no. 3, vol 10 (2000).
27Beat W. Hohmann, Geh�'orsch�'aden durch Airbags, Fortschritte der Akustik DAGA 98, p.722-723 (1998).
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Figure 1.29: Situation for the discussion of the impedances at arbitrary position in the organ tube.

Thermal and viscous losses at the circumference are ignored.

Assuming a harmonic oscillation with angular frequency ω, sound pressure and sound particle velocity
of the wave running to the right are given as:

pr(x, t) = Ae−jkxejωt (1.160)

vr(x, t) =
A

ρc
e−jkxejωt (1.161)

where
A: amplitude of sound pressure
k: wave number = 2π/λ

Sound pressure and sound particle velocity of the wave running to the left are given as:

pl(x, t) = Bejkxejωt (1.162)

vl(x, t) = −B

ρc
ejkxejωt (1.163)

where
B: amplitude of sound pressure

It should be noted that the sound particle velocity of the wave running to the left has a negative sign.
The superposition of both waves yields the total sound �eld:

p(x, t) =
(
Ae−jkx +Bejkx

)
ejωt (1.164)

v(x, t) =

(
A

ρc
e−jkx − B

ρc
ejkx

)
ejωt (1.165)

At the position x = L the impedance is known, namely ZL:

p(L, t)

v(L, t)
=

Ae−jkL +BejkL

A
ρce

−jkL − B
ρce

jkL
= ZL (1.166)

From this the re�ection factor (the ratio of the constants B to A) can be determined as

B

A
= e−2jkLZL − ρc

ZL + ρc
(1.167)

With knowledge of this ratio (Eq. 1.167) the input impedance at the position of excitation x = 0 can
be found as

ZIN =
p(0, t)

v(0, t)
= ρc

1 + B
A

1− B
A

= ρc
ZL cos(kL) + jρc sin(kL)

jZL sin(kL) + ρc cos(kL)
(1.168)

Regarding the termination of the tube ZL, two important cases can be distinguished:

� closed end: ZL = ∞

� open end: ZL = radiation impedance of the opening
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For the closed end the input impedance is

ZIN = −jρc cot(kL) (1.169)

For the open end and at low frequencies k × tube diameter ≪ 1 the radiation impedance ZL is much
smaller than ρc. With this follows

ZIN = jρc tan(kL) (1.170)

At higher frequencies the radiation impedance can no longer be neglected. This e�ect can be modeled
by an end correction.

The excitation process is air that is blown across a cutting edge. This results in high sound particle
velocity and low sound pressure. The organ pipe is in resonance, if this excitation condition is supported
by the tube, that is to say ZIN = 0. From the relations above the resonance frequencies can be
calculated as:

closed end:

cot(kL) = 0 → kL = (2n− 1)
π

2
→ ω = (2n− 1)

πc

2L
, n = 1, 2, . . .

the fundamental mode n = 1 corresponds to L =
λ

4
(1.171)

open end:

tan(kL) = 0 → kL = nπ → ω = n
πc

L
, n = 1, 2, . . .

the fundamental mode n = 1 corresponds to L =
λ

2
(1.172)

1.15.5 Vibrating bodies

Many sound sources are based on vibrating bodies, such as loudspeaker membranes, string instruments,
motors, wheels, and so forth. If the normal component of the surface velocity is known, the sound
pressure can be calculated at any point in space by application of the Boundary Element method. The
required surface velocity can be measured e.g. with laser vibrometers.

Strings

Vibrating strings played an important role in early history of acoustics. Experiments with strings
allowed for the discovery of musical intervals and made it possible to establish a relation between the
pitch of a musical tone and the number of oscillations per second.

Many instruments contain strings as excitation element. Due to the small cross sectional dimensions,
a vibrating string is a very ine�cient sound radiator. For improved radiation, the vibrations of the
strings are usually coupled to larger areas and bodies. In the following paragraph the wave equation
for the transverse motion of a string will be deduced.

Figure 1.30 shows a short segment of a string with the force vectors T⃗ . The amplitudes of the force
vectors on both sides of the segment have to be equal. If the string is not in its neutral position they
do not point exactly in opposite directions. The resulting force component in y direction acts as a
restoring force.
The resulting force component Fres,y in y-direction is

Fres,y = T sin(θ(x+ dx))− T sin(θ(x)) (1.173)

where
θ(x): angle of the string force at position x
θ(x+ dx): angle of the string force at position x+ dx
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Figure 1.30: Short segment of a string with the force vectors T .

The function sin(θ(x+ dx)) can be developed as a Taylor series according to

f(x+ dx) = f(x) +
∂f(x)

∂x
dx+ . . . (1.174)

Ignoring the higher order terms, Eq. 1.173 can be written as

Fres,y = T sin(θ(x)) + T
∂(sin(θ(x)))

∂x
dx− T sin(θ(x)) = T

∂(sin(θ(x)))

∂x
dx (1.175)

Under the assumption that the displacement of the string is small, the angle θ remains small as well.
With this we get

sin θ ≈ tan θ ≈ ∂y

∂x
for θ → 0 (1.176)

insertion of Eq. 1.176 in Eq. 1.175 yields:

Fres,y = T
∂
(
∂y
∂x

)
∂x

dx = T
∂2y

∂x2
dx (1.177)

With Newton's law the force Fres,y in Eq. 1.177 can be expressed with mass and acceleration:

T
∂2y

∂x2
dx = µdxay = µdx

∂2y

∂t2
(1.178)

where
T : tension of the string
µ: density of the string per unit length
dx: length of considered string section
ay: acceleration in y-direction

Rearranging Eq. 1.178 �nally yields the di�erential equation of the transverse motion of the string:

∂2y

∂x2
=
µ

T

∂2y

∂t2
(1.179)

Eq. 1.179 has the same structure as the one dimensional wave equation for sound. Consequently the
general solution is given by:

y = f1(ct− x) + f2(ct+ x) (1.180)

where
c: propagation velocity =

√
T
µ

In Eq. 1.180 f1 and f2 denote two arbitrary functions. The arguments (ct − x) and (ct + x) express
that a certain value for y can be obtained by an adjustment of time or position. This corresponds
to two waves running to the left and right. The con�gurations at both ends of the string de�ne the
boundary conditions.
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To �nd harmonic solutions of the wave equation (1.180), the following function in space is put on for
y:

y = A sin(ωt− kx) +B cos(ωt− kx) + C sin(ωt+ kx) +D cos(ωt+ kx) (1.181)

where
k: wave number = ω

c

For the string of length L that is clamped on both ends, the boundary conditions are:

y(0, t) = 0 und y(L, t) = 0 (1.182)

From y(0, t) = 0 follows for the parameters in Eq. 1.181: C = −A and D = −B.

Using the sum and di�erence formulas for sin(x) and cos(x):

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a∓ b) = cos(a) cos(b)± sin(a) sin(b) (1.183)

Eq. 1.181 can be simpli�ed to

y(x, t) = −2A cos(ωt) sin(kx) + 2B sin(ωt) sin(kx) = 2 sin(kx)(B sin(ωt)−A cos(ωt)) (1.184)

The second condition in Eq. 1.182 calls for sin(kL) = 0, which means

kL = nπ for n = 1, 2, . . . (1.185)

From that follows the condition for the angular frequency

ω = n
cπ

L
= n

√
T

µ

π

L
(1.186)

The string clamped on both ends can only vibrate at discrete frequencies. Associated with each
frequency is a distribution of oscillation (mode) with regions of maximum and regions with minimum
oscillations. However more than one mode is possible simultaneously. The occurrence of the modes
depends on the external excitation. The most general solution of the vibrating string is the superposition
of all modes.

y(x, t) =

∞∑
n=1

(An cos(ωnt) +Bn sin(ωnt)) sin(knx) (1.187)

where
ωn = n

√
T
µ
π
L

kn = n πL
An, Bn: amplitude factor of the n-th mode, depending on the excitation

A possible excitation is the plucking of the string. Thereby the string is pulled away from its neutral
position at a certain point. As a �rst approximation the string forms a triangle. After the release the
string will oscillate in those modes that were excited by this triangular shape. The corresponding modes
can be found by development of the function y(x, 0) in a Fourier series. If the string is plucked in a
distance L/m from one end, the m-th mode is missing.

Rods

In rods di�erent types of vibration can occur:

� longitudinal (in direction of the rod)

� transversal (perpendicular to the rod)

� twisting (torsion)

With exception of the longitudinal vibration the mathematical description is expensive, see e.g. 28.

28Thomas D. Rossing, Neville H. Fletcher, Principles of Vibration and Sound, Springer, 1995.
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Membranes

Membranes are foils that are clamped at the circumference. They represent so to say a two dimensional
extension of the one dimensional string. It is assumed that plane of the membrane coincides with the
xy-plane. The de�ection from the neutral position is described by the z-coordinate. Similarly to the
case of the string, a wave equation can be formulated for the membranes, describing the transversal
vibration. For rectangular membranes the wave equation in cartesian coordinates reads as:

∂2z

∂x2
+
∂2z

∂y2
=
σ

T

∂2z

∂t2
(1.188)

where
z: de�ection of the membrane
x, y: coordinates of the membrane point
σ: density of membrane as mass per unit area
T : tension of the membrane

The above equation ignores the sti�ness of the membrane and the in�uence of the surrounding air.
Analogous to the string, there exist only solutions for discrete frequencies. These modes have to
be described by a pair of nonnegative integers m,n. Figure 1.31 shows a couple of modes for the
rectangular membrane.

m=n=1 m=2, n=1 m=1, n=2

m=n=2 m=3, n=1 m=3, n=2

Figure 1.31: Some modes for the rectangular membrane. The sides are clamped, resulting in a boundary
condition of vanishing movement. The node lines (dashed) represent regions without movement.

For a discussion of circular membranes see the book by Rossing 29.

1.15.6 Thermo-acoustical machines

Glassblowers know the phenomenon that - under certain circumstances - glass tubes can suddenly
produce a loud pure tone when exposed to heat.

As already pointed out above, sound in air is an adiabatic process. This means that a passing sound
wave is accompanied by a temperature variation, connected to the momentary pressure. High pressure
creates a temperature increase while low pressure leads to a temperature decrease. Of special interest
is the case of a standing wave. Thereby air packages move back and forth. The movement in one
direction is connected to compression and thus increases temperature. In the other direction the air is
relaxing and thus cooling down. By external installation of an appropriate local temperature gradient
the oscillation of the standing wave can be excited from outside.

An oscillator of this type can be realized quite easily 30. Thereby a glass tube with one open and
one closed end is used. The tube can thus act as quarter-wave-length resonator. In the fundamental
resonance the standing wave in the tube produces a pressure maximum at the closed end and a
pressure minimum at the open end. Figure 1.32 shows the movement of the air particles at progressing
moments in time.

To stimulate the resonance situation shown in Figure 1.32 an appropriate temperature gradient
has to be established. Appropriate means that the implemented temperature gradient supports the

29Thomas D. Rossing, Neville H. Fletcher, Principles of Vibration and Sound, Springer, 1995.
30Steven L. Garrett, Scott Backhaus, The Power of Sound, American Scientist, vol. 88, no. 6, p.516-525 (2000)
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Figure 1.32: Movie representation with progressing time from top to bottom of the movement of air
particles in resonance in a tube closed on the right hand end and open at the other end. While moving
to the right the air is compressed and heated up while the movement to the left corresponds to a
relaxation with associated temperature decrease.

temperature gradient of the standing wave.

Instead of exciting a sound wave by an external temperature gradient, the e�ect can be reversed. If
the standing wave is excited by a vibrating membrane, a temperature gradient is created by the sound
wave that be used for heating or cooling.
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Chapter 2

Acoustical measurements

2.1 Introduction

Acoustical measurements can typically be classi�ed as shown in Table 2.1:

task aim example
emission measurements (passive) description of the strength

of a source
sound radiation of a lawn
mover

measurement at a receiver position
(passive)

description of the strength
of a source including the
propagation to the receiver

road tra�c noise measure-
ment in the living room of
a resident

measurements of a transmission sys-
tem (active)

description of a transmis-
sion system

measurement of the fre-
quency response of a loud-
speaker

Table 2.1: Categories of typical tasks in acoustical measurements.

The complete description of an acoustical process encompasses the speci�cation of the time history
of sound pressure and sound particle velocity at each point. Usually for practical questions one can
restrict to a few attributes of the sound �eld. Most often the sound �eld variable sound pressure is
investigated. Indeed sound pressure is signi�cantly easier to measure than sound particle velocity. For
sound pressure excellent and accurate transducers (microphones) are available to convert the acoustical
signal into an electrical one.

2.2 Signal attributes

2.2.1 Overview

As mentioned above it is usually not necessary to represent the complete time history of the variable of
interest. Thus the question arises what are meaningful signal attributes that can be extracted from a
time signal. Figure 2.1 gives an example of a typical noise-like sound pressure signal p(t). In addition
sound pressure squared p2(t) is shown.

From the time history of a signal as shown in Fig. 2.1, various attributes can be evaluated such as:

� peak value of sound pressure or sound pressure square

� linearly or exponentially time-weighted integrations of sound pressure square

� statistical quantities, e.g. the portion of the signal duration with sound pressure exceeding a
certain limit

The most common quantities used in acoustical measurements are integrations over time of sound
pressure square. Peak values and statistical quantities play only a minor role. It should be noted that the
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Figure 2.1: Typical time history of a noise-like sound pressure signal (left) and the signal squared (right).

integration over time of sound pressure makes no sense, as this quantity yields 0 in the average. The in-
tegration of sound pressure square can be interpreted as a measure for the energy or power of the signal.

Three di�erent integration quantities are used:

Momentary sound pressure level L(t):
→ logarithmic form of the mean sound pressure square moving average (exponential time weighting)

L(t) = 10 log

 1

RC

t∫
−∞

p2(τ)

p20
e

τ−t
RC dτ

 [dB] (2.1)

where
RC: time constant
p(τ): instantaneous sound pressure
p0: reference sound pressure = 2× 10−5 Pa

Equivalent continuous sound pressure level Leq:
→ logarithmic form of the mean sound pressure square taken over a certain time frame

Leq = 10 log

 1

T

T∫
0

p2(τ)

p20
dτ

 [dB] (2.2)

where
T : measurement time interval
p(τ): instantaneous sound pressure
p0: reference sound pressure = 2× 10−5 Pa

Sound exposure level LE or SEL (former designation):
→ logarithmic form of the integral of the sound pressure square over a certain time frame and normalized
to 1 s.

LE = 10 log

 1

1 sec

T∫
0

p2(τ)

p20
dτ

 [dB] (2.3)

where
T : measurement time interval
p(τ): instantaneous sound pressure
p0: reference sound pressure = 2× 10−5 Pa
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The momentary, moving average sound pressure level exists at any moment in time. It follows the
original signal with a more or less pronounced averaging e�ect depending on the selected time constant.
Short peaks are underestimated in their amplitude and overestimated in their pulse width. Typical time
constants that are FAST (125 ms) and SLOW (1 s) 1. The time history of the FAST- or SLOW time
weighted momentary sound pressure level is typically evaluated for certain single number attributes
such as the maximum value.

The integrations over time windows of arbitrary length become possible when the analyzers got digital
microprocessors. Leq or LE both describe as a single value the signal power or signal energy of the
selected time interval.

Figure 2.2 shows the di�erent integrations discussed above.
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Figure 2.2: Momentary squared sound pressure in dB (top left), momentary sound pressure level with
small time constant (top right), momentary sound pressure level with large time constant (bottom left)
and equivalent continuous sound pressure (evaluated every 5 ms) (bottom right).

2.2.2 Application of the measurement attributes

Depending on the measurement task, di�erent measurement attributes are used. The following list
gives some typical examples:

Momentary sound pressure level L:

� maximum level with time constant FAST: Lmax, Fast → attribute to describe shooting noise or
the passage of road vehicles

� minimum level: Lmin → estimation of a stationary signal with occurrence of transient unwanted
noise

Equivalent continuous sound pressure level Leq:

� characterization of non-stationary sources and signals

Sound exposure level LE :

� measurement of single events such as e.g. train passages

1IEC Standard 61672, Electroacoustics - Sound level meters, 2002-05.
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2.2.3 Algorithm to determine the moving square average

In the analogue world the moving average according to Eq. 2.1 can be realized by an RC low-pass
�lter. The following derivation will end up with the formula for a digital implementation.

Starting point is a time signal (e.g. sound pressure) x(t). Then the moving average x2rms(t) of x
2(t)

can be determined as follows:

At time t+∆t the attribute x2rms is given as

x2rms(t+∆t) =
1

RC

t+∆t∫
−∞

x2(τ)e−
t+∆t−τ

RC dτ

=
1

RC

t∫
−∞

x2(τ)e−
t−τ
RC e−

∆t
RC dτ +

1

RC

t+∆t∫
t

x2(τ)e−
t+∆t−τ

RC dτ

= e−
∆t
RC x2rms(t) +

1

RC

t+∆t∫
t

x2(τ)e−
t+∆t−τ

RC dτ (2.4)

For RC ≫ ∆t and t < τ < t+∆t, e−
t+∆t−τ

RC can be approximated as 1. Then follows

x2rms(t+∆t) ≈ e−
∆t
RC x2rms(t) +

1

RC

t+∆t∫
t

x2(τ)dτ (2.5)

The integral
t+∆t∫
t

x2(τ)dτ can be approximated by the area of the rectangle ∆tx2(t+∆t):

x2rms(t+∆t) ≈ e−
∆t
RC x2rms(t) +

1

RC
∆tx2(t+∆t) (2.6)

The exponential-function e−
∆t
RC can be developed into a series. Ignoring the higher order terms we get:

e−
∆t
RC ≈ 1− ∆t

RC
(2.7)

And �nally

x2rms(t+∆t) ≈
(
1− ∆t

RC

)
x2rms(t) +

1

RC
∆tx2(t+∆t)

= x2rms(t) +
x2(t+∆t)− x2rms(t)

RC
∆t

(2.8)

With Eq. 2.8 the moving average at time t + ∆t is expressed as the former value at time t and a
correction term. ∆t can be understood as sampling interval of the digital representation of the signal.
By evaluating Eq. 2.8 the moving average can easily be updated for every new signal sample. It may
be bene�cial to chose ∆t in such a way that RC/∆t corresponds to a power of 2. In this case the
division reduces to a simple shift operation.

2.3 Filters

Up to now it was assumed that the signal attributes are evaluated for the sound pressure time history.
However it is often of interest to take into account the frequency composition of the signal. For that
reason acoustical measurements often use �lters to apply an appropriate frequency weighting or select
a limited frequency range for the analysis. The signal attributes introduced above can then be applied
in the same way for �ltered signals.

51



2.3.1 Weighting �lters

The sensitivity of the human hearing depends strongly on frequency. For that reason frequency
weighting �lters have been de�ned to simulate the frequency response of the ear. However a serious
di�culty is the fact, that the frequency response of the ear depends on sound pressure level. At lower
levels the frequency dependency is more pronounced than at higher levels. For that reason several �lters
were originally de�ned. They got the names A, B and C. 2,3 The A-�lter was designed for low levels,
the B-�lter for medium levels and the C-�lter for high levels. The B-�lter has disappeared completely.
Most often used today is the A-�lter, the C-�lter is applied in special cases only. Evaluations performed
with the A-�lter are labeled with the unit dB(A).

The transfer function for the C-�lter is given by 4:

TC−Filter(s) =
Ks2

(s+ ω1)2(s+ ω2)2
(2.9)

where
ω1 = 1.29× 102 [rad/sec]
ω2 = 7.67× 104 [rad/sec]

With f as frequency in Hz, the amplitude in dB of the transfer function of the C-�lter is

C-weighting = 20log

(
1.498× 108f2

(f2 + 20.62)(f2 + 122002)

)
(2.10)

The transfer function of the A-�lter corresponds to the one of the C-�lter but complemented by two
zeros at the origin and two simple poles:

TA−filter(s) =
Ks4

(s+ ω1)2(s+ ω2)2(s+ ω3)(s+ ω4)
(2.11)

where
ω1 = 1.29× 102 [rad/sec]
ω2 = 7.67× 104 [rad/sec]
ω3 = 6.77× 102 [rad/sec]
ω4 = 4.64× 103 [rad/sec]

The amplitude in dB of the transfer function results in

A-weighting = 20log

(
1.873× 108f4

(f2 + 20.62)(f2 + 122002)
√
f2 + 107.72

√
f2 + 737.92

)
(2.12)

Figure 2.3 shows the amplitude responses of the A- and C-�lter.

In Figure 2.4 a possible RC realization of an A-�lter is depicted. The attenuation of this �lter at 1
kHz is 3.2 dB, which means an additional ampli�cation of 3.2 dB is needed, preferably at the output
to guarantee a high-resistance �lter load.

2.3.2 Filters for frequency analysis

The frequency analysis process evaluates signal contributions that lie within a certain frequency band.
For a complete analysis the whole frequency range of interest is divided into a series of bands that
follow each other seamlessly. The signal attributes discussed above are then evaluated for each band
individually. The frequency axis can be divided in di�erent ways. For acoustical applications linear and
logarithmic partitioning are very common. A linear partitioning results in �lters of constant absolute
bandwidth, the logarithmic partitioning corresponds to �lters of constant relative bandwidth.

2ISO Norm 10845 Acoustics - Frequency weighting A for noise measurements. Draft 1995.
3ISO Norm 14938 Acoustics - Revision of B- and C-weightings and Lin-response for noise measurements. 1998.
4IEC Standard 61672, Electroacoustics - Sound level meters, 2002-05.
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Figure 2.3: Frequency response of the A-(blue) and C-(purple) �lter. The A-weighting shows a small
ampli�cation between 1 and 6 kHz.
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Figure 2.4: Possible realization of the A-weighting as a passive RC �lter ful�lling the requirements of
class 1 according to IEC 61672. An additional ampli�cation of 3.2 dB is needed.

Filters of constant relative bandwidth

Filters of constant relative bandwidth have a width B that is proportional to the center frequency fm
of the �lter. As a standardized basis a center frequency of 1 kHz was de�ned. With this the complete
series can be developed:

B = fmg (2.13)

where
B: bandwidth, evaluated at the -3 dB points
fm: center frequency of the �lter
g: constant

The bandwidth is distributed logarithmically around the center frequency:

fo = fmh

fu = fm
1

h
fo − fu = B

g = h− 1

h
(2.14)

where
fo: upper limiting frequency
fu: lower limiting frequency
h: constant
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With the condition that the �lters follow each other seamlessly, the n-th and the n + 1-th �lter are
speci�ed as:

fo,n = fu,n+1 or
fm,n+1

fm,n
= h2 (2.15)

For the center frequency of the n-th �lter follows:

fm,n = 1000(h2)n for n = . . .− 3,−2,−1, 0, 1, 2, . . . (2.16)

The most important �lters of this type are octave and third-octave �lters 5 . Third octave bands are of
special interest as this partitioning of the frequency axis is related to human perception (critical bands).
The constants g and h have to be chosen according to Table 2.2.

g h h2

octave �lter 0.705 10
3
20 10

3
10

third-octave �lter 0.231 10
1
20 10

1
10

Table 2.2: Values of the constants g and h for octave and third-octave �lters.

Octave �lters have a bandwidth of about 70% of the center frequency. The bandwidth of a third-octave
�lter is about 23% of the center frequency. Table 2.3 shows the standardized octave and third octave
�lter series for the audio range from 16 Hz to 16 kHz. It should be noted that the steepness of the �lters
is �nite, meaning that several �lters show a response even in case of narrow band signals. Nowadays
frequency analyzers are available that can evaluate di�erent signal attributes in third octave bands
simultaneously in real-time.

Filters of constant absolute bandwidth

Filters with constant absolute bandwidth have a �xed bandwidth independent of the center frequency.
Narrow band �lters with typical bandwidths of a few Hz belong to this category, as well as FFT analyzers.
This sort of analysis is typical for technical tasks such as the investigation of the frequency of a pure
tone signal component.

2.4 Uncertainty of measurements

Acoustical signals are often noise-like and thus have random character. If only a limited time is
available, the exact determination of the signal power or the RMS (root mean square) is impossible.
Starting point for the further discussion is an analog, noise-like signal. It is then assumed that a �nite
number of samples are taken from the signal and based on these samples a RMS value is calculated.
This evaluation shows a fundamental uncertainty (Figure 2.5) that depends on the time window and
the signal or analysis bandwidth as will be demonstrated below.

2.4.1 Degrees of freedom of a bandlimited random signal

A consequence of the frequency limitation of a random signal is the fact that two samples lying close to
each other on the time axis are no longer statistically independent. The narrower the frequency band,
the more the time between the samples has to be increased to guarantee statistical independency.
A sample that is not statistically independent relative to the preceding one doesn't yield relevant
information and can thus be omitted.

From a random signal u(t) of bandwidth B, n statistically independent samples can be taken within a
time frame T 6:

n = 2BT (2.17)

5IEC 61260: Electroacoustics - Octave-band and fractional-octave-band �lter, 2014.
6Jens Trampe Broch, Principles of Analog and Digital Frequency Analysis, Tapir, 1981.
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octave band third octave band
fu fm fo fu fm fo

11.1 12.5 14.0
11.3 16 22.6 14.3 16 18.0

17.8 20 22.4
22.3 25 28.1

22.3 31.5 44.5 28.1 31.5 35.5
35.7 40 44.9
44.6 50 56.1

44.5 63 89.1 56.1 63 70.7
71.3 80 89.8
89.0 100 112

88.4 125 177 111 125 140
143 160 180
178 200 224

177 250 354 223 250 281
281 315 353
357 400 449

354 500 707 446 500 561
561 630 707
713 800 898

707 1000 1410 890 1000 1120
1110 1250 1400
1430 1600 1800

1410 2000 2830 1780 2000 2240
2230 2500 2810
2810 3150 3530

2830 4000 5660 3570 4000 4490
4460 5000 5610
5610 6300 7070

5660 8000 11300 7130 8000 8980
8900 10000 11200
11100 12500 14000

11300 16000 22600 14300 16000 18000
17800 20000 22400

Table 2.3: Standard octave and third octave �lters with their nominal center and their lower and upper
limiting frequencies.

The variable n denotes the degrees of freedom of the signal u(t) in the time window T . Taking into
account that a bandlimited signal can be interpreted as an amplitude modulated carrier and that the
information is contained in the modulation, Eq. 2.17 follows directly from the sampling theorem.

2.4.2 Expectation value and variance of various functions of statistically
independent samples

Here a gaussian random signal u(t) is assumed with expectation value = 0 and variance = 1 (u2rms = 1).
From this signal a certain number of statistically independent samples ui are taken. The set of the
samples corresponds to the random variable U .

Ampli�cation
An ampli�cation of the signal u(t) by a factor α results in an random variable U ′ where

u′i = αui

expectation value(U ′) = 0

variance(U ′) = α2 (2.18)
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Figure 2.5: Spread of Leq-measurements of pink noise for an analysis bandwidth of 10 Hz and an
integration time of 0.5 s. The values lie asymmetrical relative to the true average value (red).

Summation over ui
Based on the random variable U , a new quantity U ′′ is generated by summation over n samples of U .
For U ′′ follows:

u′′i =

m∑
i=1

ui

expectation value(U ′′) = 0

variance(U ′′) = m (2.19)

Summation over u2i
Based on U a new quantity U ′′′ is determined by summation over m squared values of the samples.
U ′′′ is χ2 distributed with:

u′′′i =

m∑
i=1

u2i

expectation value(U ′′′) = m

variance(U ′′′) = 2m (2.20)

Fig. 2.6 shows the density function f(y) of the χ2 distribution for di�erent values of the parameter m
(degrees of freedom) 7.

2.4.3 Uncertainty of the calculation of the root mean square

The �rst step in the calculation of the RMS (root mean square) of a signal u(t) is the determi-
nation of the available number of independent samples. For a �xed time frame T and an analysis
bandwidth B this number corresponds to degrees of freedom n = 2BT according to Eq. 2.17. The
square of the RMS value is found as summation of the n squared samples and division by the number n.

It is assumed that the variance of the signal under investigation u(t) equals 1. The uncertainty of the
sum S of the n samples can then be estimated by the quantiles of the corresponding χ2 distribution.
The quantile χ2

n,1−α is the value for S that is exceeded with a probability α. Table 2.4 gives some
quantiles of the χ2 distribution.

From Table 2.4 follows �nally the uncertainty of the RMS value in the decibel scale. For that purpose an
upper and lower bound ∆+, ∆− are determined that cover the measurement value with the probability

7Hubert Weber, Einf�'uhrung in die Wahrscheinlichkeitsrechnung und Statistik f�'ur Ingenieure, Teuber, 1992.
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Figure 2.6: Density function f(y) of the χ2 distribution for two values of m (degrees of freedom). The
area under the curve evaluated up to a certain threshold y corresponds to the probability that the χ2

distributed random variable is smaller or equal to y.

n χ2
n,0.005 χ2

n,0.010 χ2
n,0.050 χ2

n,0.100 χ2
n,0.900 χ2

n,0.950 χ2
n,0.990 χ2

n,0.995

10 2.156 2.558 3.940 4.865 15.99 18.31 23.21 25.19
100 67.33 70.07 77.93 82.36 118.5 124.3 135.8 140.2
1000 888.5 898.9 927.6 943.1 1058 1075 1107 1119

Table 2.4: Quantiles of the χ2 distribution where n corresponds to the degrees of freedom.

p. It is assumed that the measurement value lies with p/2 below the lower bound and with p/2 above
the upper bound. The bounds are then found as

∆− = 10 log

(
χ2
n,[(1−p)/2]

n

)

∆+ = 10 log

(
χ2
n,[(1+p)/2]

n

)
(2.21)

Table 2.5 shows a few corresponding bounds, calculated with Eq. 2.21.

n p = 0.90 p = 0.99
10 −4.0 . . .+ 2.6 dB −6.6 . . .+ 4.0 dB
100 −1.1 . . .+ 0.9 dB −1.7 . . .+ 1.5 dB
1000 −0.3 . . .+ 0.3 dB −0.5 . . .+ 0.5 dB

Table 2.5: Ranges of uncertainty in the RMS calculation of noise-like signal as a function of the degrees
of freedom n for the probabilities p of 90 and 99%.

The derivation above is based on the RMS determination over a �xed time frame T . It can be shown
8 that for a moving average RMS calculation with time constant RC the same uncertainty is obtained
for

2RC = T (2.22)

8C. G. Wahrmann, J. T. Broch, On the Averaging Time of RMS Measurements, B&K Technical Review, No. 2 (1975).
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2.5 Measurement instruments

2.5.1 Microphones

Microphones are transducers that transform an acoustical signal into an electrical one. For mea-
surement purposes only omnidirectional pressure sensitive condenser microphones are used. However
towards high frequencies, pressure microphones loose their omnidirectionality if the sound wave length
is in the same order of magnitude as the microphone diameter. This de�nes an upper frequency limit.
High frequency sound waves hitting the microphone in direction of the membrane normal produce a
pressure pile-up which corresponds to an increase in sensitivity. This deviation from a �at frequency
response can range up to 10 dB. Such a microphone can be used without further measures only for
sound incident direction parallel to the membrane or in small cavities where no wave propagation takes
place. Consequently these microphones are called pressure response types.

Microphones can be designed for usage under normal incident direction by a compensation of the above
mentioned e�ect by appropriate frequency dependent attenuation. These microphones are called free
�eld response types. They are more common than pressure response microphones. Fig. 2.7 shows the
above mentioned pressure pile-up in form of the frequency response of a pressure response microphone
for di�erent sound incident directions.

Figure 2.7: Frequency response of a 1/2" pressure response microphone for di�erent sound incident
directions (B&K 4166).

Some measurement instruments allow for a selection of the incident direction dependent frequency
correction by the user. So it becomes e.g. possible to measure with a free �eld microphone in a di�use
�eld with sound incidence equally distributed over all directions.

The two most important properties of a measuring microphone are:

� dynamic range (lower limit de�ned by self noise, upper limit given by a speci�c level of distortion)

� frequency range

Regarding these two properties no ideal microphone exists. The optimization of one parameter results
in a deterioration of the other. Table 2.6 shows speci�cations of typical measuring microphones.

2.5.2 Calibrators

Calibrators are devices that can be mounted on microphones and produce a highly stable and repro-
ducible sound pressure. Calibrators are used prior to a measurement to calibrate the microphone and
the instrument. There are two common types:

� pistonphone
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microphone diameter in � (1 � = 2.5 cm) dynamic range frequency range
1� 10 dB(A). . .146 dB(A) 2 Hz . . .18 kHz
1/2� 15 dB(A). . .146 dB(A) 2 Hz . . .20 kHz
1/4� 29 dB(A). . .164 dB(A) 2 Hz . . .100 kHz

Table 2.6: Speci�cations of typical measuring microphones of varying diameter.

� acoustical calibrator

The pistonphone generates the reference sound pressure by the movement of two small pistons with
extremely precise lift. It operates at a frequency of 250 Hz and produces a nominal sound pressure
level of 124 dB (+/- 0.15 dB). As the produced sound pressure depends on the density of the air a
correction for the ambient air pressure is necessary.

The acoustical calibrator generates the reference sound pressure by aid of a small loudspeaker. Usually
a frequency of 1 kHz is used, the sound pressure level is typically 94 dB and possibly 114 dB with a
reproducibility of +/- 0.3 dB. The excitation frequency of 1 kHz has the advantage that it doesn't
matter if the A-�lter is involved as the A-�lter is transparent at 1 kHz.

2.5.3 Sound level meter

The sound level meter is the standard measuring instrument of the acoustician. Today's instruments
operate digitally. They measure sound pressure and allow for the evaluation of a variety of signal
attributes such as maximum and minimum levels, equivalent energy levels and event levels. Figure 2.8
shows the block diagram of a sound level meter.

Figure 2.8: Block diagram of a sound level meter.

Functional units of a sound level meter :

microphone and ampli�er the microphones used are omnidirectional condenser microphones, usually
prepolarized.

cable the microphone cable represents a signi�cant load for the microphone capsule. To drive such a
load, a microphone ampli�er is absolutely necessary. Long cables can lead to nonlinear distortions
at high levels and high frequencies.

input ampli�er the input ampli�er allows for a stepwise adaptation of the measuring range to the
signal. The dynamic range of sound level meters is typically in the order of 80 dB.

weighting �lter A- or C-weighting can be applied to account for the frequency response of the human
hearing. Some instruments allow to insert external �lters.

integrator di�erent signal attributes are evaluated simultaneously and stored for the presentation in
the display.

display indication of the selected signal attribute.

The International Electrotechnical Commission (IEC) has speci�ed requirements for class 1 (precision)
and class 2 sound level meters9. Measurements in connection with the Swiss noise legislation10 have to

9IEC Norm 61672 Electroacoustics - Sound level meters, 2002-05.
10LSV: Schweizerische L�'armschutzverordnung, http://www.admin.ch/ch/d/sr/c814_41.html

59



ful�ll the requirements according to class 1. Furthermore the instruments need approval from METAS,
the Federal O�ce of Metrology. All instruments have to be initially calibrated by METAS. Every two
years the instruments need a recalibration by METAS or by a certi�ed body.

2.5.4 Level recorders

Level recorders can register the level time history of an acoustical signal. Today's level recorders operate
digitally. They write the information in a memory for further data precessing and evaluation.

2.5.5 Analyzers for level statistics

Analyzers for level statistics allow for the evaluation of statistical quantities such as L1 or L50. They
indicate the levels that are exceeded during 1% (L1) or 50% (L50) of the measurement time. In today's
practice, statistical levels play a minor role. One reason is the fact that due to nonlinear behavior it is
not possible to perform calculations based on these quantities.

2.5.6 Frequency analyzers

With help of frequency analyzers it is possible to investigate the spectral contents of a signal. In many
areas of signal processing FFT analyzers are common. For acoustical applications on the other hand,
often a frequency resolution that is constant relative to frequency is preferred (e.g. octave and third-
octave bands). For special purposes even smaller bandwidths (one sixth or one twelfth of an octave) are
available. Frequency analyzers are capable to perform the bandpass �ltering in real-time simultaneously
in a range from to 20 Hz to 20 kHz. Figure 2.9 shows a hand-held two-channel analyzer with a maximal
temporal resolution of 5 ms.

Figure 2.9: Example of a hand-held third-octave band analyzer.

2.5.7 Sound recorders

It is often useful to record the microphone signal with a sound recorder for possible additional subsequent
analysis. Today's state of the art are portable digital recorders. They o�er a frequency range up to
at least 20 kHz and a dynamic range of 90 dB or more. To establish a relation to an absolute signal
level, the calibration tone is recorded at the beginning of a measurement. A repetition at the end of
the recording allows for a control that the properties of the measurement chain haven't changed.
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2.6 Special measurement tasks

2.6.1 Sound intensity measurements

Sound intensity meters can capture and evaluate sound intensity. Sound intensity is a vector quantity
and has thus an orientation. The intensity can be calculated as product of sound pressure and sound
particle velocity (Eq. 2.23). ∣∣∣I⃗∣∣∣ = p(t) |v⃗(t)| (2.23)

While the measurement of sound pressure is relatively simple, the sound particle velocity is much more
di�cult to capture. A interesting development in this context is the micro�own transducer11,12,13.
The principle behind the micro�own transducer is a of hot-wire anemometer reacting directly on the
sound particle velocity. The transducer can be built with dimensions much smaller than the wave
lengths of interest in the audio range. However the frequency range is limited towards high frequen-
cies by the fact that the heating and cooling of the wires needs some time due to their thermal capacity.

Still a common method to evaluate sound particle velocities is the two microphone technique. It uses
the relationship between the temporal derivative of the sound particle velocity and the local derivative
of the sound pressure:

ρ
∂vx
∂t

= −∂p
∂x

(2.24)

where vx is the sound particle component in the x-direction. Integration yields

vx = −1

ρ

∫
∂p

∂x
dt (2.25)

The partial derivative of sound pressure relative to the x component can be approximated by a �nite
di�erence:

∂p

∂x
=
p(x+∆x)− p(x)

∆x
(2.26)

where p(x) and p(x + ∆x) correspond to the sound pressure at positions x and x + ∆x. The
approximation by a di�erence is valid only if ∆x is much smaller than the projection of the wave length
onto the x axis.

With Eq. 2.26 inserted in Eq. 2.25 and Eq. 2.25 in Eq. 2.23 the x-component of the intensity �nally
becomes - expressed in p(x) and p(x+∆x)

Ix =
1

T

T∫
0

(
−1

2

1

ρ∆x
(p(x) + p(x+∆x))

∫
p(x)− p(x+∆x)dt

)
dτ (2.27)

where
T : time of integration (averaging)

The availability of sound intensity allows for an elegant measurement of the sound power of a
source 14. To do so the sound source is surrounded by a closed virtual surface. At representa-
tive points on this surface the normal component of sound intensity is measured. By multiplication
with the corresponding areas and summation the total emitted sound power of the source is determined.

11J�'org Sennheiser, MICRO-MINIATURIZED MICROPHONE FOR COMMUNICATION APPLICATIONS, 2nd Conven-
tion of the EAA, Berlin, 1999.

12W.F. Druyvesteyn, H.E. de Bree, A Novel Sound Intensity Probe Comparison with the Pair of Pressure Microphones
Intensity, Journal of the Audio Engineering Society, vol. 48, p.49-56 (2000).

13R. Raangs et al., A Low-Cost Intensity Probe, Journal of the Audio Engineering Society, vol. 51, p.344-357 (2003).
14ISO Norm 9614-1,2 Acoustics - Determination of sound power levels of noise sources using sound intensity; Measure-

ment at discrete points and measurement by scanning. 1993, 1996.
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Additional sound power measurement strategies

If no intensity measurement is available, the sound power of a source can be estimated by pure sound
pressure measurements alone:

A �rst method is to install the source in a reverberant room and to measure the sound pressure in the
di�use �eld. From this sound pressure and with knowledge of the sound absorption in the reverberant
room, the sound power can be determined 15, 16.

In the second arrangement the source is installed in an absorbing environment above a re�ecting
ground. This can be in an anechoic room or outdoors. At several positions in de�ned distance from
the source the sound pressure is evaluated. If the distance from the microphones to the source is
large enough so that near �eld e�ects can be neglected, the sound particle velocity can be deduced
from sound pressure. The sound power of the source is then evaluated analogously to the case where
intensity is measured directly 17,18,19,20.

The third method is based on the comparison of the source under consideration with a reference source
of known sound power. The sound pressures produced by the two sources are measured in the di�use
�eld of an environment with not too much absorption. The ratio of the square of the two sound pressure
values corresponds to the ratio of the sound power of the two sources 21.

2.6.2 System identi�cation

General

A common task in the �eld of acoustics is the description of the transmission properties of systems with
an input x and an output y. In many systems the input and output are di�erent physical quantities, as
e.g. in case of a loudspeaker with an electrical input and an acoustical output. Here it is assumed that
the systems are linear and time invariant which means that they don't change their properties over time.

There are two fundamental possibilities for the description of such a system. In the time domain it is
the impulse response h(t), in the frequency domain the frequency response H(ω). Both representations
describe the system completely. By help of the Fourier transformation they can be converted one into
the other.

H(ω) =

+∞∫
−∞

h(t)e−jωtdt (2.28)

h(t) =
1

2π

+∞∫
−∞

H(ω)ejωtdω (2.29)

In the time domain the output y(t) of the system is given as the convolution of the input x(t) with the
impulse response h(t):

y(t) =

t∫
−∞

x(τ)h(t− τ)dτ (2.30)

15ISO Norm 3741 Acoustics - Determination of sound power levels of noise sources using sound pressure. Precision
methods for reverberation rooms. Draft 1998.

16ISO Norm 3742 Acoustics - Determination of sound power levels of noise sources. Precision methods for discrete-
frequency and narrow-band sources in reverberation rooms. 1988.

17ISO Norm 3744 Acoustics - Determination of sound power levels of noise sources using sound pressure. Engineering
method in an essentially free �eld over a re�ecting plane. 1994.

18ISO Norm 3745 Acoustics - Determination of sound power levels of noise sources. Precision methods for anechoic
and semi-anechoic rooms. 1977.

19ISO Norm 3746 Acoustics - Determination of sound power levels of noise sources using sound pressure. Survey
method using an enveloping measurement surface over a re�ecting plane. 1995.

20ISO Norm 3748 Acoustics - Determination of sound power levels of noise sources. Engineering method for small,
nearly omnidirectional sources under free-�eld conditions over a re�ecting plane. 1983.

21ISO Norm 3747 Akustik - Bestimmung der Schallleistungpegel von Ger�'auschquellen aus Schalldruckmessungen -
Vergleichsverfahren zur Verwendung unter Einsatzbedingungen. Entwurf 1998.
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In the frequency domain the system output Y (ω) corresponds to the product of the input X(ω) and
the frequency response H(ω):

Y (ω) = X(ω)H(ω) (2.31)

A serious di�culty with the practical measurement of the properties of a system is the presence of
unwanted noise. Usually the noise adds at the output of the system as depicted in Fig. 2.10. Only the
signal v(t) can be measured as superposition of the system output y(t) and the noise n(t).

The question arises, in which way a statement about the system output y(t) is possible. If it is
su�cient to determine the signal power of y, the noise power n2rms can be estimated (with input
x(t) = 0) and subtracted from v2rms, yielding an estimate for y2rms. This works under the assumption
that no correlation exists between the unwanted noise n(t) and the system input x(t). Furthermore it
is necessary that n(t) is stationary, meaning it doesn't change its properties over time.

Figure 2.10: Identi�cation of the system h with additional superposition of unwanted noise at the
output.

A more sophisticated approach is the usage of correlation functions. Hereby auto correlation functions
Rxx(τ) and cross correlation functions Rxy(τ) are needed according to the following de�nitions:

Rxx(τ) =
1

2T

+T∫
−T

x(t− τ)x(t)dt (T → ∞) (2.32)

Rxy(τ) =
1

2T

+T∫
−T

x(t− τ)y(t)dt (T → ∞) (2.33)

The cross correlation between the input and output of a linear system with impulse response h(t) can
be written as (with T → ∞):

Rxy(τ) =
1

2T

+T∫
−T

x(t− τ)

∞∫
0

x(t− u)h(u)dudt

=

∞∫
0

h(u)
1

2T

+T∫
−T

x(t− τ)x(t− u)dtdu

=

∞∫
0

h(u)
1

2T

+T∫
−T

x(t− (τ − u))x(t)dtdu

=

∞∫
0

h(u)Rxx(τ − u)du

= h(t) ∗Rxx(τ) (2.34)

where
∗: convolution

The relation (2.34) is called Wiener-Hopf equation. With known auto correlation function of the stimulus
x(t) the system impulse response can be determined from the measured cross correlation function
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between the input and output. The big advantage of evaluation of the cross correlation function is the
fact that uncorrelated noise cancels out perfectly in the limiting case of in�nite measuring time. Applied
to the system identi�cation task from Fig. 2.10 it can be concluded that Rxy = Rxv and therefore

Rxx(τ) ∗ h(t) = Rxv(τ) (2.35)

In the limiting case of an in�nitely long measurement, the impulse response h(t) can thus be determined
perfectly with help of Eq. 2.35.

The Wiener-Khinchine theorem states that the auto correlation function Rxx(τ) and the power spectrum
Gxx(ω) as well as the cross correlation functionRxy(τ) and the cross power spectrumGxy(ω) are related
by the Fourier transformation. Consequently Eq. 2.34 can be translated into the frequency domain as

H(ω) =
Gxy(ω)

Gxx(ω)
(2.36)

where
Gxx(ω) : power spectrum of the input signal x(t)
Gxy(ω) : cross power spectrum of the input signal x(t) and output signal y(t)

The power spectrum Gxx(ω) and the cross power spectrum Gxy(ω) are given as

Gxx(ω) = E[X∗(ω)X(ω)] (2.37)

Gxy(ω) = E[X∗(ω)Y (ω)] (2.38)

where
E : expectation value
X(ω) : Fourier transform of the input signal x(t)
Y (ω) : Fourier transform of the output signal y(t)
∗ : complex conjugate

In the context of system identi�cation, the coherence γ2xy(ω) function is often evaluated to describe
the quality of the measurement. The coherence is de�ned as

γ2xy(ω) =

∣∣Gxy(ω)2∣∣
Gxx(ω)Gyy(ω)

(2.39)

If there is a strict linear relationship between the input and output of a system, the coherence γ2xy(ω)
equals 1 everywhere. If there is no correlation at all between the input and output the coherence
becomes 0. In practical applications the coherence is usually a little below 1, meaning that

� the measurement is distorted by noise and/or

� input and output are related not only linearly and/or

� the output depends on the input but is in�uenced by further quantities

Correlation measurement in the time domain

The correlation measurement in the time domain evaluates the impulse response of a system by evalu-
ation of the cross correlation function between the input and output signal according to Eq. 2.34. If a
stimulus with a dirac-like auto correlation function is chosen, Eq. 2.34 simpli�es to

h(t) = Rxy(τ) (2.40)

where
h(t): impulse response of the system
Rxy(τ): cross correlation function between input and output

Di�erent stimulus signals with dirac-like auto correlation functions are worth to be considered. White
noise for example is one possibility. An other interesting signal class are two-valued pseudo random
sequences or maximum length sequences (MLS) . Such sequences s(k) can be found for lengths L with
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L = 2n − 1 n: integer > 0 (2.41)

-2

-1

0

1

2

Figure 2.11: Part of a two valued pseudo random sequence. The sequence values 0 are mapped to +1,
sequence values 1 are mapped to -1.

Pseudo random sequences can be generated with help of shift registers. The secret lies in a suitable
exclusive-or operation and feed-back of the correct digits. Table 2.7 shows for di�erent orders n
examples of primitive polynomials. Fig. 2.12 shows exemplarily the translation of a primitive polynomial
into a feed-back structure of the shift register. More details about primitive polynomials can be found
in the book by Weldon 22 .

order n primitive polynomial order n primitive polynomial
1 x+ 1 16 x16 + x5 + x3 + x2 + 1
2 x2 + x+ 1 17 x17 + x3 + 1
3 x3 + x+ 1 18 x18 + x7 + 1
4 x4 + x+ 1 19 x19 + x6 + x5 + x+ 1
5 x5 + x2 + 1 20 x20 + x3 + 1
6 x6 + x+ 1 21 x21 + x2 + 1
7 x7 + x+ 1 22 x22 + x+ 1
8 x8 + x6 + x5 + x+ 1 23 x23 + x5 + 1
9 x9 + x4 + 1 24 x24 + x4 + x3 + x+ 1
10 x10 + x3 + 1 25 x25 + x3 + 1
11 x11 + x2 + 1 26 x26 + x8 + x7 + x+ 1
12 x12 + x7 + x4 + x3 + 1 27 x27 + x8 + x7 + x+ 1
13 x13 + x4 + x3 + x+ 1 28 x28 + x3 + 1
14 x14 + x12 + x11 + x+ 1 29 x29 + x2 + 1
15 x15 + x+ 1 30 x30 + x16 + x15 + x+ 1

Table 2.7: Examples of primitive polynomials of order n 1. . .30.
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Figure 2.12: Feed-back structure for the primitive polynomial x8 + x6 + x5 + x+ 1.

If maximum length sequences s(k) are repeated periodically, the autocorrelation function Rss(k) be-
comes:

Rss(k) =

{
1 : k = iL, i : integer ≥ 0

−1/L : else
(2.42)

For large L the function Rss is a good approximation of the Dirac pulse. Indeed this holds only within
one period of length L. It has to be assured that the system impulse response drops o� to small enough

22Error-Correcting Codes, W. Wesley Peterson, E. J. Weldon, MIT-Press 1972.
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Figure 2.13: Autocorrelation function Rss(k) of a periodically repeated maximum length sequence of
length L = 15.

values to avoid temporal aliasing. Due to their periodicity the spectrum of maximum length sequences
is a line spectrum. The separation between two frequency lines ∆f is

∆f =
1

L∆t
(2.43)

where
L: sequence length
∆t: 1/clock frequency

The envelope E(f) is given by

E(f) =
sin2

(
πf
fc

)
(
πf
fc

) (2.44)

where
fc: clock frequency

Up to about half of the clock frequency, the spectrum of a maximum length sequence is �at. A big
advantage compared to white noise is the signi�cantly lower crest factor 23.

Compared to single impulse measurements, the correlation technique shows a tremendously improved
signal-to-noise ratio. The correlation process actually performs an average over L single impulse mea-
surements where L is the sequence length. During the averaging, the signal of interest adds linearly
with correct phase while the noise adds on a square basis only. Thus for each doubling of the sequence
length the signal/noise ratio improves by 3 dB. Relative to a single impulse the signal-to-noise ratio
improvement G can be written as:

G = 3 log2(L) [dB] (2.45)

In practical applications, sequence lengths in the order of 100'000 are used, which corresponds to
a S/N improvement of about 50 dB. Impulse response measurements based on maximum length
sequences MLS are widely used in room acoustics 24,25,26.

MLS measurements may also be interesting in situations where the focus lies not on the exact course of
the impulse response but on the total energy that is transferred by a system. This energy can be found
by integration of the squared impulse response. An interesting property of the MLS technique is the fact
that any disturbing noise during the measurement is mapped onto a stationary noise-like signal that is

23The crest factor describes the ratio of the peak value to the root mean square value of the signal.
24Kenneth W. Go� , Application of correlation techniques to some acoustic measurements, Journal of the Acoustical

Society of America, 1955, v.27, p.236.
25M. R. Schroeder, Integrated impulse method measuring sound decay without using impulses, Journal of the Acoustical

Society of America,1979, v.66, p.497-500.
26R. B�'utikofer, K. Baschnagel, Bauakustische Messungen mit MLS; Konsequenzen f�'ur das Beschallungssystem,

Fortschritte der Akustik, DAGA 98 (1998), p.652-653.
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equally smeared over the impulse response. The power of this unwanted noise can be estimated in a re-
gion of the impulse where no signal is present (e.g. during the time until the arrival of the direct sound).

The application of maximum length sequences as stimulus allows to use the Hadamard transformation
for a very e�cient calculation of the cross correlation function 27.

As already mentioned, the resulting system impulse response is periodic with a period length that
corresponds to the stimulus sequence length. In order to avoid temporal aliasing (overlapping) it has
to be assured that this sequence length is larger than the length of the impulse response. In room
acoustical applications the impulse response length can be assumed as the reverberation time.

The usage of the correlation measurement technique is only possible, if the system under investigation
is linear and time invariant. If these conditions are not ful�lled an additional noise component occurs in
the resulting impulse response 28,29,30. Typical cases where MLS doesn't work are measurements with
moving loudspeakers and/or microphones. Strong turbulent air �ows are problematic as well, limiting
the applicability outdoors. A serious source of non-linearity are loudspeakers that are driven with high
amplitudes. For non-linear systems, measurements with sweeps as stimulus are favorable 31.

Swept sine measurements

Another commonly employed type of excitation signal for impulse response measurements is the sine
sweep. There are two types of sine sweeps, the linear and the exponential sine sweep. While a linear
sine sweep linearly increases or decreases in (instantaneous) frequency at a constant rate over time, an
exponential sine sweep, also known as a chirp, does so at an exponential rate. The exponential sine
sweep is de�ned as32:

x(t) = sin

 ω1T

ln
(
ωN

ω1

) (e t
T ln
(

ωN
ω1

)
− 1

) (2.46)

where
ω1: starting angular frequency
ωN : end angular frequency
T : sweep duration

This measurement technique employs a deconvolution technique based on time-domain convolution
with the time-reversal mirror of the sine sweep signal, which can be derived analytically. This method
enables a separation of the harmonic distortion products.

Time - bandwidth uncertainty principle

In many cases one is interested in an bandpass �ltered impulse response. However, any �ltering produces
a temporal smearing. The time-bandwidth uncertainty principle states that the product of temporal
uncertainty and analysis bandwidth can not drop below a certain limit. The more narrow the analysis
bandwidth, the larger is the temporal uncertainty which can be described by a minimal pulse width 33.
If the temporal uncertainty is de�ned as the -3 dB width of the bandlimited impulse, the uncertainty
principle says

∆t∆f ≥ 0.5 (2.47)

27J. Borish, J. B. Angell, An e�cient algorithm for measuring the impulse response using pseudo random noise, Journal
of the Audio Engineering Society, 1983, v.31, p.478-487.

28J. Vanderkooy, Aspects of MLS Measuring Systems, Journal of the Audio Engineering Society, vol. 42, p.219-231
(1994).

29C. Dunn, M. O. Hawksford, Distortion Immunity of MLS-Derived Impulse Response Measurements, Journal of the
Audio Engineering Society, vol. 41, p.314-335 (1993).

30U. P. Svensson, J. L. Nielsen, Errors in MLS Measurements Caused by Time Variance in Acoustic Systems, Journal
of the Audio Engineering Society, vol. 47, p.907-927 (1999).

31G. Stan, J. Embrechts, D. Archambeau Comparison of Di�erent Impulse Response Measurement Techniques Journal
of the Audio Engineering Society, vol. 50, no. 4, p.249-262 (2002).

32A. Farina, Advancements in impulse response measurements by sine sweeps, 122nd AES convention, Vienna (2007).
33J. S. Suh, P. A. Nelson, Measurement of transient response of rooms and comparison with geometrical acoustic

models, J. Acoustical Society of America, vol. 105, p. 2304-2317 (1999).
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with
∆t: temporal width of the impulse in seconds, evaluated at the -3 dB points
∆f : frequency bandwidth in Hz

The interesting question is, what kind of bandpass �lter function of given width produces a minimal
pulse width enlargement so that the equal sign holds in Eq. 2.47. A brick wall band pass �lter, for
example, leads to a ∆t∆f product of 1. This is a factor 2 away from the optimum. It can be shown
that the optimal band �lter has a frequency response according to Eq. 2.48.

G(ω) = 0.5

√
π

α

(
e−(ω+ω0)

2/4α2

+ e−(ω−ω0)
2/4α2

)
(2.48)

where
ω0: center frequency of the bandpass �lter in rad/s
α = ∆ω√

2π

∆ω: �lter bandwidth in rad/s

In the time domain the frequency response of Eq. (2.48) corresponds to the so called Gabor pulse34:

g(t) = e−α
2t2 cos(ω0t) (2.49)

The width of the Gabor pulse (2.49) evaluated at the -3 dB points is found to:

∆t =

√
π

2

1

α
(2.50)

Figure 2.14 shows an example of such an optimal bandpass �lter frequency response and the corre-
sponding time response.
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Figure 2.14: Filter frequency response of an optimal bandpass �lter according to Eq. 2.48 and the
corresponding time response of a �ltered impulse (2.49) for a center frequency of 500 Hz (ω0 = 3142
rad/s) and a bandwidth of 300 Hz (∆ω = 1885 rad/s).

2.6.3 Measurement of reverberation times

Introduction

The reverberation time is an important quantity to describe the acoustical property of rooms.
Reverberation stands for the delayed reaction of a room to temporally varying excitation. If a source
of constant level is switched on, the sound travels as direct sound to a receiver position, followed by
re�ections with increasing temporal density. A few tenths of a second after the switch-on moment, a
stationary condition is accomplished with constant sound energy density in the room. This condition
represents the equilibrium state where the sound power fed by the source equals the sound power that
is absorbed in the air and at the boundary.

The reverberation process itself manifests after switching o� the source. After the traveling time from
the source to the receiver, the contribution of the direct sound disappears. The great number of
re�ections however still make their way to the receiver. With time these re�ections become weaker
and weaker due to absorption in the air and at the boundaries. The sound pressure drops more or

34D. Gabor, Theory of Communication, J. IEEE, London, vol. 93(III), p.429-457 (1946).
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less exponentially, which means that the sound pressure level follows a straight line. The time span
measured from the moment when the source is switched o� until the level drops for 60 dB is called
reverberation time T60. Typical values for reverberation times lie between a few tenth of a second
(living rooms) and several seconds (large churches).

As the absorption properties of the room boundaries are frequency dependent, the reverberation times
are frequency dependent. Consequently the reverberation times are evaluated in third octave or octave
bands.

Schroeder reverse integration

The classical method to determine reverberation times is to use a loudspeaker that emits a random
signal which is switched o� after a certain time. The observation of the sound pressure level as a
function of time will show random variations that di�er from measurement to measurement. The
reason for this is the random phase of the room modes at the switch-o� moment (Fig. 2.15).
To eliminate these variations and to smoothen the level - time curves, the measurements have to be
performed several times and averaged. Schroeder 35 has shown that the average of n measurements
with n → ∞ can be found by one measurement alone. To do so one has to determine the squared
impulse response r2(t) of the room for the source and receiver position under consideration. By a so
called reverse integration it is then found how the squared sound pressure dies away on average (2.51).

⟨s2(t)⟩ ∼
∞∫
t

r2(τ)dτ (2.51)

where
⟨s2(t)⟩: average of all possible decays of the squared time response
r2(t): squared impulse response of the room for the selected source and microphone positions

Measurement of short reverberation times at small �lter bandwidths

Often the reverberation is measured in third octave bands. At the lowest third octave bands the
bandwidth is so small that the �lter applied to the impulse response may dominate the decay process
(Fig. 2.16).
As a rule of thumb it can be concluded that the following condition has to be ful�lled in order to
guarantee a valid reverberation time measurement 36:

B × T60 > 16 (2.52)

where
B: bandwidth of the �lter
T60: reverberation time.

The impulse response of a bandpass �lter is asymmetrical (Fig. 2.16). It is therefore bene�cial to
reverse the time axis 37,38,39. This can be done either by playing a recorded signal backwards or by
using a �lter with time reversed impulse response. In both cases the frequency content remains the
same. Compared to the condition in Eq. 2.52, a factor 4 can be gained, meaning that only the following
condition has to be ful�lled:

B × T60 > 4 (2.53)

where
B: bandwidth of the �lter

35M. R. Schroeder, New Method of Measuring Reverberation Time, Journal of the Acoustical Society of America, 1965,
p.409-412.

36F. Jacobsen, A note on acoustic decay measurements, Journal of Sound and Vibration, v.115, 1987.
37F. Jacobsen, J. H. Rindel, Time reversed decay measurements, Journal of Sound and Vibraiton, v.117, p.187-190,

1987.
38B. Rasmussen, J. H. Rindel, H. Henriksen, Design and Measurement of Short Reverberation Times at Low Frequencies

in Talk Studios, Journal of the Audio Engineering Society, v. 39, n. 1/2, p.47-57, 1991.
39M. A. Sobreira-Seoane, D. Perez Cabo, F. Jacobsen, The in�uence of the group delay of digital �lters on acoustic

decay measurements, Applied Acoustics, v. 73, p. 877-883, 2012.
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Figure 2.15: Classical measurement of the decay in a room after switching o� the source (top and
middle). The bottom curve is found with the Schroeder reverse integration of the squared impulse
response.

T60: reverberation time.

Fig. 2.17 shows the signi�cantly steeper decay of the reverse integrated impulse response of the time
reversed �lter compared to the normal �lter.

2.7 Pressure zone microphone con�guration

Often an acoustical measurement should provide information about the direct sound or the sound
power of a source. In these cases the sound re�ection at the ground is particularly disturbing, as
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Figure 2.16: Impulse response of a third octave band �lter at 63 Hz.
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Figure 2.17: Decay (Schroeder reverse integration) of the normal and the time reversed third octave
�lter at 63 Hz.

interference occurs in combination with the direct sound. If the ground surface is acoustically hard
it is possible to put the omnidirectional, pressure sensitive microphone directly on the ground. This
set-up is called pressure zone con�guration. Independently of the angle of incidence the sound
pressure of the incidence wave doubles on the hard surface. In the dB scale this corresponds to
a 6 dB increase relative to the direct sound in the free �eld. A prerequisite is that the re�ecting
surface is large enough. The condition large enough can not easily be converted into speci�c dimensions.

Here a measurement is shown for a re�ecting plate of 1.50×1.40 m. In the center of the plate a
1/2� microphone was installed with the membrane parallel to the plate surface in a distance of 2 mm.
A loudspeaker in a distance of 2.70 m was used as source and emitted pink noise. The angle of
incidence ϕ relative to the plate normal direction was varied between 0 and 90◦. As the microphone
pointed to the plate, the 0◦ direction corresponded to an angle of 180◦ for the microphone. Figure
2.18 shows the measured third octave band sound pressure levels relative to free �eld as a function of
ϕ. In the mid-frequency range for not grazing incidence the con�guration produces the expected 6 dB
ampli�cation. For low frequencies and/or grazing incidence the ampli�cation is signi�cantly reduced
due to insu�cient size of the re�ecting surface. At higher frequencies the ampli�cation drops due to
the decreasing sensitivity of the microphone itself for o�-axis incident.
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Figure 2.18: Third octave band levels relative to free �eld for a 1/2� microphone in pressure zone
con�guration on a plate with dimensions 1.50×1.40 m for di�erent angles of incidence.

2.8 Uncertainty of acoustical measurements

In almost all cases acoustical measurements include unwanted e�ects. If the uncertainty due to these
e�ects is too large, the results may become worthless. For the case of determining the sound pressure
at a certain location, the following aspects have to be considered:

� the source may be in a not representative condition

� the propagation medium may be in a not representative condition (e.g. upwind conditions and a
negative vertical temperature gradient)

� the surrounding of the microphone may in�uence the measurement in a non representative way

� the uncertainty of the calibration and tolerances of the measurement instrument

� possible unwanted disturbing noise (often this is the main di�culty and appropriate strategies
have to be found to remove or exclude this noise. If this noise is uncorrelated and stationary, its
contribution can be estimated and subtracted on a power basis)

� Uncertainty in the determination of the power of random signals

For each measurement the total uncertainty has to be speci�ed. Typical values are in the range of
±1..3 dB in the sense of a standard deviation.

72



Chapter 3

The human hearing

3.1 Structure and principle of operation of the ear

Tympanic
Cavity

ossicles

Auditory
Nerve

Eustachian TubeTympanic
Membrane

External
Auditory Canal

Stapes
(attached to 
oval window)

Cochlea

Round
Window

Figure 3.1: Section through the human ear. source: Chittka L, Brockmann

The human ear can be separated into three main parts, the outer ear, the middle ear that is �lled with
air and the inner ear or cochlea, �lled with a �uid. The outer ear comprises the auricle and the outer
ear canal. It is separated from the middle ear by the tympanic membrane or ear drum. The middle ear
is usually closed airtight. However the Eustachian tube provides a connection to the throat and allows
for pressure equalization. This can be provoked by swallowing. This con�guration with a membrane
on top of a closed cavity - and thus exposed to the sound �eld on one side only - corresponds to a
sound pressure receiver.

The vibrations of the tympanic membrane are transmitted to the inner ear by tiny bones (ossicles).
These bones convert the relative large excursions of the tympanic membrane into small excursions at
the input of the inner ear. The bene�t of this transformation is an ampli�cation of the force which is
necessary to excite the �uid. The con�guration performs an impedance adjustment between air and
�uid.

The ossicles in the middle ear are connected to muscles that can in�uence the transmission prop-
erties. If very loud sound signals are perceived, these muscles are contracted by re�ex and lower
the sensitivity of the ear and thus provide a certain protection of the inner ear. The inner ear
is formed by the cochlea. The cochlea is separated into two channels by the basilar membrane.
At the far end these two channels are connected to each other. The �uid in the two channels
in the inner ear is excited by mechanical vibration of a membrane that is put into motion by
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the ossicles. As a consequence of this excitation a traveling wave is formed that runs along the
basilar membrane. The amplitudes of the traveling waves are very small. For stimuli that are
just audible they are in the order of the diameter of an atom. The location of highest amplitude
depends on the frequency of the stimulus. Thus in the inner ear a transformation takes place that
maps frequency to location. This mechanism is fundamental for the frequency discrimination of the ear.

The location on the basilar membrane for maximal amplitude can be described by Eq. 3.11.

f = 165.4(100.06x − 1)

x =
1

0.06
log

(
f + 165.4

165.4

)
(3.1)

where
f : frequency in [Hz]
x: position of maximum excursion of the basilar membrane in [mm]

The movement of the basilar membrane is detected by hair cells that sit on top of the membrane.
The stimulated hair cells emit electrical impulses that are transported to the brain by the auditory
nerve. The ear has an excellent frequency discrimination which can not be explained by the frequency
dependent amplitudes of the traveling waves alone. Recent investigations have demonstrated that
feed-back e�ects play an important role. There is experimental evidence that the outer hair cells are
put into motion actively and by this in�uence the movement of the basilar membrane. This activity
leads on her part to an excitation of the ossicles and the tympanic membrane and can be detected
by a microphone in the ear canal. This phenomenon is called otoacoustic emission. Sometimes these
emissions occur spontaneously. More relevant is the fact that such an emission results always as a
reaction of the ear to an acoustical stimulus, however only if the ear functions properly. These tests
are performed most easily with a short click as stimulus. The reaction of the ear can then be detected
with a delay of a few milliseconds. This is an excellent possibility to investigate the proper working of
the ear in an objective manner without the need of a response of the human being. Many hospitals
use this method to detect possible malfunctioning of the auditory system of newborns.

An excellent overview of physiological and psychological aspects of the human ear can be found in the
book by Fastl and Zwicker 2

3.2 Properties of the auditory system for stationary signals

3.2.1 Loudness

The intensity of the sensation of a sound is described by its loudness. The are two scales in use.
Loudness can be expressed on a linear scale, called sone, or on a logarithmic scale as loudness level
LN in phon.

The loudness of a speci�c sound is investigated by subjective comparison with a reference signal,
usually a 1 kHz tone or 1 kHz narrow band noise. The reference signal is adjusted in such a way that
the two sounds are perceived as equally loud. The sound pressure level in dB of the reference signal
corresponds then to the phon value of the signal under investigation. Figure 3.2 shows curves of equal
loudness for pure tones 3.

A curve of special interest in Figure 3.2 is the auditory threshold. The curve denotes for a given
frequency the sound pressure that is necessary to make the tone just audible. The standard ISO 389-74

describes the threshold of hearing for binaural hearing of pure tones under free �eld conditions. The
polynomial approximation in Eq. 3.2 reproduces the tabulated values for frequencies between 20 and
16000 Hz with an accuracy better than 0.5 dB.

1D. D. Greenwood, A Cochlear Frequency-Position Function for Several Species - 29 Years Later, J. of the Acoustical
Society of America, vol. 87, p. 2592-2605 (1990).

2Hugo Fastl, Eberhard Zwicker, Psycho-Acoustics, Springer, 2007.
3ISO Norm 226: Acoustics - Normal equal-loudness level contours. Second edition 2003.
4ISO Norm 389-7, Acoustics - Reference zero for the calibration of audiometric equipment - Part 7: Reference threshold

of hearing under free-�eld and di�use-�eld listening conditions (1996).
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Figure 3.2: Curves of equal loudness, labeled in phon. All combinations of frequency and sound pressure
level that lie on one curve result in equal loudness sensations.

T (f) ≈


2.262× 105f−3 − 3.035× 104f−2 + 2.357× 103f−1+

+8.3− 2.912× 10−2f + 2.2066× 10−5f2 : 20 < f ≤ 660
−1.7 + 1.18247× 10−2f − 1.0653× 10−5f2 + 2.98811× 10−9f3−

−3.5279× 10−13f4 + 1.86485× 10−17f5 − 3.6299× 10−22f6 : 660 < f < 16000
(3.2)

where
T (f): sound pressure level of a pure tone of frequency f that makes the tone for binaural hearing and
under free �eld conditions just audible. With increasing age the hearing capabilities usually decrease
and thus the threshold of hearing increases 5.

The phon scale corresponds to a dB scale and is thus not proportional to the sensation. The sone scale
on the other hand describes directly the sensation. Each doubling of the sone value corresponds to a
doubling of the loudness sensation. For levels not too low there is a simple conversion between phon
and sone �gures. Each doubling of the sone value corresponds to an increase of 10 phon. With the
de�nition of 1 sone ≡ 40 phon as a point of reference the conversion can be written as:

N = 2
LN−40

10 (3.3)

LN ≈ 40 + 33 log(N) (3.4)

For loudness values below 40 phon, the relation from above is no longer valid. A bisection of the sone
value is found for a phon step smaller than 10 phon.

5ISO Norm 7029: Acoustics: Statistical distribution of hearing thresholds as a function of age (2000).
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3.2.2 Frequency discrimination

The human hearing can distinguish a little more than 600 frequency steps. For frequencies below 500
Hz the just audible frequency di�erence ∆f is about 3.5 Hz. Above 500 Hz the necessary di�erence
increases as

∆f = 0.007f (3.5)

3.2.3 Critical bands

As mentioned above the stimulation of the ear leads to a traveling wave in the inner ear with the
consequence of a local excitation of hair cells on the basilar membrane. Even in case of a pure tone
stimulation, the region of excitation has a certain width. If the stimulus consists of two tones of
frequencies f1 and f2, three di�erent mechanisms of perception can be distinguished. If the di�erence
f2 − f1 is below 10 Hz, the beat can heard. If the di�erence is increased above 10 Hz, the amplitude
modulations are no longer audible, however the beat is perceived as roughness of the sound. For further
increasing of the frequency di�erence this roughness disappears more and more. This point is reached
if both regions of excitation on the basilar membrane do no longer overlap. This frequency di�erence
is called critical band. The with of a critical band is almost constant below 500 Hz and amounts to
about 100 Hz. Above 500 Hz the with of the critical bands corresponds to about 20% of the signal
frequency. This is very close to the bandwidth of third octave band �lters. A more accurate description
of the width ∆fcrit of the critical bands is found in Eq. 3.6 6:

∆fcrit[Hz] ≈ 25 + 75
(
1 + 1.4(fS [kHz])

2
)0.69

(3.6)

where
fs: signal frequency [Hz]

3.2.4 Audibility of level di�erences

In a direct A/B comparison the smallest level di�erences that are just audible are in the order of 1 dB.
Table 3.1 shows typical level variations and the corresponding di�erences in sensation. If the two signals
are presented with a certain time span in between, the audible di�erences are signi�cantly higher.

level variation sensation
0. . .1 dB not audible
2. . .4 dB just audible
5. . .10 dB clearly audible
> 10 dB very convincing

Table 3.1: Sensation of level di�erences in a direct A/B comparison.

3.2.5 Masking

As a consequence of stimulation by a tone, the basilar membrane is activated in a certain region. A
second tone played simultaneously will only be audible if the corresponding activation surmounts the
one of the �rst tone. In other words, the presence of a tone leads to an upwards shift of the auditory
threshold. This shift is more pronounced for frequencies higher than the tone frequency. This shift of
the auditory threshold due to the presence of a tone is called masking, the tone responsible for the
masking e�ect is called masker.

3.2.6 Loudness summation

The auditory sensation in case of the superposition of two signals distinguishes between two summation
mechanisms:

6E. Zwicker, R. Feldkeller, Das Ohr als Nachrichtenempf�'anger, Hirzel Verlag, 1967.
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In the �rst case the two signals cover the same critical band. Here the intensities add up according to
Eq. 3.7).

LNtotal = 10 log
(
100.1LN1 + 100.1LN2

)
[Phon] (3.7)

where
LN1: phon �gure of the �rst component
LN2: phon �gure of the second component

If for example the two signals have a strength of 50 phon each, the superposition yields a loudness
level of 53 phon.

In the second case the two signals are clearly separated in frequency, which means they lie in di�erent
critical bands. Here the loudness of the signals adds up. For the example from above the two loudness
levels are converted into the corresponding sone �gures (50 phon → 2 sone). The sum of the sone
values equals 4 sone which in turn corresponds to 60 phon.

3.2.7 Virtual pitch

Complex tonal sounds consist of a series of sinusoidal signals according to Eq. 3.8).

s(t) =

∞∑
i=1

Ai sin(iωt) (3.8)

where ω represents the angular frequency of the fundamental, the components iω are the harmonics.

The fundamental is responsible for the pitch, the harmonics constitute the tone color. It happens that
the fundamental is only weak or totally missing. An example are string instruments playing tones at
low frequencies. Nonetheless the ear can perceive the pitch of the fundamental. The auditory system
complements the missing fundamental from the pattern of the harmonics. This phenomenon is called
virtual pitch. A speciality of this virtual fundamental component is that it can not be masked by other
sounds.

Virtual pitch is responsible for the fact that small loudspeakers appear to radiate sound even at low
frequencies although this is not possible for physical reasons. It has been proposed to manipulate audio
signals speci�cally in order to make usage of this e�ect 7,8, 9.

3.2.8 Audibility of phase

Helmholtz and Ohm stated that the perceived color of a tone of a complex sound depends only on the
amplitude ratios but is independent of the phase spectrum. Indeed for most signals the phase shift of
the reproducing system doesn't in�uence the aural impression at all. However there are some exceptions
that show that humans are not strictly phase deaf. For instance the masking e�ect of low frequency
tones depends not only on the amplitude spectrum but on the time function as well 10. An other phase
sensitive example signal is a complex sound with many harmonics with speci�c phase relations:

s(t) =

∞∑
i=1

gi
i
cos(2π · i · f0 · t+ ϕi) (3.9)

The comparison between an in-phase version of s and one with random phase reveals clearly audible
di�erences. For the in-phase version the following parameter setting is used: f0 = 100 Hz, gi = 1 and
ϕi = (i − 1)π/2. For the random phase version f0 and gi are identical while for each i ϕi is set to a
random number between 0 and 2π 11.

7Erik Larsen, Ronald M. Aarts, Reproducing Low-Pitched Signals through Small Loudspeakers, Journal of the Audio
Engineering Society, vol. 50, no. 3, p.147-164 (2002).

8Nay OO, Woon-Seng Gan, Malcolm Hawksford, Journal of the Audio Engineering Society, vol. 59, no. 11, p.804-824
(2011).

9Hao Mu, Woon-Seng Gan, Perceptual Quality Improvement and Assessment for Virtual Bass Systems, Journal of the
Audio Engineering Society, vol. 63, no. 11, p.900-913 (2015).

10E. Zwicker, M. Zollner, Elektroakustik, Springerverlag, 1987, p. 250.
11M. Laitinen, S. Disch, V. Pulkki, Sensitivity of Human Hearing to Changes in Phase Spectrum, Journal of the Audio

Engineering Soeicty, vol. 61, p. 860-877 (2013)
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3.2.9 Methods to calculate and measure the loudness

For the determination of the loudness of stationary signals a standardized method - originally developed
by Zwicker - exists 12. The calculation needs the third octave band spectrum of the signal as input.
Recently, loudness level meters have been developed that can even handle time varying sounds.

3.2.10 Nonlinear distortions of the ear

The transmission of the movement of the tympanic membrane to the inner ear is not a perfectly linear
process. Thereby nonlinear distortions occur. They manifest as sum- and di�erence tones if two tones
of di�erent frequencies are presented. The di�erence tones are especially disadvantageous as they are
not masked by the original tones. The strength of the most important di�erence tone at the frequency
f = f2−f1 (where f2 is the frequency of the higher stimulus tone and f1 corresponds to the frequency
of the lower stimulus tone) can be estimated by 13:

L(f2 − f1) = L(f1) + L(f2)− 130 dB (3.10)

where
L(f2 − f1): level of a tone at frequency f2 − f1, that leads to the same sensation as the di�erence
tone produced by the nonlinearity.
L(f1): level of the lower frequency stimulus tone
L(f2): level of the upper frequency stimulus tone

The summation in Eq. 3.10 has to be understood arithmetically. The stimulation of the ear with two
tones of L(f1) = L(f2) = 90 dB produces a level of the di�erence tone of 50 dB.

3.3 Properties of the ear for non stationary signals

3.3.1 Loudness dependency on the signal length

The hearing process shows a certain delay. Very short events are not perceived with full loudness. The
maximal loudness is perceived just after a few tenths of a second. For signals shorter than 100 ms the
perceived loudness is proportional to the signal length or signal energy. Figure 3.3 shows the relation
between signal duration and loudness 14.
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Figure 3.3: Relation of the perceived loudness level LN and the signal duration T for a 2 kHz tone
burst of 57 dB.

12ISO Norm 532 Acoustics - Method for calculating loudness level. 1975.
13E. Zwicker, Psychoakustik, Springer, 1982.
14E. Zwicker, Psychoakustik, Springer, 1982.
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3.3.2 Temporal masking

Similarly as stationary signals can mask other frequency components, strong transient signals can mask
weaker signals in the temporal vicinity of the masker. As shown in Figure 3.4, the hearing threshold
is shifted upwards just a few milliseconds before and some hundredths of a second after the masker
appeared or disappeared.
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Figure 3.4: Temporal masking e�ect for a masker of 200 ms duration. The hearing threshold is shifted
upwards already shortly before the masker is detected. After the discontinuation of the masker the
hearing threshold returns to its normal level after some tenths of a second.

3.4 Binaural hearing: localization of sound sources

Within certain limits the auditory system is capable to localize sound sources according to their
direction and their distances. For example in a noisy environment a listener can concentrate on a
speci�c speaker and suppress the unwanted sound to a certain extent (cocktail party e�ect).

The localization of sound sources is usually described with help of a spherical coordinate system with
its origin at the head's location. The localization in the vertical plane (elevation of the source) is
based on monaural attributes. The localization in the horizontal plane on the other hand (azimuth of
the source) uses inter-aural attributes which means di�erences between the signals at the two ears. To
improve the localization, humans perform permanently little rotational movements with their heads
and evaluate the resulting small variations. These movements help to discriminate between sources
that lie in front of and sources that are behind the listener. This information is not available in the
presentation of recordings over headphones.

The information that is available to the auditory system is composed of the signals at the two ear
drums. The excitation of the eardrums depends on frequency and the sound incident direction. As a
�rst approximation the problem can be formulated as di�raction pattern on a sphere. The transmission
system free-�eld → ear drum is usually described by the head related transfer function HRTF. This
transfer function depends on the direction of incidence and varies to some extent from person to person
15,16,17. Knowledge of the head related transfer function is essential for the equalization of headphones
or in the context of virtual reality applications (auralisation18).

15H. Moeller, M. F. Soerensen, D. Hammershoei, C. B. Jensen, Head-Related Transfer Functions of Human Subjects,
Journal of the Audio Engineering Society, May, n.5, vol 43, p.300-321 (1995).

16A. Schmitz, M. Vorl�'ander, Messung von Aussenohrstossantworten mit Maximalfolgen-Hadamard-Transformation und
deren Anwendung bei Inversionsversuchen, Acustica, vol. 71, p.257-268 (1990).

17Corey I. Cheng, Gregory H. Wake�eld, Introduction to Head-Related Transfer Functions (HRTFs): Representations
of HRTFs in Time, Frequency, and Space, Journal of the Audio Engineering Society, vol. 49, p.231-249 (2001).

18L. Savioja, et. al. Creating Interactive Virtual Acoustic Environments, Journal of the Audio Engineering Society, vol.
47, p.675-705 (1999).
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3.4.1 Localization in the horizontal lane

The localization in the horizontal plane is based on two attributes. If sound is incident from a lateral
direction as shown in Figure 3.5, the two ear signals di�er in amplitude and time of arrival. Maximal
directional resolution is achieved for frontal sound incidence. In this case azimuth changes in the order
of 1 ◦ can be discriminated. Figure 3.6 and Figure 3.7 show how time and level di�erences at the
two ears are mapped onto directional information. Completely lateral direction is perceived for time
di�erences of 630 µs and level di�erences of 10 dB.

At lower frequencies (below about 800 Hz but above about 80 Hz), the auditory system uses mainly
time di�erences, for higher frequencies (above about 1600 Hz), mainly level di�erences are evaluated
19. For frequencies in between, both attributes play a role.

φ

Figure 3.5: Direction ϕ of sound incidence for the hearing in the horizontal plane.
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Figure 3.6: Detection of the angle of incidence ϕ in the horizontal plane in relation to the inter-aural
time di�erence ∆t.

3.4.2 Localization in the vertical plane (elevation)

For a sound source located in front of the head but at di�erent elevation angles, the two ear signals
don't di�er at all. In this case, no binaural attributes can be evaluated. The only information available
is the change of the amplitude response of the HRTF in relation to the elevation angle. The elevational
resolution that can be achieved depends strongly in the signal type and lies in the order of 10◦. . .45◦.

3.4.3 Perception of distances

Up to a certain degree the auditory system can estimate the distance of a sound source. The most
important attribute that is evaluated is the strength of the signal. The louder a signal is, the shorter
is the perceived distance to the source. In rooms the amount of reverberant sound in relation to the
direct sound can be evaluated additionally.

19Actually level di�erences are evaluated over the whole auditory frequency range. However in typical situations no
signi�cant level di�erences occur at low frequencies due to di�raction around the head. In near �eld applications with
small distances to the source level di�erences at the two ears can occur due to di�erent distance ratios.

80



−15 −10 −5 0 5 10 15

DL [dB]

−90

−45

0

45

90

p
e
r
c
e
iv

e
d

 d
ir

e
c
ti

o
n

 [
°
]

Figure 3.7: Detection of the angle of incidence ϕ in the horizontal plane in relation to the inter-aural
level di�erence ∆L.

3.4.4 Echoes and the precedence e�ect

In a situation with direct sound and a shortly delayed copy of it, the auditory systems tends to merge
the two signals to one impression and to localize on the signal that arrives �rst. This property is denoted
as precedence e�ect 20,21. There are two limitations associated with the precedence e�ect (Figure 3.8).
Firstly, the localization on the �rst arriving signal takes place only if the sound pressure level of the
delayed signal is not more than 10 dB higher than the direct sound. Secondly, the delay must be smaller
than 30 to 50 ms, depending on the level di�erences. If the delay is larger than 50 ms, the second
signal is perceived as a separate component, as an echo. Echoes are unfavorable in the sense that they
disturb communication and thus lower speech intelligibility.
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Figure 3.8: The precedence e�ect occurs for delay and ampli�cation combinations that lie below the
curve.

3.5 Hearing damage

3.5.1 Mechanisms

A hearing damage can have two causes. A �rst cause is a possible mechanical damage of the inner
ear by an intense boom event. A second reason is a permanent long term overload of the auditory
system by exuberant sound. In this case the metabolism of the inner ear can be overstrained with the

20Helmut Haas, �'Uber den Ein�uss eines Einfachechos auf die H�'orsamkeit von Sprache, Acustica, vol. 1, no. 2 (1951).
21The precedence e�ect, Ruth Y. Litovsky et al., Journal of the Acoustical Society of America, vol. 106, p.1633-1654

(1999).
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consequence that the hair cells are not supplied properly and are dying o� over time. As the sensitivity
of the ear is biggest around 4 kHz, hearing losses develop often in this frequency range �rst. Later the
a�ected region enlarges and will cover the important range for communication. This is the moment
where the damage will become obvious.

A serious disease of the ear is the tinnitus. Hereby the patient perceives tones and noises that do not
exist. In fatal cases tinnitus can seriously disturb the ability to concentrate and to relax. Tinnitus can
have di�erent causes. However, in many cases a noise induced hearing loss stands at the beginning.
Up to now there is no real treatment available.

3.5.2 Assessment of the danger for a possible hearing damage

The evaluation of a possible danger for a hearing damage is based on a dose measure. The relevant
factors are sound pressure and time. The dose corresponds to the product of the two factors. An
increase of one factor can be compensated by a reduction of the other.

The assessment of impulsive sound is based on the sound exposure level SEL or event level LE ,
measured over a period of 1 hour. The SUVA de�nes as a limit an SEL = LE = 120 dB(A). The
single occurrence of a higher level may lead to a permanent damage of the ear. The �ring of one shot
with an assault ri�e for example produces an LE of 129 dB(A). In addition to the A-level LE criterion,
a maximum for the C-weighted peak level of 135 dB(C) has to be met.

For stationary noise SUVA has established the following limiting value: for permanent noise exposure
during 8 hours a day and 5 days a week the Leq must not exceed 85 dB(A). In a year the assumed
working time sums up to 2000 hours. If the exposure occurs only during a portion of this time, higher
levels are tolerable (Table 3.2).

yearly time of exposure allowable Leq
2000 h 85 dB(A)
1000 h 88 dB(A)
500 h 91 dB(A)
250 h 94 dB(A)

Table 3.2: Allowable Leq values in dependency of the yearly time of exposure according to the SUVA
limiting values.

According to today's knowledge, ultrasonic sound (20 kHz. . .100 kHz) doesn't cause harm if the un-
weighted maximum level is below 140 dB and the sound exposure level integrated over a period of 8
hours doesn't exceed 110 dB. For infrasound (2 Hz. . .20 Hz) the corresponding limits are 150 dB for
the maximum level and 135 dB for the exposure level.
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Chapter 4

Musical Intervals

The octave as a frequency ratio 2:1 is the most fundamental musical interval in western music. The
equally tempered scale in use today divides each octave on a logarithmic basis in 12 half tones. Each
half tone corresponds thus to a frequency ratio of 21/12 ≈ 1.059 ≈ 6%. The advantage of the equally
tempered scale lies in the fact that on a piano all intervals can be played starting from any half tone
and a certain interval always corresponds to the same frequency ratio. The disadvantage on the other
hand is that besides the octave no other perfect whole-numbered interval can be played. A �fth for
example which represents a ratio of 3:2 in just scale has to be played as 7 half tones in the equally
tempered scale, corresponding to a ratio of 1.498. The pure fourth stands for a frequency ratio of
4:3. This has to be approximated by 5 half tones resulting in a ratio of 1.3348. The deviation of the
frequency intervals for the equally tempered scale compared to the just scale are so small, that the
pleasure of music is not disturbed. As an overview Table 4.1 shows the intervals and the frequency
ratios for the equally tempered scale.

interval tone number of half tones frequency ratio just scale

perfect unison c 0 1.0000
minor second des 1 1.0595
major second d 2 1.1225
minor third es 3 1.1892 6:5 = 1.2000
major third e 4 1.2599 5:4 = 1.2500
perfect fourth f 5 1.3348 4:3 ≈ 1.3333
augmented fourth �s 6 1.4142
diminished �fth ges 6 1.4142
perfect �fth g 7 1.4983 3:2 = 1.5000
minor sixth as 8 1.5874
major sixth a 9 1.6818
minor seventh b 10 1.7818
major seventh h 11 1.8878
perfect octave c' 12 2.0000 2:1 = 2.0000

Table 4.1: Musical intervals for the equally tempered scale, starting with the tone c.

Alexander John Ellis proposed in 1875 a much �ner partition than just half tones, labeled as cent. Cent
stands for �hundred� and signi�es a logarithmic partitioning of a half tone interval into 100 steps. An
octave has 12 half tones and corresponds therefore to 1200 cents. A cent stands for a frequency ratio
of 1200

√
2 ≈ 1.00057779. In other words one cent corresponds to a frequency change of 0,057779 %. In

general a frequency ratio f2 to f1 corresponds C cent where

C = 1200 log2

(
f2
f1

)
= 1200

ln
(
f2
f1

)
ln(2)

[Cent] (4.1)

The other way round, C cent correspond to a frequency ratio f2/f1 of

f2
f1

= 2
C

1200 (4.2)
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Chapter 5

Outdoor sound propagation

The simplest case of a sound propagation situation is given by a point source radiating in all directions
with equal strength in an unbounded homogeneous medium at rest. The sound pressure at an arbitrary
receiver position can be determined by taking into account the geometrical spreading and the frequency
dependent air absorption. However, in real situations usually further in�uence factors have to be
considered. Firstly the medium is never unbounded. In many cases the source and/or the receiver are
in the vicinity of the ground. This ground surface leads to a re�ection of the sound waves and in the
interaction with the direct sound to interference e�ects. Besides the re�ection at the ground, additional
re�ections at other objects such as walls or building facades may occur. Secondly, the medium is
usually not at rest and not homogeneous. This leads to a refraction of sound waves and in consequence
to curved propagation. Thirdly the sound propagation between the source and the receiver may be
interrupted by obstacles such as trees or walls. In this case, damping and di�raction e�ects have to be
taken into account.

5.1 Basic equation

The calculation of an outdoor sound propagation problem is usually based on an equation in form of
Eq. (5.1). The relevant variables are the source strength - speci�ed as a sound power level, a possible
correction for the directivity and a sum of attenuation terms 1.

Lp(receiver) = LW +D −
∑

A (5.1)

where
Lp(receiver): sound pressure level at the receiver
LW : sound power level of the source
D: directivity of the source
A: attenuation during propagation

As most attenuations A are frequency dependent, the calculation according to Eq. 5.1 has to be
performed for di�erent frequency bands. Therefore the sound power is split into third-octave or octave
bands, then the propagation attenuation is calculated for each band and �nally the sound pressure
values at the receiver for each band are summed up to a total level. For distinct classes of noise sources
with a de�ned spectrum, approximations for the A-weighted may be applied.

5.2 Directivity of the source

The simplest model of a source assumes equal radiation in all directions. Such a characteristics is
denoted as omnidirectional or spherical. If such an omnidirectional source is located close to a re�ecting
surface, the radiation is restricted to a limited solid angle, leading to an ampli�cation in these directions.
Table 5.1 lists the corresponding directivity values D from Eq. 5.1 for di�erent con�gurations of the
source.
In some cases the source itself can show a directivity with stronger radiation in some directions.

1ISO Standard 9613: Acoustics - Attenuation of sound during propagation outdoors, Part 2: General method of
calculation.

84



source con�guration solid angle D[dB]
open space 4π 0
in front of a surface 2π +3
in front of two orthogonal surfaces π +6
in front of three orthogonal surfaces (corner) π

2 +9

Table 5.1: Directivity corrections D in Eq. 5.1 for a point source in front of re�ecting surfaces.

5.3 Attenuation terms

5.3.1 Geometrical divergence

The geometrical divergence is independent of frequency and describes the reduction of intensity or
sound pressure with distance due to the distribution of the sound power on an area that increases with
distance. For an omnidirectional point source, the intensity on a spherical surface around the source is
given by Eq.5.2.

I =
W

4πd2
(5.2)

where
I: intensity at distance d from the source
W : sound power

For distances larger than a few wavelengths, the ratio of sound pressure and sound particle velocity
equals the free �eld impedance and therefore

I =
p2rms

ρ0c
(5.3)

and

p2rms =
Wρ0c

4πd2
(5.4)

In the dB scale the geometrical divergence Adiv is given as (with the conversion constant from sound
power level to sound pressure level in 1 m distance)

Adiv = 20 log

(
d

d0

)
+ 11 [dB] (5.5)

where
d: distance source - receiver
d0: reference distance = 1 m

5.3.2 Atmospheric absorption

During sound propagation, a certain fraction of the sound energy is converted into heat. Per unit
distance the fraction of absorbed energy is constant. Translated into the dB scale this corresponds to
(Eq. 5.6).

Aatm = αd [dB] (5.6)

Atmospheric absorption is in�uenced by air temperature and humidity and depends strongly on
frequency. For that reason the calculation of air absorption should preferably be done in third octave
bands. Table 5.2 shows the atmospheric absorption in dB/km for some temperature / humidity
combinations. The values correspond to the parameter α in Eq. 5.6 if the distance d is inserted in km 2.

2ISO Norm 9613-1: Acoustics - Attenuation of sound during propagation outdoors.
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temp [◦ C] rel. humidity[%] 63 125 250 500 1k 2k 4k 8k
10 70 0.1 0.4 1.0 1.9 3.7 9.7 32.8 117
20 70 0.1 0.3 1.1 2.8 5.0 9.0 22.9 76.6
30 70 0.1 0.3 1.0 3.1 7.4 12.7 23.1 59.3
15 20 0.3 0.6 1.2 2.7 8.2 28.2 88.8 202
15 50 0.1 0.5 1.2 2.2 4.2 10.8 36.2 129
15 80 0.1 0.3 1.1 2.4 4.1 8.3 23.7 82.8

Table 5.2: Coe�cient α of atmospheric absorption in dB/km as a function of pure tone frequency for
di�erent combinations of temperature and humidity.

Table 5.2 shows a very strong increase of the atmospheric absorption towards higher frequencies.
Further away form a source, only the low frequency components are audible.

The coe�cients α of atmospheric absorption can be calculated with the following set of formulas:

α = 8.686f2

([
1.84× 10−11

(
pa
pr

)−1(
T

T0

)1/2
]
+

(
T

T0

)−5/2

×

×

{
0.01275

[
exp

(
−2239.1

T

)][
frO +

(
f2

frO

)]−1

+

+ 0.1068

[
exp

(
−3352.0

T

)][
frN +

(
f2

frN

)]−1
})

(5.7)

frO =
pa
pr

(
24 + 4.04× 104h

0.02 + h

0.391 + h

)
(5.8)

frN =
pa
pr

(
T

T0

)−1/2
(
9 + 280h exp

{
−4.170

[(
T

T0

)−1/3

− 1

]})
(5.9)

h = hr
psat/pr
pa/pr

(5.10)

psat/pr = 10−6.8346(273.16/T )1.261+4.6151 (5.11)

where
α: coe�cient of air absorption in [dB/m]
f : frequency in [Hz]
pa: air pressure in [kPa]
pr: reference air pressure = 101.325 kPa
T : air temperature in Kelvin
T0: reference air temperature = 293.15 K
hr: relative humidity of the air as percentage (0 < hr < 100)

5.3.3 Ground e�ect

In many practical cases sound propagates close to the ground. For larger distances and small source and
receiver heights the angles of incident relative to the ground are almost grazing. In this situation the
direct sound interferes with a signi�cant re�ection from the ground. The frequencies that are ampli�ed
or attenuated depend on the sound path length di�erences and the phase shift at the re�ection. The
modi�cation of the sound pressure at a receiver due to the presence of the ground is called ground
e�ect. An exact analytical solution can be given for simple geometries only (see below). However for
a broad band signal the A-weighted ground e�ect can be estimated according to Eq. 5.12.

Aground = 4.8− 2hm
d

(
17 +

300

d

)
≥ 0 [dB(A)] (5.12)

where
hm: average height above ground of the direct sound propagation path [m]
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d: distance source - receiver [m]

If the ground e�ect calculation is performed based on Eq. 5.12, an additional directivity correction DΩ

that increases the receiver level has to applied as:

DΩ = 10 log

(
1 +

d2p + (hs − hr)
2

d2p + (hs + hr)2

)
(5.13)

where
hs: height of the source above ground [m]
hr: height of the receiver above ground [m]
dp: source-receiver distance projected onto the ground plane [m]

For �at terrain the ISO standard 9613-2 3 describes a more subtle algorithm that yields the ground
e�ect in octave bands.

In case of a point source above �at homogeneous ground, the ground e�ect can be calculated exactly
in the sense of an numerical approximation to the wave theory 4. Thereby locally reacting ground is
assumed which means the boundary condition at the ground is de�ned as the frequency dependent
ratio of sound pressure and the normal component of the sound particle velocity (ground impedance).
The calculation is based on the following variables (see Fig. 5.1):

d: horizontal distance source - receiver
hs: source height above ground
hr: receiver height above ground
Z: impedance of the ground, normalized to ρc
R1: distance source - receiver
R2: distance source - point of re�ection - receiver
λ: wave length
k: wave number = 2π

λ

hs

h rS

R

d

R1

R2

Z
ΨΨ B

Figure 5.1: Situation of a point source S above homogeneous ground with impedance Z, B is the
re�ection point, R is the receiver.

As already insinuated in Fig. 5.1, the sound pressure p(R) at the receiver is composed of two contri-
butions: the direct sound and the ground re�ection. In complex writing p(R) can be stated as:

p(R) =
1

R1
ejkR1 +Q

1

R2
ejkR2 (5.14)

where
Q: spherical wave re�ection coe�cient

The spherical wave re�ection coe�cient Q can be deduced from the plane wave re�ection coe�cient
rp as

3ISO Standard 9613: Acoustics - Attenuation of sound during propagation outdoors, Part 2: General method of
calculation.

4C. I. Chessel, Propagation of noise along a �nite impedance boundary. J. Acoustical Society of America, 62, p.825-834
(1977).
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Q = rp + (1− rp)F (w) (5.15)

where
rp =

sin(ψ)− 1
Z

sin(ψ)+ 1
Z

w = 1+j
2

√
kR2

(
sin(ψ) + 1

Z

)
The factor F (w) in Eq. 5.15 can be approximated as 5

F (w) = 1 + j
√
πwe−w

2

erfc(−jw) = 1 + j
√
πwwofz(w) (5.16)

The function erfc(−jw) in Eq. 5.16 denotes the complex error function 6. For the evaluation of the

function wofz(w) = e−w
2

erfc(−jw), a very e�cient algorithm is available 7,8.

The impedance Z of the ground is frequency dependent. Very often, the characterization is based on
a one parameter model with the �ow resistivity σ as variable. With help of the empirical model by
Delany and Bazley 9 (5.17) the impedance normalized to ρc can be calculated for all frequencies f .
It should be noted that the sign of the imaginary part of the impedance in Eq. 5.17 depends on the
convention of the time dependency in the complex representation. A positive imaginary part as shown
here, assumes e−jωt 10.

Z = 1 + 9.08

(
f

σ

)−0.75

+ j11.9

(
f

σ

)−0.73

(5.17)

where
Z: impedance normalized to ρc
f : frequency [Hz]
σ: �ow resistivity [kPa·s/m2].

Table 5.3 shows corresponding �ow resistivities for di�erent ground types. Figure 5.2 demonstrates
exemplarily the frequency response of the impedance for lawn (σ = 300 kPa·s/m2).

Fig. 5.3 shows the frequency responses of the ground e�ect, calculated with Eq. 5.14 for di�erent
situations. For that purpose the resulting sound pressure at the receiver is referenced to the direct
sound pressure. For grassy ground an ampli�cation at very low frequencies and an attenuation in the
mid frequency range is very typical.

ground type �ow resistivity σ [kPa·s/m2]
asphalt, water 20'000
hard natural ground 5'000
plow soil, gravel 500
lawn 300
grass land 150
hard snow 40
powder snow 10

Table 5.3: Flow resistivity for di�erent ground types.

5C. F. Chien, W. W. Soroka, A note on the calculation of sound propagation along an impedance surface. J. Sound
and Vib. vol. 69, 340-343 (1980).

6M. Abramowitz, J. A. Stegun, Handbook of Mathematical Functions.
7W. Gautschi, E�cient Computation of the Complex Error Function. SIAM J. Numer. Anal. vol. 7, 187-198 (1970).
8Collected Algorithms from CACM. Algorithm 363.
9M. E. Delany, E. N. Bazley, Acoustical properties of �brous absorbent materials. Applied Acoustics vol. 3, 105-116

(1970).
10G. A. Daigle et al. Some comments on the literature of propagation near boundaries of �nite acoustical impedance,

Journal of the Acoustical Society of America, vol. 66, p.918-919 (1979).
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Figure 5.2: Real- and imaginary part of the impedance of lawn, normalized with ρc
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Figure 5.3: Ground e�ect for lawn (left) and snow covered ground (right) with source and receiver 1 m
above ground and distances of 20, 50 and 200 m. The wide dip in the low frequencies in case of snow
explains the experience that many transportation noise sources are quieter during periods of snow.

5.3.4 Obstacles

Vegetation

Sound is attenuated while passing dense vegetation. This is mainly due to scattering e�ects at trunks
and branches. However, signi�cant attenuation is found only for extensions of more than about 20
meters. One row of trees or bushes has no direct e�ect. Though a second order e�ect is the fact
that vegetation loosens the ground and by this reduces the �ow resistivity which in turn in�uences the
ground e�ect. An additional e�ect of vegetation is the interruption of view which may be bene�cial
from a psychological point of view in noise abatement applications.

Table 5.4 shows the average attenuation Afoliage in octave bands associated with dense vegetation. The
e�ective distance is the sound path that passes through the vegetation.

e�ective distance 63 125 250 500 1k 2k 4k
10. . .20m 0dB 0dB 1dB 1dB 1dB 1dB 2dB
20. . .200m 0.02dB/m 0.03dB/m 0.04dB/m 0.05dB/m 0.06dB/m 0.08dB/m 0.09dB/m
> 200m 4 dB 6 dB 8 dB 10 dB 12 dB 16 dB 18 dB

Table 5.4: Attenuation due to vegetation Afoliage as a function of frequency.
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Noise barriers

Massive obstacles that interrupt the line of sight between source and receiver lead to a signi�cant
attenuation. In the context of road and railway noise, barriers are indeed a common approach to
reduce the noise level at receivers. Due to di�raction e�ects, still a relevant portion of the sound wave
can reach the geometrical shadow zone behind an obstacle. This is due to the fact that sound wave
lengths relevant for many noise sources are in the same order of magnitude as typical geometrical
dimensions. In the calculation of the attenuation due to obstacles, the portion of sound energy that
goes through the obstacle is usually ignored. This is allowable in most cases if the area speci�c mass
of the obstacle is larger than 10 kg/m2.

The calculation of the sound �eld behind an in�nitely extended half plane is a classical task in theoretical
acoustics. Maekawa was the �rst that deduced an empirical formula for the barrier attenuation based
on theoretical considerations and measurements in the laboratory. Hereby the attenuation is expressed
as a function of one single parameter - the so called Fresnel number N . N is de�ned as the ratio
N = 2z/λ where λ is the wave length and z is the di�erence of the path lengths around the obstacle
and through the obstacle.

Figure 5.4: Situation of a single obstacle between source and receiver with the sound path around the
obstacle edge (d1, d2) and the path through the the obstacle (d).

The ISO standard 9613 calculates the attenuation Ascreen due to a barrier as follows:

Ascreen = 10 log

(
3 +

C2

λ
C3zKw

)
[dB] (5.18)

where
C2 = 20
C3 = 1 for a single barrier
λ: wave length [m]
z: di�erence of the path lengths around the obstacle and through the obstacle z = d1 + d2 − d (Fig.
5.4) [m]
Kw: correction factor ≤ 1 to account for a reduced attenuation e�ect in case of favorable propagation
conditions due to special meteorological conditions (see below).

Remarks:

� If the obstacle just touches the line of sight between source and receiver, the path length di�erence
z yields 0. The barrier attenuation according to Eq. 5.18 becomes 5 dB, independently of the
frequency. If the obstacle height is lowered further, still a path length di�erence can be evaluated.
If the corresponding value is used with negative sign, the formula yields a smooth transition to
the case where the barrier attenuation vanishes.

� As expected, Eq. 5.18 yields a barrier attenuation in the shadow zone that increases with fre-
quency.

� If a barrier attenuation is present, the attenuation by the ground Aground (ground e�ect) should
be ignored.

A more accurate solution of the sound �eld behind a barrier is given by Pierce11. The insertion loss IL,
that means the di�erence between the receiver level with obstacle and the level without obstacle can
be calculated as:

11Allan D. Pierce, Acoustics, published by the Acoustical Society of America (1991).
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IL = −10 log

(∣∣∣∣H(X)− ej
π
4

√
2
AD(X)ej

π
2X

2

∣∣∣∣2
)

[dB] (5.19)

where
H(X): Heaviside function, = 0 if the receiver is in the geometrical shadow, = 1 in all other cases.

X =
√

2k
π (L−R)

k: wave number = 2π fc
f : frequency
c: speed of sound
L: path length from the source to the receiver around the obstacle
R: path length from the source to the receiver through the obstacle
AD(X): di�raction integral = f(X)− jg(X)
f(X), g(X): auxiliary Fresnel functions, for which the following approximation exist:
f(X) ≈ 1+0.926X

2+1.792X+3.104X2

g(X) ≈ 1
2+4.142X+3.492X2+6.67X3

In typical outdoor noise control applications - e.g. in the context of road tra�c noise - barrier
attenuations in the order of 5 to 15 dB can be achieved. A barrier is most e�ective, if it is positioned
close to the source or close to the receiver. As a consequence of turbulence and inhomogeneities of the
air the maximum barrier attenuation is limited to 20. . .25 dB. During the installation of noise barriers
it has to be assured that no gaps occur as they would lower the attenuation e�ect considerably.

In some cases it is important that noise barriers are equipped with an absorbing surface to avoid
re�ections in the opposite direction. Methods to determine the characteristics of noise barriers in situ
are described in the ISO standard ISO 10847: In-situ determination of insertion loss of outdoor noise
barriers of all types. An excellent overview of possible modi�cations of the top section of noise barriers
to improve the attenuation e�ect can be found in the paper by Ulrich 12.

5.4 Re�ections

Besides the ground, additional surfaces and objects can re�ect sound. They introduce additional sound
propagation paths and thus rise the sound pressure at the receiver. As the path lengths usually di�er
signi�cantly from the direct sound, the di�erent contributions can be summed up energetically. If the
re�ecting object is a �at surface, the re�ection can be dealt with the concept of mirror sources. The
criteria for the occurrence of specular re�ections are

� the point of re�ection lies on the re�ecting surface

� the re�ecting surface is large enough in relation to the sound wave length.

The test of a su�cient re�ector size at the frequency fc can be performed by checking if Eq. 5.20 is
ful�lled.

fc >
2c

(lmin cos(β))2
ds,odo,r
ds,o + do,r

(5.20)

where
c: speed of sound
ds,o: distance source - point of re�ection
do,r: distance point of re�ection - receiver
β: angle of incidence relative to the surface normal direction
lmin: smallest dimension of the re�ector

If the re�ecting surface has absorbing properties, a corresponding attenuation has to be accounted for.

12S. Ullrich, Vorschl�'age und Versuche zur Steigerung der Minderungswirkung einfacher L�'armschutzw�'ande, Strasse +
Autobahn 7, p.347-354 (1998).
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If the re�ecting object is not su�ciently �at, the mirror source concept can no longer be applied. The
handling of di�use re�ections is usually more di�cult. As an example, Fig. 5.5 shows the re�ection at
a forest rim. Each tree scatters a certain amount of sound energy. There is no sharp re�ection as in
case of �at surfaces but a sort of reverberation with a distinct temporal smearing.

0 0.1 0.2 0.3 0.4 0.5

time [s]

Figure 5.5: Level time curve of a gun shot re�ected at a forest rim. The direct sound is followed by a
re�ection that is strongly smeared over time.

5.5 Meteorological e�ects

Up to now the medium air was assumed to be homogeneous, in rest and time invariant. All three
conditions are usually not ful�lled. Of importance regarding possible sound propagation attenuation
variations are vertical temperature and wind speed gradients and the temporal and local inhomogeneities
in the air layer close to the ground. Temperature and wind speed gradients lead to a curvature of the
propagation paths. Local inhomogeneities of the air produce scattering e�ects.

5.5.1 Temperature gradients

The mass of the atmosphere generates an average pressure of 1013 hPa on sea level. With increasing
height above ground, the pressure drops by about 12 Pa per meter. As a consequence of this pressure
decrease a packet of air that moves upwards cools down with about 1◦ per one hundred meters. A
temperature strati�cation with a gradient of -1◦/100m is called adiabatic strati�cation.

The adiabatic strati�cation corresponds to the basic state of the atmosphere without additional
exterior in�uences. However, during day time with strong incoming sound radiation the ground and
with a certain delay the air layer above is heated up. This leads to a strong negative temperature
gradient corresponding to decreasing temperature with increasing height. This is called an unstable
strati�cation. On the other hand during nights with clear sky, the ground looses energy due to outgoing
radiation. This leads to a strong cooling of the ground and the adjoining layers of air. In the following,
a positive temperature gradient develops in the lowest few meters. This condition is called stable
strati�cation or temperature inversion. It should be noted that a stable strati�cation can only develop
if there are no strong winds.

In both regimes with unstable and stable strati�cation the temperature gradients are largest close to
the ground and become smaller with increasing height. The temperature as a function of height above
ground can be described with an approach as shown in Eq. 5.21.

T (z) = T (0) + kz0.2 (5.21)

where
T (z): temperature [◦C] at height z [m] above the ground
k: constant depending of the stability condition with values k = −1.9 in the very unstable case and
k = 2.6 for very stable conditions
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Consequences of temperature strati�cation for the sound propagation

As the speed of sound depends on temperature, a temperature gradient leads to a gradient of the
e�ective propagation speed. A direct consequence of this is a curvature of the sound paths. In case of
unstable strati�cation during day time the curvature points away from the ground (Figure 5.6). In larger
distances shadow zones evolve with a corresponding strong attenuation. On the other hand during clear
nights with stable strati�cation the sound speed increases with height, leading to a curvature towards
the ground (Figure 5.7). This results in a lowering of the attenuation compared to day time. It is even
possible that obstacles loose their e�ect as they are surmounted by the propagation path.

shadow

zone

shadow

zone

Figure 5.6: Curvature of sound rays due to a negative temperature gradient. In larger distances a
shadow zone develops where the sound pressure is strongly attenuated.

Figure 5.7: Curvature of sound rays due to a positive temperature gradient.

5.5.2 Wind

Due to friction in the vicinity of the ground, wind speed shows always a vertical gradient. The wind
speed pro�le u(z) can be described with help of Eq. 5.22 13.

u(z)

uref
=

(
z − d0
zref − d0

)α
(5.22)

where
u(z): average wind speed [m/s] at the height z [m] above ground
uref : average wind speed at the reference height zref [m] above ground (typ. 10 m)
d0: o�set height [m], situation dependent according to Table 5.5
α: pro�le exponent, situation dependent according to Table 5.5

site d0 [m] α
water, ice or snow 0 0.08. . . 0.12
gras land 0 0.12. . . 0.18
parks, agglomeration 0.75h 0.18. . . 0.24
forests, urban areas 0.75h 0.24. . . 0.40

Table 5.5: O�set heights and pro�le exponents for Eq. (5.22). The parameter h corresponds to the
average height of buildings and / or vegetation [m].

Consequences of wind regarding sound propagation

The sound propagation in a moving medium has to consider the sound speed vector (normal to the
wave front) and the velocity vector of the medium. The wave front at time t+∆t can be found from
the front at time t by vector addition of the sound speed vector and the medium velocity vector (Fig.
5.8).

13VDI-Richtlinie 3782, Blatt 12: Umweltmeteorologie, Physikalische Modellierung von Str�'omungs- und Ausbre-
itungsvorg�'angen in der atmosph�'arischen Grenzschicht (1999).
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c

v

ray

Figure 5.8: The momentary propagation speed of a point on a wave front is given by addition of the
sound speed vector c⃗ (normal to the wave front) and the medium velocity vector v⃗.

The important in�uence of wind on sound propagation is a result of the vertical wind speed gradient.
In downwind direction sound propagates faster with increasing height. Similarly as in case of stable
temperature strati�cations, sound propagates no longer along straight lines but becomes a curvature
towards the ground. In the upwind direction the curvature points upwards (Figure 5.9.

Figure 5.9: Curvature of sound rays due to a wind speed gradient. In the upwind direction a shadow
zone develops where the sound pressure is strongly attenuated.

5.5.3 Favorable and unfavorable sound propagation conditions

The in�uence of wind and temperature gradients on sound propagation can be divided roughly into the
two categories favorable and unfavorable sound propagation conditions. Favorable conditions are given
if the propagation curvature is oriented towards the ground, unfavorable conditions are encountered in
case of a bending upwards.

For engineering applications, the propagation conditions are usually speci�ed in four classes 14:

� M1: unfavorable sound propagation conditions

� M2: neutral conditions (no bending)

� M3: favorable sound propagation conditions

� M4: very favorable sound propagation conditions

The propagation classes are determined by the temperature strati�cation and the component of the
wind speed v in propagation direction. A speci�c meteorological situation can be mapped onto the
corresponding propagation class as shown in Table 5.6.

v < -1 -1 < v < 1 1 < v < 3 3 < v < 6 v > 6
overcast sky M1 M2 M3 M3 M4
clear sky during day M1 M1 M2 M3 M4
clear sky during night M1 M4 M4 M4 M4

Table 5.6: Mapping of a meteorological situation onto the propagation classes M1 to M4. v is the wind
speed component projected onto the propagation direction from source to receiver in m/s.

14ISO 1996-2rev, Acoustics - Description, measurement and assessment of environmental noise - Part 2: Determination
of environmental noise levels
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For the distinction between overcast/clear sky, the following criteria can be used:

primary criteria

� clear during night: if temperature di�erence measured at 2.0 m and 0.05 m above ground is larger
than 1.5◦C

� clear during day: if global radiation > 200 W/m2

alternative criteria

� clear during day/night: if daily (24h) temperature variation at 2.0 m above ground is larger than
10◦C

� clear during day/night: if cloud coverage < 4/8

5.5.4 Turbulence

Wind �ow over non-�at terrain or locally varying heating of the ground surface lead to inhomogeneities
of the air in the surface layer. These inhomogeneities are called turbulence. Turbulence is responsible
for arbitrary variations of the propagation attenuation between source and receiver. However more
important are scattering e�ects that can re�ect sound energy into geometrical shadow zones and the
e�ect of decorrelation between direct and ground re�ected sound. The incorporation of turbulence into
calculation schemes can be done in di�erent ways as e.g. described here 15.

5.5.5 Calculation of meteorological e�ects on sound propagation

The in�uence of meteorological e�ects on sound propagation can be considered in di�erent ways.

Empirical corrections of barrier attenuation The possible variation of the propagation attenuation
due to meteorological e�ects is especially large in case of an obstacle between source and receiver.
For downwind conditions or for stable strati�cation the barrier attenuation can be signi�cantly
reduced. There are barrier attenuation formulas such as ISO 9613-2 with empirical corrections
for favorable propagation conditions.

Analytical solutions of sound ray paths Under the assumption of linear vertical pro�les of the e�ec-
tive sound speed (constant gradient), the curvature of the sound rays can be described analytically.
The resulting rays are circles. They can be constructed for arbitrary source and receiver positions
and the consequences for a barrier attenuation or the ground e�ect can be calculated easily 16.

Ray tracing With ray tracing calculation schemes 17, the propagation of sound rays can be determined
for arbitrary e�ective sound speed pro�les (Fig. 5.10). Sound pressure levels at a receiver point
can be determined by evaluating the density of the rays.

Numerical solutions of the wave equation Several strategies are known to �nd approximate numer-
ical solutions of the wave equation. As the distances between source and receiver are usually large,
classical methods such as Finite Elements are out of question due to the exploding calculation
e�ort. More suitable are approximations such as the Parabolic Equation (PE) that assume pure
forward propagating waves and yield a numerical solution of the wave equation. The bene�t of
the constraint of forward propagation is that fact that a stepwise solution of small systems of
equations is possible 18.

15P. Chevret et al. A numerical model for sound propagation through a turbulent atmosphere near the ground. J.
Acoustical Society of America, vol. 100, p.3587-3599 (1996).

16A. L'Esperance et al., Heuristic Model for Outdoor Sound Propagation Based on an Extension of the Geometrical
Ray Theory in the Case of a Linear Sound Speed Pro�le, Applied Acoustics, vol. 37, p. 111-139 (1992).

17Robert J. Thompson, Ray-acoustic intensity in a moving medium, Journal of the Acoustical Society of America, vol.
55, p. 729-737 (1974).

18Erik M. Salomons, computational atmospheric acoustics, Kluwer Academic Publishers, 2001.
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Figure 5.10: Example of a ray tracing simulation for downwind of 5 m/s at a height of 10 m above
ground. The horizontal axis is the coordinate in propagation direction, the vertical axis is the height
above ground (note the di�erent scaling of the axis). The rays start at the source on the left. They are
bent downwards and can thus surmount obstacles. At certain points rays intersect. In these so called
caustics the energy density becomes in�nitely high which can obviously not be true. Within the ray
tracing model, no statement about the sound pressure in these points is possible.
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Chapter 6

Absorption and re�ection

If a sound wave hits a boundary surface, only a portion of the incoming energy is re�ected 1. The
energy that is not re�ected splits into a portion that is absorbed and a portion that is transmitted. The
absorbed energy is converted into heat. The transmission is the result of excitation of the boundary to
vibrations and then as a consequence sound is radiated on the rear side. Often the transmitted portion
is not addressed explicitly which means that this contribution is added to the absorbed portion.

6.1 Characterization

The quantitative description of the property of a surface to absorb or re�ect sound uses the absorption
coe�cient or the re�ection coe�cient. The absorption coe�cient α is de�ned as the ratio of the
energies of absorbed and incident sound:

α =
absorbed energy

incident energy
(6.1)

The re�ection coe�cient R on the other hand is the ratio of the sound pressures of re�ecting and
incoming sound:

R =
sound pressure of re�ected wave

sound pressure of incident sound wave
(6.2)

The absorption coe�cient is a real number in the range 0 . . . 1. The re�ection coe�cient is a complex
number and describes the amplitude ratio and the phase shift during re�ection. Under the assumption
that the whole incident energy splits into absorption and re�ection, a relation between α and R can be
established:

α = 1− |R|2 (6.3)

6.2 Types of absorbers

6.2.1 Porous absorbers

Porous absorbers are usually made from glass �bers or organic �bers or open foam. They function as
absorbers due to friction losses when the air moves back and forth in the pores. The relevant sound �eld
variable is thus the sound particle velocity. Consequently the optimal positioning of porous absorbers is
at locations with high sound particle velocity. It is therefore bene�cial to install a porous absorber with
a certain distance to an acoustically hard boundary.

6.2.2 Resonance absorbers of type Helmholtz

Helmholtz resonance absorbers are formed by an acoustical spring and an acoustical mass. The spring
is realized by a compressible volume of air, while the mass corresponds to a column of air that can be
accelerated (Fig. 6.1).

1T. J. Cox, P. D'Antonio, Acoustic Absorbers and Di�users, Taylor and Francis, 2009.
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S

V

l

Figure 6.1: Resonance absorber of type Helmholtz. The mass and spring are realized by a column of
air (cross section S and length l) and a volume V .

The resonance frequency of a mass/spring system with mass m and sti�ness s is

f0 =

√
s
m

2π
(6.4)

The mass m is given by the mass in the cylinder and a portion of vibrating air at the end of the cylinder.
This additional mass is introduced in the calculation as a mouth correction. With ρ as density of air,
the moving mass is:

m = ρ(l + lcorr)S (6.5)

The mouth correction can be approximated as lcorr ≈ 0.8R where R corresponds to the radius of the
cylinder 2.

The sti�ness s of the spring can be determined with help of the Poisson law (Eq. 1.14) for adiabatic
processes:

s = c2ρ
S2

V
(6.6)

where c is the speed of sound. Finally the resonance frequency f0 is found as

f0 =
c

2π

√
S

V (l + lcorr)
(6.7)

Without further measures the frequency curve of absorption shows a large peak in a narrow band
only. The absorption e�ect can be enlarged over a wider frequency range by introducing damping (an
acoustical resistance such as porous material) at the position of the neck where the sound particle
velocity is highest.

There are di�erent realizations of Helmholtz resonators. A �rst possibility is a structure that consists
of a layer of damping material and a plate with holes or slits on top of it. The air in the holes or slits
acts as an acoustical mass, the air in the damping material is the acoustical spring.

An other version uses a sheet of metal that is installed in a certain distance to the wall or ceiling. In
this case the acoustical mass is dominated by the neck correction. The damping is usually realized
with a thin tissue mounted on the rear side of the metal sheet.

The extra damping material can be omitted if the holes have a very small diameter (< 1 mm) 3,4,5.
Such Helmholtz resonators are called microperforated absorbers. The friction loss in the small holes is
large enough to realize su�cient damping. It is thus possible to construct absorbers from one material
only. If this material is glass or acrylic glass, transparent absorbers are possible which opens very

2The mouth correction l yields a non vanishing mass even if the length of the cylinder tends to 0.
3Dah-You Maa, Microperforated-Panel Wideband Absorbers, Noise Control Engineering Journal, no. 3, vol. 29 (1987).
4Einsatz mikroperforierter Platten als Schallabsorber mit inh�'arenter D�'ampfung, H. V. Fuchs, X. Zha, Acustica, no.

2, vol. 81 (1995).
5I. Falsa�, A. Ohadi, Design guide of single layer micro perforated panel absorber with uniform air gap, Applied

Acoustics, vol. 126, p.48-57 (2017).
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interesting design possibilities. Alternative constructions use slits instead of holes 6 or thin layers of air
between two adjacent plates 7 or multi-layer arrangements 8.

Figure 6.2 shows the performance of absorption for two geometries of a perforated absorber. The smaller
the holes, the higher the damping and thus the broader the frequency range with high absorption.

79 125 198 315 500 794 1260 2000 3175 5040 8000

frequency [Hz]

0

0.2

0.4

0.6

0.8
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a
lp

h
a

type 1

type 2

Figure 6.2: Calculated absorption as a function of frequency for normal sound incidence. Absorber type
1: plate thickness = 3 mm, hole diameter = 0.4 mm, spacing between holes = 2 mm, distance to wall
= 100 mm; absorber type 2: plate thickness = 3 mm, hole diameter = 2 mm, spacing between holes
= 15 mm, distance to wall = 50 mm.

6.2.3 Membrane absorbers

Membrane absorbers or panel absorbers are an other realization of a spring - mass resonance absorber.
In contrast to Helmholtz absorbers the mass is realized by a thin plate or foil 9. The spring is
determined by the sti�ness of the layer of air between the plate and the rigid wall. If foils are used as
mass, their sti�ness has to be added to the sti�ness of the air. Diaphragmatic absorbers have to be
constructed as boxes to avoid that air can escape at the edges.

As a resonance e�ect is responsible for the absorption, membrane absorbers are frequency selective.
They are mainly used for low frequency absorption. The resonance frequency f0 for which highest
absorption is obtained is given as

f0 =

√
s′′

m′′

2π
(6.8)

where
s′′: sti�ness per unit area
m′′: mass per unit area

Similarly to the case of Helmholtz absorbers the sti�ness is found as

s′′ =
ρc2

lw
(6.9)

where
lw: distance of the panel to the rigid wall

6R. T. Randeberg, Adjustable Slitted Panel Absorber, Acta Acustica united with Acustica, vol. 88, p.507-512 (2002).
7R. T. Randeberg, A Helmholtz Resonator with a Lateral Elongated Ori�ce, acta acustica, vol. 86, p.77-82 (2000).
8Y.J. Qian et al., Pilot study on wideband sound absorber obtained by adopting a serial-parallel coupling manner,

Applied Acoustics, vol. 124, p.48-51 (2017).
9K. Sakagami et al., Sound Absorption of a Cavity-Backed Membrane: A Step Towards Design Method for Membrane-

Type Absorbers, Applied Acoustics, vol. 49, no. 3, pp. 237-247 (1996).
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and �nally

f0 =
c
√

ρ
m′′lw

2π
(6.10)

By �lling the volume of air between the panel and the rigid back wall with a porous material, the
absorption can be increased and extended to a broader frequency range.

For practical applications, certain conditions should be ful�lled. In general, best results are obtained
for large values of the distance lw. However lw needs to be small compared to the wave length λ0
at the resonance frequency. Usually one tries to ful�ll the condition lw < λ0/12. Further the panel
shouldn't be too small, a minimum area of 0.4 m2 is stipulated. In addition the proportions of the
panel shouldn't be too extreme, the minimum length of each panel side is 0.5 m.

Panel absorbers can be combined with porous absorbers that are put on top. At low frequencies where
the panel absorber is active, the porous absorber is transparent. However the additional mass of the
porous layer has to be considered.

6.3 Measurement of absorption and re�ection

6.3.1 Kundt's tube

The measurement in Kundt's tube allows for the determination of the absorption coe�cient under
normal incidence for relative small material probes 10.

Kundt's tube serves to create a one-dimensional plane wave sound �eld at discrete frequencies (Figure
6.3). For that purpose a loudspeaker located at one end of the tube generates a sine wave. This wave
propagates in the tube to the other end and will be re�ected at the hard termination. Thereby the
incident and re�ected sound wave form an interference pattern with pressure maxima and minima.
By introducing absorbing material in front of the hard termination, the re�ection is reduced and as a
consequence the sound pressure maxima decrease and the minima increase. As will be shown below,
the absorption coe�cient can be determined from the ratio of sound pressure in the maxima and
minima alone.

To guarantee that only plane waves along the tube axis occur, the frequency has to be limited to a
value such that the corresponding wave length is larger than the diameter of the tube.

Figure 6.3: Kundt's tube with the loudspeaker at one end and the material probe in front of the hard
termination at the other end. In the center of the tube diameter a probe microphone can be moved
along the tube axis to detect sound pressure maxima and minima.

With pr as sound pressure of the wave re�ected at the end of the tube and pe as sound pressure of the
incident wave one can write:

pr
pe

=
√
1− α (6.11)

The sound pressure maxima are formed by constructive interference of incident and re�ected wave:

pmax = pe + pr = pe(1 +
√
1− α) (6.12)

10ISO-Norm 10534: Acoustics - Determination of sound absorption coe�cient and impedance in impedance tubes, Part
1: Method using standing wave ratio.
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The sound pressure minima on the other hand result as destructive interference between incident and
re�ected wave:

pmin = pe − pr = pe(1−
√
1− α) (6.13)

With the ratio

n =
pmax

pmin
(6.14)

the absorption coe�cient can be calculated as

α = 1−
(
n− 1

n+ 1

)2

(6.15)

6.3.2 Impedance tube

The measurement in the tube of Kundt is time consuming, as for each frequency the maxima and
minima have to be searched and evaluated. In this respect the impedance tube is a more elegant
method 11. The geometry of loudspeaker, tube and probe is similar to Kundt's tube. However the
sound pressure is not observed along the tube axis but at two �x positions. The excitation is wide band
noise, allowing to extract spectral information with one single measurement. For a given geometry
(distanced between the two microphones and distances to the probe) the ratio between incoming and
re�ected wave can be evaluated by measuring the complex transfer function between the microphones
12. From the complex pressure re�ection factor the impedance and the absorption coe�cient can be
calculated.

6.3.3 Reverberation chamber

The measurement of sound absorption in the reverberation chamber 13 is based on the in�uence of
absorption on the reverberation process. After switching o� a sound source in a room with hard
surfaces, the sound pressure doesn't drop to zero immediately. The sound waves are still re�ected
back and forth between the walls, �oor and ceiling. As they loose energy only slowly, the observable
reverberation process can last for several seconds. The reverberation is described by the reverberation
time T . The parameter measures the time for a decrease of the sound energy density to 1/1'000'000
of its initial value.

If sound absorbing material is introduced, the reverberation time decreases. The relation between
reverberation time T , room volume V and Absorption A can be expressed by the formula of Sabine:

T =
0.16V

A
(6.16)

From two measurements of T in the empty room and in the the room with absorbing material, the
increase of absorption ∆A by the material can be determined. With knowledge of the area S of the
introduced material the absorption coe�cient is found as αs = ∆A/S.

For maximum accuracy it is bene�cial to aim at large di�erences between the empty room measure-
ment and the measurement with the material installed. For that reason reverberation chambers are
constructed with as less initial absorption as possible. The walls, the �oor and the ceiling are thus
made from acoustically hard materials. To reduce the tendency of low frequency resonances, the walls
are usually oriented in such a way that opposite walls are not in parallel. In addition, re�ectors and
di�users may be installed in the room to improve the di�usivity of the sound �eld. The area of the
material probe lies usually between 10 and 12m 2.

The absorption coe�cients αs determined in the reverberation chamber do not match exactly with the
values found in Kundt's tube of the impedance tube. One reason is the di�erence in the exciting sound

11ISO-Norm 10534: Acoustics - Determination of sound absorption coe�cient and impedance in impedance tubes, Part
2: Transfer-function method.

12J. Y. Chung, D. A. Blaser, Transfer function method of measuring in-duct acoustic properties. Journal of the
Acoustical Society of America, vol. 68, p. 907-921, 1980.

13ISO Norm 354 Acoustics - Measurement of sound absorption in a reverberation room. 1985.
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�eld. In the tubes only perpendicular incidence is investigated while in the reverberation chamber the
angles vary between 0◦ and 90◦. In some cases αs values > 1 occur, which doesn't make sense from
a physical point of view. The reason for this is that important assumptions for the Sabine formula are
violated.

6.3.4 In situ measurement of impulse responses

In some cases it is not possible to put the structure or material of interest in the impedance tube or
bring it to the reverberation chamber. Here in situ impulse response measurements in an appropriate
geometrical con�guration may yield useful information. The loudspeaker - microphone - absorber
geometry has to be chosen in such way that the direct sound, the re�ection from the absorber and
other unwanted re�ections can be separated on the time axis. Two main di�culties are linked to the
problem of evaluating an absorption coe�cient. To account for the direct and re�ected sound path
length ratio, a normalization step is necessary. This is easily done for �at absorbers but can cause
major di�culties if the surface of interest is signi�cantly structured in depth. The second problem
arises from the requirements at low frequencies. The evaluation of the low frequency range makes
large dimensions of the absorber necessary (see Fresnel zones).

For a recent review of in situ absorption measurement techniques see 14.

6.4 Calculation of absorption and re�ection from impedance

relations

6.4.1 Normal incidence

A plane wave is considered that propagates in a medium with impedance Z0. The medium is bounded
by a medium with impedance Z1. It is assumed that the wave hits the impedance discontinuity
Z0 → Z1 perpendicularly.

The incident sound wave has sound pressure pI and sound particle velocity vI with

pI
vI

= Z0 (6.17)

The re�ected wave has sound pressure pII and sound particle velocity vII where

pII
vII

= Z0 (6.18)

At the surface of the medium Z1, sound pressure and sound particle velocity add up to 15

p = pI + pII

v = vI − vII (6.19)

with the condition:

p

v
= Z1 (6.20)

From

pI + pII = Z1

(
pI
Z0

− pII
Z0

)
(6.21)

follows �nally

pII
pI

= R =
Z1 − Z0

Z1 + Z0
(6.22)

14E. Brandao, A. Lenzi, S. Paul, A Review of the In Situ Impedance and Sound Absorption Measurement Techniques,
Acta Acustica united with Acustica, vol. 101, p. 443-463, 2015.

15The scalar quantity sound pressure adds up with a positive sign, while the vectors sound particle velocity adds up
with negative sign due to reversed orientation.
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Eq. 6.22 demonstrates that the re�ection factor R approaches 1 for increasing di�erence of Z1 and
Z0. On the other hand, maximum absorption will show for Z1 = Z0. An absorber is characterized by
the property that it doesn't introduce a signi�cant resistance to the incoming wave.

If a layer of porous absorption is placed in front of a hard wall, the resulting impedance is increased
compared to the impedance of the absorber itself. As a rule of thumb the thickness of the absorber
should be larger than a quarter of the wave length of the lowest frequency that should be absorbed.

6.4.2 Oblique incidence

For many materials it can be assumed (as a �rst order approximation) that the propagation in the
material itself is perpendicular to the surface due to refraction at the entry of the oblique incident wave.
In this case the reaction of the material at any point is independent of the reaction at any other point,
which is called local reaction. With this assumption one �nds

pII
pI

= R =
Z1 − Z0

cos(ϕ)

Z1 +
Z0

cos(ϕ)

(6.23)

with
ϕ: angle of incident and outgoing wave relative to the surface normal direction

The nominator in Eq. 6.23 can become 0 also for Z1 > Z0 by adjustment of ϕ. This means that for any
impedance discontinuity Z0 → Z1 perfect absorption is achieved for a certain angle of incidence. In the
extreme case of ϕ→ 90◦ the re�ection factor R approaches -1, independently of Z1. This corresponds
to total re�ection with a phase shift of 180◦.

6.5 Typical values of absorption coe�cients

There exist collections of data of absorption coe�cients for di�erent materials 16. Usually octave band
values of αs measurements in the reverberation chamber are shown. The following �gures give a little
overview.
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16Fasold, Sonntag, Winkler, Bau- und Raumakustik, Verlagsgesellschaft Rudolf M�'uller, K�'oln-Braunsfeld, 1987.
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stone �oor carpet, thickness 5 mm
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plaster acoustically optimized plaster, thickness 20
mm
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window heavy curtain
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egg carton glass �ber panel, thickness 50 mm
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panel resonator, 4 mm wood, 120 mm air
layer

audience on upholstered chair
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6.6 Cover for porous absorbers

In most cases porous absorbers need a cover for mechanical protection. Often used are panels with slits
or holes. The openings have to be designed in such a way that the degree of transmission is close to
1 in the frequency range of interest. The problem lies in the high frequencies 17. The sound wave can
pass the panel only by an oscillation of air columns in the holes. Due to the inertia this gets more and
more di�cult for increasing frequency. Figure 6.4 shows the fundamental frequency dependency of the
degree of transmission.
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Figure 6.4: Normalized frequency dependency of the degree of transmission for perforated panels.

The relevant parameters of the panel are the ratio ϵ of the area of the holes relative to the area of the
panel, the diameter r of the holes and the thickness l of the panel. The length of the oscillating air
columns does not exactly correspond to the thickness of the panel but is a little larger. This fact is
accounted for by introducing a correction 2∆l, resulting in an e�ective panel thickness of l∗ with

l∗ = l + 2∆l (6.24)

The frequency f0.5 where the degree of transmission has dropped to 0.5 can be estimated as

f0.5 ≈ 1500
ϵ

l∗
(6.25)

where
ϵ: ratio of the area of the holes relative to the area of the panel in %
l∗: e�ective panel thickness in mm

Table 6.1 shows some parameter combinations for f0.5 = 6300 Hz.
In some cases it may be interesting to explicitly limit the absorption of porous materials at high fre-
quencies due to the fact that there is often plenty of high frequency absorption existent. This can be
done by a proper adjustment of the perforated panel parameters.

17Fasold, Sonntag, Winkler, Bau- und Raumakustik, Verlagsgesellschaft Rudolf M�'uller, K�'oln-Braunsfeld, 1987.
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panel thickness l 1 mm 1 mm 4 mm 4 mm
ϵ 5 % 10 % 17 % 20%
hole diameter r 0.5 mm 3 mm 0.5 mm 3 mm

Table 6.1: Parameters of a perforated panel for f0.5 = 6300 Hz.
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Chapter 7

Room acoustics

7.1 Introduction

What makes sound �elds in rooms special is the superposition of direct sound and many �rst and
higher order re�ections. As a consequence of the sound energy that is stored in these re�ections, there
is so called reverberation. After switching o� a source in a room, the sound pressure is only slowly
fading away.

This reverberation e�ect is objectively described by the parameter reverberation time T . For a
thorough discussion of reverberation, see e.g. Blesser 1.

From an acoustical point of view the limiting surfaces (walls, �oor and ceiling) are the relevant elements
of a room. The sound �eld is in�uenced by their geometry, their absorption properties and their
di�usivity. For the investigation of the sound �eld three methods are in use

� Statistical room acoustics assumes a di�use sound �eld as a central simpli�cation. The analysis
focuses on the ratio of direct and di�use sound and deals with the reverberation. Walls, �oor and
ceiling are described by the statistical absorption coe�cient αs.

� Geometrical room acoustics models the sound propagation as energy that propagates along
straight sound rays. This is a high frequency approximation that holds for wave lengths that
are much smaller than the dimensions of the elements of the room. The re�ection properties are
de�ned by an absorption coe�cient and a di�usivity to describe the scattering behavior.

� Wave based room acoustics is seeking solutions of the wave equation. The sound propagation
is modeled physically correct and considers wave phenomenons such as resonance, interference
and di�raction. However analytical solutions are available for a few simple geometries only. In
general, speci�c solutions have to be found with numerical approximations such as the Boundary
Element method (BEM) or Finite Element method (FEM). The corresponding computational
e�orts restricts the application to small geometries or low frequencies. The boundary surfaces have
to be described with their proper impedances. A di�culty arises as in practice this information is
usually not available.

7.2 Room acoustics of large rooms

Sound �elds in large rooms are characterized by a high density of room resonances already at relative
low frequencies. As a consequence the �uctuations in the transfer functions from a source to a receiver
have arbitrary character. Under these conditions statistical and geometrical room acoustic methods can
be applied.

7.2.1 Statistical room acoustics

Statistical room acoustics is based on the concept of a di�use sound �eld, which means that

1Barry Blesser, An Interdisciplinary Synthesis of Reverberation Viewpoints, Journal of the Audio Engineering Society,
vol. 49, p.867-903 (2001).

107



1. the sound energy density in the whole room is constant.

2. there is no predominant sound incident direction.

These two conditions are never totally ful�lled in real situations. However for practical applications a
di�use sound �eld can be assumed if there is not too much absorption in a room and if this absorption
is more or less evenly distributed over the surface of the room 2.

Intensity on a wall

For a given sound energy density w in a room, the sound intensity on a wall shall be determined. The
intensity corresponds to the incoming power per unit area. The power is given by the energy that hits
the considered surface element dS within one second (Figure 7.1).

φ

dS

dV

θ

r

Figure 7.1: Situation to determine the energy contribution of a volume element dV to the surface
element dS in a di�use sound �eld.

The energy E that stems from the volume element dV and hits the surface element dS is

E =
dS cos θ

4πr2
wdV (7.1)

In spherical coordinates the volume dV is

dV = r2drdθ sin(θ)dϕ (7.2)

The sound power W , that hits dS within one second corresponds to the energy contribution stemming
from a half sphere with radius R = c× 1 sec:

W = IdS =
wdS

4π

c×1sec∫
0

2π∫
0

π/2∫
0

cos(θ) sin(θ)dϕdθdr =
wc

4
dS (7.3)

With this the intensity on a wall in a di�use �eld with energy density w is found as

I =
wc

4
(7.4)

Total absorption and power balance in the di�use �eld

If a sound source in a room is switched on, the sound energy density steadily increases until a �nal state
of sound power balance is reached. This state is characterized by the condition that sound power that
is absorbed is just as large as the sound power that is fed to the room by the source. The absorption
of the room is described by the total absorption A, de�ned as

A =

n∑
i=1

Siαi where

n∑
i=1

Si = area of the surface of the room (7.5)

2Murray Hodgson, When is Di�use-Field Theory Applicable? Applied Acoustics, vol.49, n.3, p.197-207 (1996).
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where αi is the absorption coe�cient and Si the area of the room surface element with index i, n is
the total number of surface elements.

The total sound power that is absorbed by the room surface is

Wabsor = IwallA =
wc

4
A (7.6)

The balance condition is

Wabsor =Wsource (7.7)

w =
4Wsource

Ac
(7.8)

The di�use sound �eld can be understood as superposition of many plane waves that arrive from all
possible directions. In case of a plane wave the energy that �ows through an area of 1 m2 in 1 sec
corresponds to the energy contained in a cylinder of base 1 m2 and height c× 1 sec. With this follows

I = wc =
p2

ρc
(7.9)

Finally the sound pressure pdiffuse in a di�use �eld can expressed in dependency of the source power
Wsource and the total absorption A as

p2diffuse =
4Wsourceρc

A
(7.10)

Relation 7.10 is valid only under the idealized assumption that the di�use �eld is constant throughout
the room. However there are empirical formulas to consider a distance dependency of the sound pressure
3:

p2diffuse =
4Wsourceρc

A
e−(

2∂r
c ) (7.11)

where
r: source - receiver distance
∂: decay constant = 3 ln(10)/T
T : reverberation time
c: speed of sound

Direct sound and di�use �eld contribution, critical distance

Up to now only the di�use �eld was considered. Of course a di�use �eld can't exist without a direct
sound �eld. Under the assumption of an omnidirectional source that excites the sound �elds, the
pressure square pdirect of the direct sound is given as:

p2direct =
Wsourceρc

4πr2
(7.12)

and hence the total sound pressure square p2 sums up to

p2 = p2direct + p2diffuse =Wsourceρc

(
1

4πr2
+

4

A

)
(7.13)

For small distances r, the �rst term in the brackets dominates. This indicates that the direct sound with
its 1/r2 distance dependency is larger than the di�use sound. For increasing distances the signi�cance
of the direct sound decreases and the location independent di�use sound �eld determines more and
more the total sound pressure (Figure 7.2). The distance where direct and di�use sound have equal
strengths is called critical distance and is usually labeled as rc.

with
1

4πr2c
=

4

A
follows rc =

√
A

16π
(7.14)
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Figure 7.2: Distance dependency of sound pressure in a room with direct sound and an ideal di�use
sound �eld. The arrow marks the critical distance where direct and di�use sound have equal strength.

If the source shows enhanced radiation in one direction, the critical distance in this direction increases
accordingly.

In reality the distance dependency of sound pressure in a room doesn't follow exactly the relation shown
in Fig. 7.2. A more subtle description is based on Eq. 7.11 and yields 4:

L(r) = 10 log

(
100

r2
+

31200Te−0.04r/T

V

)
[dB] (7.15)

where
L(r): sound pressure level at distance r relative to the value in 10 m
T : reverberation time [sec]
V : room volume [m3]

Figure 7.3 shows the corresponding distance dependency of sound pressure for a room with volume V
= 20'000 m3 and a reverberation time T = 2 sec.
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Figure 7.3: Sound pressure level as a function of distance in a room with V = 20'000 m3 and a
reverberation time T = 2 sec. Direct sound, di�use �eld theory and the formula of Barron are shown.

3M. Barron, L. J. Lee, Energy relations in concert auditoriums, Journal of the Acoustical Society of America, vol 84,
p.618-628 (1988).

4M. Barron, Loudness in Concert Halls, Acustica - acta acustica, vol.82, suppl. 1 (1996).
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Reverberation, reverberation time

Above, the sound power relations for the stationary condition have been discussed. In the following, the
situation of a sound source that is switched o� shall be investigated. Due to the energy that is stored
in the re�ections, the sound energy density in the room decreases only slowly, depending on the room
volume and the absorption of the room surfaces. This process is called reverberation and described
quantitatively by the so called reverberation time. For the power balance can be written

Wsource =Wabsor + V
dw

dt
(7.16)

where
Wsource: sound power emitted by the source
Wabsor: sound power that is absorbed by the room surfaces
V : room volume
w: energy density

From

Wabsor =
wc

4
A (7.17)

follows

Wsource =
wc

4
A+ V

dw

dt
(7.18)

Eq. 7.18 represents a di�erential equation for the energy density w. If the source is switched o�, the
reverberation process manifests. The solution of w(t) that ful�lls the equation

0 =
wc

4
A+ V

dw

dt
(7.19)

has the form

w(t) = w0e
bt (7.20)

where
b = − cA

4V

Eq. 7.20 describes the reverberation process as an exponentially decaying time history. This corresponds
to a straight line in the level-time representation as shown in 7.4.
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Figure 7.4: Example of sound pressure decay in a room after switching o� the source at time t = 0.

The reverberation time T is de�ned as the time that passes until the energy density has decreased to
1E-6 of its initial value. In the dB scale this corresponds to -60 dB. From
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e−
cA
4V T = 10−6 (7.21)

follows

T =
− ln(10−6)4V

cA
=

0.16V

A
(7.22)

The relation between T , the room volume V and total absorption A was found experimentally by W.
C. Sabine in 1900. To his honor, Eq. 7.22 is usually called Sabine equation.

An other derivation of the reverberation time was given by Eyring. His conception was that sound
propagates in form of energy packets along straight lines. Whenever such a packet hits a room surface,
a certain amount of energy is absorbed while the remaining energy is re�ected. Besides the average
absorption coe�cient α of the room surfaces, the mean free path length between two re�ections ℓ is
the second relevant parameter. For a rectangular room ℓ can be calculated from the volume V and the
room surface area S:

ℓ =
4V

S
(7.23)

The reverberation process can now be observed for one single energy packet. It is assumed that the
average absorption coe�cient over the whole room surface is α with (α = 1/S

∑
Siαi). At each

re�ection the energy is reduced by α×100 %. Thus after N re�ections the remaining energy E is

E(N) = E0(1− α)N (7.24)

The decay to 1E-6 of the initial energy is reached after M re�ections where

M =
−13.8

ln(1− α)
(7.25)

M re�ections correspond to a path length L =M · ℓ, or a time T

T =
Mℓ

c
=

−13.8× 4V

ln(1− α)cS
=

0.16V

− ln(1− α)S
(7.26)

For little absorption (α→ 0) the reverberation formula of Eyring (Eq. 7.26) approximates the formula
of Sabine (Eq. 7.22). For highly damped rooms (α→ 1) the formula of Eyring takes on the reasonable
value T = 0, while Sabines formula predicts a value T > 0. Eyring predicts in any case a lower
reverberation time than Sabine.

At high frequencies, air absorption may become a relevant factor that in�uences reverberation. This
can be considered by introducing an additional factor in the Eyring reverberation formula:

E(N) = E0(1− α)Ne−mNl
′

(7.27)

where
m : intensity damping constant for air according to Table 7.1

The above derivation (Eq. 7.26) for the reverberation time T is accordingly modi�ed with Eq. 7.27 as

T =
0.16V

− ln(1− α)S + 4mV
(7.28)

For outdoor sound propagation applications, comprehensive tables of air absorption coe�cients are
available (ISO 9613-1). The air absorption is speci�ed by a coe�cient α that describes the level
reduction in dB per meter. The damping constant m used here can be expressed in α as

m = ln(100.1·α) (7.29)
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relative humidity [%] 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz
30 0.00058 0.00115 0.00325 0.01125 0.03874
40 0.00060 0.00107 0.00258 0.00838 0.02992
50 0.00063 0.00107 0.00228 0.00683 0.02423
60 0.00064 0.00111 0.00214 0.00590 0.02047
70 0.00064 0.00115 0.00208 0.00531 0.01787
80 0.00064 0.00119 0.00207 0.00493 0.01599

Table 7.1: Intensity damping constant m of air as a function of frequency and relative humidity at a
temperature of 20◦.

Rooms with non-di�use behavior

Besides the above mentioned cases where a di�use �eld establishes and thus the energy density shows
an exponential decay, there are room situations with a deviating decay curve. This is the case for
rooms with very inhomogeneous distribution of the absorption or coupled rooms where two rooms with
di�erent damping are arranged that they can communicate with each other.

Table 7.2 shows the calculated reverberation times for a rectangular room with di�erent absorber
con�gurations and varying degree of di�usivity of the surfaces. In any case the total absorption was
kept constant. The calculations were performed with a ray tracing model (see next section).

surface di�usivity T
calculation according to Sabine 1.33 s
ray tracing, absorption concentrated on one surface of 20x15 m 30% 2.10 s
ray tracing, absorption distributed on the whole surface 30% 1.32 s
ray tracing, absorption concentrated on one surface of 20x15 m 90% 1.07 s

Table 7.2: Comparison of calculated reverberation times T in a rectangular room with dimensions 20
x 15 x 6.7 m = 2000 m3 and total absorption of 240 m2 for di�erent distributions of the absorbing
surfaces. The column surface di�usivity describes the assumed di�usivity of the re�ecting surfaces.

For equally distributed (homogeneous) absorption the ray tracing calculation is very close to the Sabine
result. However for concentrated absorption and low di�usivity the reverberation times can increase
considerably.

A typical example of coupled rooms is a hall with a foyer that gets sound energy from the hall by doors
or other small openings. Further examples are churches with adjacent chapels. If the source is located
in the room with less absorption, a decay curve as shown in Fig. 7.5 will occur.

Absorption of audience

In many rooms, especially in concert halls, the audience contributes signi�cantly or even dominates the
absorption. It is therefore of great importance to know the corresponding absorption characteristics
precisely. However the exact absorption coe�cient depends on di�erent factors such as density and
arrangement of the seating, the upholstering of the seats or the type of clothes people are wearing.
Typical α values are given in Table 7.3 5.

125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz
upholstered seat, row spacing 1.15 m 0.30 0.35 0.50 0.60 0.70 0.70

Table 7.3: Typical absorption coe�cients αs for audience areas.

5Fasold, Sonntag, Winkler, Bau- und Raumakustik, Rudolf M�'uller Verlag, 1987.
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Figure 7.5: Sound decay for two coupled rooms where the source is in the room with lower absorption
and the receiver in the room with higher absorption.

Statistical impulse responses

For general, non-speci�c room acoustical investigations statistical impulse response models may be
of interest. In the context of statistical room acoustics such a model has to de�ne the direct sound
and the di�use �eld contribution. Thus the necessary specifying parameters are source directivity,
distance between source and receiver, room volume and absorption. The direct sound is represented as
a Dirac pulse with appropriate amplitude and delay. The di�use �eld contribution is simulated by an
exponentially decaying noise signal. With this a statistical, time discrete impulse response h(i) can be
written as 6:

h(i) =

√
Γ

r
∆

(
i− trunc

(
fcr

c

))
+

√
4πc

V fc
e−

i∂
fc ξ(i)θ

(
i− trunc

(
fcr

c

))
(7.30)

where
i: sample number
Γ: directivity factor as ratio of the intensity in direction of the receiver and the intensity averaged over
all directions
r: source - receiver distance
∆(i): impulse function, = 1 for i = 1, elsewhere 0
trunc(): truncate-function, round o� to the next lower whole number
fc: clock frequency
c: speed of sound
V : room volume
∂: decay constant of the room, ∂ = 3 ln(10)/T (T : reverberation time)
ξ(i): sequence of samples of white noise, ξ(i) and ξ(i + 1) are independent samples of a normally
distributed random variable with mean = 0 and standard deviation = 1 7

θ(i): step function, = 1 for i ≥ 1, elsewhere 0

Figure 7.6 shows a statistical impulse response that was created with the above procedure.

7.2.2 Geometrical room acoustics

Geometrical acoustics assumes that sound propagates in form of rays along straight lines. This geo-
metrical approach is a high frequency approximation and ignores wave phenomena such as di�raction

6U. P. Svensson, Energy-time relations in a room with an electroacoustic system, Journal of the Acoustical Society of
America, vol. 104, p.1483-1490 (1998).

7Normally distributed random numbers can be generated from equally distributed random numbers as follows: get
two random numbers RA and RB that are equally distributed in the interval (0,1), then convert them to two normally
distributed random numbers SA and SB with standard deviation σ according to:

SA = σ
√

−2 ln(RA) cos(2πRB)

SB = σ
√

−2 ln(RA) sin(2πRB)
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Figure 7.6: Example of an arti�cially generated room impulse response with a decay constant ∂ = 6.9
(corresponding to a reverberation time T = 1 sec), a room volume V = 10'000 m3 and a source -
receiver distance r = 15 m.

or interference.

Re�ection at plane surfaces, specular sources

If a sound ray hits a surface, it looses a certain amount of its energy depending on the absorption
coe�cient of the corresponding surface. The remaining energy is re�ected according to the law of
re�ection (angle of incidence = angle of re�ection). A certain sound path can be determined by
construction of mirror sources (see Fig. 7.7).

receiver

source

Q'

Q''

Figure 7.7: Construction of the re�ection of sound rays by introduction of mirror sources.

Re�ection at structured surfaces, di�use re�ection and scattering

A re�ection at a surface with signi�cant depth structuring is no longer specular but rather di�use like.
The degree of di�usivity depends on the ratio of the structure dimension and the wave length. Di�use
re�ections usually occur at higher frequencies while low frequencies show specular behavior. More
speci�cally, three cases can be distinguished as shown in Fig. 7.8.
A di�use re�ection returns sound energy into a large solid angle. Often the idealized Lambert re�ection
characteristics is assumed 8. It states that the intensity of the re�ection in direction ϕ relative to the
surface normal is proportional to the cosine of ϕ.

Energy impulse response

Within the concept of geometrical room acoustics, sound propagation is modeled by aid of energy
packages that travel along straight lines (sound rays). After emission at the source the packages that

8Max Born, Emil Wolf, Principles of Optics, Pergamon Press, 1980.
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Figure 7.8: Re�ection at a structured surface. Top: For λ ≫ structure dimension s → the structure
has no e�ect → specular re�ection at an 'average' plane. Middle: For λ ≈ structure dimension s →
the structure acts as a whole → di�use re�ection. Bottom: λ ≪ structure dimension s → the single
structure elements act as re�ectors → specular re�ection at the structure details.

φIo

Figure 7.9: Ideal di�use re�ection according to Lambert. Independent of the sound incidence direction
the intensity of the re�ection in direction ϕ is proportional to cos(ϕ).

arrive at a receiver can be collected and registered with regard to the energy they represent and their
travel time. This collection corresponds to an energy impulse response (Fig. 7.10) for the chosen source
and receiver position.

Objective room acoustical criteria

For the considered source and receiver position the energy impulse response represents the �nger print
of the room. In the past, many di�erent features of such impulse responses have been proposed to
relate the subjective quality of a room to objective criteria. From the large catalogue, a small set of
these criteria has proven to be su�cient and relevant to describe the acoustical quality of rooms 9.
These criteria are usually evaluated for the octave bands from 125 Hz to 4 kHz. In the following, the
origin of the time axis t = 0 is understood as the moment of arrival of the direct sound.

� Reverberation time T [s]
The reverberation time is the most fundamental feature to describe the room acoustical properties.
It has global character, which means that the value is not changing a lot for di�erent positions.
The reverberation time is usually measured with backward integration of the squared impulse
response. The decay curve is then evaluated between -5 and -35 dB. This time is doubled to get
the reverberation decay of 60 dB.

9ISO Norm 3382 Measurement of the reverberation time of rooms with reference to other acoustical parameters. 1997.
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Figure 7.10: Example of an energy impulse response. The earliest contribution corresponds to the direct
sound. Then �rst and higher order re�ections follow with increasing density. Note the unusual strong
re�ection due to focusing e�ects of a concave room surface.

� Early Decay Time EDT [s]
The Early Decay Time EDT is de�ned similarly to the reverberation time, but is based on the
decay over the top 10 dB. This time is then multiplied by 6 to extrapolate for a decay over 60 dB.
From a subjective point of view the EDT is more relevant for a listener, as the dynamic range
for music performances is typically in the order of 10. . .20 dB. The EDT may depend strongly
on the listening position. The just audible di�erence of a variation of EDT is in the order of 5
% in an A/B comparison 10.

� Clarity C80 [dB]
Clarity measures the ratio of early arriving energy relative to the late energy in the impulse
response. C80 describes the transparency of music. With the energy impulse response h2(t),
clarity is calculated as follows:

C80 = 10 log


80ms∫
0

h2(t)dt

∞∫
80ms

h2(t)dt

 (7.31)

A typical value for C80 is 0 dB, an increase of the value means higher clarity. The just audible
di�erence is in the order of 0.5 dB in the direct A/B comparison.

� Strength G [dB]
The strength G is a measure that describes the level at the receiver position relative to the level
under free �eld conditions at a distance of 10 m. If the source receiver distance is 10 m, G
speci�es directly the ampli�cation by the room. The strength is found by integration over the
energy impulse response h2(t):

G = 10 log


∞∫
0

h2(t)dt

∞∫
0

h2f,10m(t)dt

 (7.32)

where
hf,10m: energy impulse response under free �eld conditions at 10 m distance.

The just audible di�erence is about 1 dB in a direct A/B comparison.

� Deutlichkeit D50 [%]
Similarly to clarity C80, Deutlichkeit D50 describes the clearness of a room acoustical situation.
D50 is de�ned as the energy ratio of useful early energy up to 50 ms after the direct sound relative
to the total energy in the impulse response. D50 is mainly used to investigate the clearness of
speech signals. With the energy impulse response h2(t) D50 is found as

10M. Vorl�'ander, International Round Robin Test on Room Acoustical Computer Simulation, ICA 1994 Bergen.
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D50 =

50ms∫
0

h2(t)dt

∞∫
0

h2(t)dt

× 100% (7.33)

A D50 value of 40 % corresponds to an intelligibility of syllables of about 87 %, a D50 of 60 %
means an intelligibility of syllables of about 93 %. The just audible di�erence is about 5 % in the
direct A/B comparison.

� Center time TS [ms]
The center time describes similarly to C80 and D50 the temporal distribution of incoming energy.
However TS avoids strict separations to distinguish between bene�cial and detrimental energy.
TS corresponds to the center of gravity of the energy impulse response h2(t):

TS =

∞∫
0

th2(t)dt

∞∫
0

h2(t)dt

(7.34)

The just audible di�erence is about 10 ms in the direct A/B comparison.

� Lateral energy fraction LF [%]
The lateral energy fraction measures the ratio of early lateral energy relative to early omnidirec-
tional energy. The LF describes spaciousness which is a result of inter-aural signal di�erences.
The evaluate LF the energy impulse response has to be determined once with an omnidirec-
tional microphone ( → h2(t)) and once with a �gure of eight microphone ( → h2∞(t)) where the
orientation has be chosen in such a way that the sensitivity in frontal direction is zero.

LF =

80ms∫
0

h2∞(t)dt

80ms∫
0

h2(t)dt

× 100 (7.35)

The just audible di�erence is about 5 % in the direct A/B comparison.

For reverberation times T there is consensus about optimal values as a function of room volume for
a wide variety of di�erent applications. Fig. 7.11 shows optimal values in the mid frequency range
for music and speech performance. In general one aims at reverberation times that are more or less
independent of frequency. In concert halls however a slight increase at lower frequencies is usually
perceived as bene�cial (�warmer sound�).
For the other objective criteria, only preliminary optimal values exist due to lack of su�cient experience.
For convert halls the values in Table 7.4 11 may be applied.

parameter EDT C80 (500. . .2 kHz) G (500. . .2 kHz) LF (125. . .1 kHz)
optimal range 1.8. . .2.2 s -2. . .+2 dB > 0 dB 0.1. . .0.35

Table 7.4: Values of further room acoustical criteria considered as optimal in concert halls.

7.2.3 Acoustical design criteria for rooms

The design of a room for good room acoustics has to consider di�erent aspects that vary in their
relevance depending on the function and the usage. The most important criteria are:

Silence Any audible noise that has nothing to do with the performance on stage has to be avoided.
Possible unwanted noise in auditoriums may stem from external tra�c or from adjacent rooms.
An other possible noise source is the air conditioning system of the auditorium.

11M. Barron, Auditorium Acoustics and Architectural Design. 1993
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Figure 7.11: Optimal values of the reverberation time at mid frequencies in dependency of the room
volume for speech and music performance.

Direct sound The whole audience area should receive su�cient direct sound from the source. Early
re�ections (within 50 ms) can support the direct sound supply.

Reverberation Depending on usage, room volume and room type, an appropriate reverberation time
has to be adjusted.

Lateral re�ections The feeling of spaciousness is triggered by uncorrelated signals at the two ears of
a listener. This makes strong lateral re�ections necessary.

Di�usivity With the exception of early lateral re�ections, the re�ections should typically be di�use and
not specular. This spreads re�ected sound energy over time and reduces the danger of focusing
e�ects.

Balance Di�erent sections of extended sources such as orchestras should be heard in the audience with
equal strength.

Audibility on stage To guarantee an optimal performance, the musicians in an orchestra should hear
each other reasonably well.

For certain room types or usages, speci�c recommendations exists regarding the acoustical design:

� rooms for speech communication up to a room volume of about 5'000 m3 such as conference
rooms, schools or restaurants 12.

� recording studios 13.

7.2.4 Room acoustical design tools

The optimal acoustical design of a room requires appropriate analysis tools. They help to proof the
e�cacy of planned measures. Depending on the questions asked, a variety of design tools are available.

Construction of sound rays

A preliminary estimate of the sound distribution in a room can be achieved by the construction of
sound rays by hand. Thereby one usually restricts to a horizontal or vertical section through the room.
Assuming an omnidirectional source some ten or twenty sound rays are drawn in all directions. At

12H�'orsamkeit in kleinen bis mittelgrossen R�'aumen, DIN 18041.
13DIN 15996, Elektronische Laufbild- und Tonbearbeitung in Film-, Video- und Rundfunkbetrieben (1996).
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the intersections with boundary surfaces the rays are re�ected. The resulting density of the rays at a
speci�c receiver locations determines the sound pressure level at that point. The manual construction
of sound rays is suitable for example to investigate fundamental ceiling shapes or the optimal orientation
of re�ectors. The e�ort to construct higher order re�ections grows quickly, one will then use ray tracing
computer models.

Calculation of reverberation times

As mentioned above, the reverberation time is the most fundamental room acoustical parameter. If
the materialization is known, the reverberation time of a room can be calculated by application of the
Sabine or Eyring formula. In concert halls, the audience is usually the dominating absorber. In these
cases it is therefore possible to estimate the reverberation time T with the area of the audience SP ,
the room volume V as:

T ≈ 0.15V

SP
(7.36)

Scale models

Sound propagation in rooms can be simulated with help of scale models 14,15,16,17. If all dimensions are
scaled by a factor 1/s and at the same time the frequency is scaled by s (preservation of the ratio of
wavelength and dimension) the sound propagation phenomena remain unaltered. A di�culty is to �nd
materials for the scale models that have similar absorption characteristics in the transformed frequency
domain as the original material in the original frequency domain. In addition, strategies are necessary
to overcome the strong air absorption in the scale model frequency range (up to 50 kHz). One solution
is to dry the air down to a relative humidity of a few percent- Under these conditions the air shows low
absorption up to high frequencies. An other approach is to compensate for the absorption by way of a
calculation. As travel times have to be known this can only be done on basis of the impulse response.
Typical values for the scale factor s are between 10 and 50.

Computer simulations

Nowadays it becomes more and more common to use computer software to simulate sound propagation
in rooms. The �rst attempt in this direction was most probably made by Schroeder 18, however the
�rst who actually wrote a computer program were Krokstad and his colleagues 19.

Room acoustical computer simulations can be divided roughly into two categories. The �rst category
comprises numerical methods that �nd solutions to the wave equation. The second category contains
methods that simulate sound propagation based on geometrical acoustics.

All numerical methods that solve the wave equation have in common that the room volume and/or
the room surface have to be discretized. The corresponding mesh has to be signi�cantly �ner than
the shortest wave length of interest. The computational e�ort becomes extremely high for large rooms
and high frequencies.

The methods based on geometrical acoustics assume sound propagation along straight lines. Wave
phenomena such as interference or resonance can not be considered. Computer models based on
geometrical acoustics can be split into two groups: ray tracing and mirror sources.

14F. Spand�'ock, Akustische Modellversuche, Annalen der Physik, vol. 20, 1934, p.345.
15A. F. B. Nickson, R. W. Muncey, Some experiments in a room and its acoustic model; Acustica, 1956, vol. 6,

p.295-302
16D. Brebeck, R. Buecklein, E. Krauth, F. Spand�'ock, Akustisch �'ahnliche Modelle als Hilfsmittel f�'ur die Raumakustik,

Acustica, 1967, v.18, p.213-226.
17J. D. Polack, A. H. Marshall, G. Dodd, Digital evaluation of the acoustics of small models: The MIDAS package,

Journal of the Acoustical Society of America, 1989, v.85, p.185-193.
18M. R. Schroeder, B. S. Atal, C. Bird, Digital Computers in room acoustics, Proc. 4th Intern. Congr. of Acoustics,

1962, Paper M21.
19A. Krokstad, S. Strom, S. Sorsdal, Calculating the acoustical room response by the use of a ray tracing technique,

Journal of Sound and Vibration, 1986, p.118-124.
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Ray tracing methods 20 simulate sound propagation by emitting many sound particles at the source
position (Fig. 7.12). The particles propagate along straight lines. If a particle hits a boundary surface,
the energy is reduced corresponding to the absorption coe�cient of the surface. The particle with
adjusted energy is then re�ected based on a certain re�ection characteristics that is described by a
di�usivity factor. If a particle is re�ected di�usely, the outgoing direction ϕ is determined randomly
where the probability of a certain angle ϕ is proportional to cosine of ϕ. At each receiver position a
sphere of small diameter is constructed. Each time a sound particle passes such a receiver volume, the
corresponding travel time and energy of the particle is noted in a table.

With the mirror source method, all possible sound paths between a source and a receiver are determined
by constructing all visible mirror sources up to a certain order 21. All room surfaces are assumed to
re�ect specularly. The attenuation of a certain sound path is given by the product of the absorption
coe�cients of all surfaces involved and a factor 1/d2 with d the travel distance.

The ray tracing or mirror source method deliver �nally an energy impulse response for the room and
the chosen source and receiver points. From this the above mentioned room acoustical criteria such
as EDT or C80 can be evaluated. Furthermore sound pressure impulse responses can be derived for
auralization purposes. For a recent overview of geometrical room acoustic modeling see the tutorial
paper by Savioja 22.

Figure 7.12: Example of the beginning of a ray tracing simulation.

Auralization

As seen above there are di�erent parameters to evaluate and describe the acoustical quality of
a room. These parameters can be calculated in advance during the planning phase of a project.
However the ultimate criterion is the listening experience in the room. The process of simulating the
audible impression of a room is called auralization. First attempts of auralization with help of scale
models go back to Spand�'ock 23,24. Thereby the signal of interest was up-shifted in frequency by
an appropriate scale factor and emitted in the scale model. At the listener position the signal was
recorded, down-shifted in frequency and played back through headphones.

With the introduction of room acoustical computer simulations, a new auralization approach was in-
troduced 25,26,27. With help of the computer simulation it is determined, when how much energy from

20M. Vorlaender, Ein Strahlverfolgungsverfahren zur Berechnung von Schallfeldern in Raeumen, Acustica, 1988, v.65,
p.138-148.

21J. B. Allen, D. A. Berkley, Image method for e�ciently small-room acoustics, Journal of the Acoustical Society of
America, 1979, v.65, p.943-950.

22L. Savioja, U. P. Svensson, Overview of geometrical room acoustic modeling techniques, J. Acoust. Soc. Am. 2015,
vol. 138, 708-730.

23F. Spand�'ock, Annahlen der Physik V, vol. 20, 1934, p.345
24F. Spand�'ock Das Raumakustische Modellverfahren mit massstabsgerechter Frequenztransponierung und die

M�'oglichkeiten seiner Verwirklichung. Third International Congress of Acoustics, 1959, pp. 925-928.
25Hilmar Lehnert, Jens Blauert, Principles of Binaural Room Simulation, Applied Acoustics, 1992, v.36, p.259-291.
26Mendel Kleiner, Bengt-Inge Dalenbaeck, Peter Svensson, Auralization - An Overview; Journal of the Audio Engineering

Society, 1993, v.41, p.861-875.
27L. Savioja, et. al. Creating Interactive Virtual Acoustic Environments, Journal of the Audio Engineering Society, vol.
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which direction hits the receiver. According to this distribution, the signal of interest is then delayed
accordingly and played back over a cloud of loudspeakers installed in an anechoic chamber 28 (Figure
7.13).

Figure 7.13: Schematic representation of a cloud of loudspeakers distributed around a listener position
to auralize the acoustics of an auditorium. The loudspeakers are fed with appropriate delayed and
weighted copies of the reverberation free source signal.

A serious drawback of the loudspeaker cloud is the space requirements and the need for an anechoic
room. Indeed all that has to be done with auralization is to produce appropriate signals at the two
eardrums of the listener. It should therefore be possible to realize an auralization playback system
with help of headphones 29. To do so, additional information about the head related transfer functions
(HRTF) is necessary. As discussed above, the room acoustical simulation delivers impulse responses
for di�erent categories of incidence angles. The room impulse responses between source and the
two eardrums are obtained by convolution with the corresponding HRTFs. Finally the headphone
auralization signals are generated as convolution of the dry source signal with the two room impulse
responses to the eardrums.

Compared to the loudspeaker cloud solution two problems are associated with the auralization by
headphones. The �rst di�culty is the fact that the head related transfer functions di�er from person
to person. For optimal results these HRTFs should be determined individually. The second problem is
that the headphone representation can not map head movements 30.

Most of today's software packages for room acoustical simulations allow for auralization by headphones.

7.2.5 Some room acoustical e�ects that are not considered with statistical
or geometrical acoustics

The modeling of sound propagation in rooms by means of statistical or geometrical acoustics ignores
the wave nature of sound and is therefore only a coarse approximation to reality. In the following a few
aspects are discussed that may have relevance in rooms but are usually not considered.

Sound propagation at grazing incidence over audience areas

If sound propagates at grazing incidence over audience areas, additional damping can be observed.
This is �rstly due to destructive interference between direct sound and sound that is re�ected and/or
scattered at heads and shoulders of the audience and secondly due to energy that is lost as a consequence

47, p.675-705 (1999)
28Y. Korenaga, Y. Ando, A Sound-Field Simulation System and Its Application to a Seat-Selection System, J. Audio

Eng. Soc., vol. 41, 1993, pp. 920-930.
29K. H. Kuttru�, Auralization of Impulse Responses Modeled on the Basis of Ray-Tracing Results, J. Audio Eng. Soc.,

vol. 41, 1993, pp. 876-880.
30A solution to overcome this di�culty is the implementation of head tracking systems that capture the orientation of

the head and adjust the headphone signals accordingly
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of di�raction. This additional damping is called seat dip e�ect in the literature 31,32,33,34. Figure 7.14
shows measurements of Mommertz 35 demonstrating the order of magnitude of the seat dip e�ect.

Figure 7.14: Frequency response of the additional damping for sound propagating at grazing incidence
over an audience area. The measurement position was in the 12th row at a height of 1.2 m. The height
of the source varied between 1.2 and 2.0 m.

Re�ection at �nite surfaces

The re�ection of sound waves at hard surfaces of in�nite extension can be handled with the mirror
source concept. This is a fundamental assumption behind geometrical room acoustical tools. However
this concept is no longer fully correct for small re�ectors, low frequencies and grazing sound incidence.
In these cases where the extension of the re�ector has to be taken into account, the concept of Fresnel
zones may help to identify the frequency dependent dimension that is necessary for a full re�ection.

For a given re�ector geometry (Fig. 7.15), the lower limiting frequency fu for full re�ection can be
estimated with Eq. 7.37 36

fu =
2c

(l cosβ)2
dQRdRE

(dQR + dRE)
(7.37)

where
c: speed of sound [m/s]
dQR: distance source → point of re�ection [m]
dRE : distance point of re�ection → receiver [m]
l: dimension of the re�ector [m]
β: angle of incidence relative to the re�ector normal direction

31E. Meyer, H. Kuttru�, F. Schulte. Versuche zur Schallausbreitung �'uber Publikum. Acustica, vol.15, 1965, p.175-182.
32S. Bradley. Some further investigations of the seat dip e�ect. J. Acoustical Society of America, vol. 90, 1991,

p.324-333.
33R. Hecht, E. Mommertz. Ein Schallteilchenverfahren zur Simulation der streifenden Schallausbreitung�'uber Publikum.

DAGA 94, 1994, p.229-232.
34D. Takahashi, Seat dip e�ect: the phenomena and the mechanism, J. Acoustical Society of America, vol. 102, 1997,

p.1326-1334.
35E. Mommertz. Einige Messungen zur streifenden Schallausbreitung �'uber Publikum und Gest�'uhl. Acustica, vol. 79,

1993, p.42-52.
36ISO 9613-2, Acoustics - Attenuation of sound during propagation outdoors - Part 2.
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Figure 7.15: Situation for the estimation of the lower limiting frequency for a full re�ection at a re�ector
of limited size.

7.2.6 Re�ections at spherical surfaces

Curved structures and concave room shapes need special attention 37,38. Convex curvatures are
unproblematic under normal conditions as they increase scattering of re�ected sound energy. Concave
curvatures on the other hand show often unwanted focusing e�ects with highly inhomogeneous sound
�eld distributions. Spectacular examples are whispering galleries that allow for communication between
distant points with unnatural low damping. There exist quite a few historical buildings that contain
sound focusing elements. From a today's perspective it is not clear whether these amplifying e�ects
have been implemented deliberately or whether they are a product of accident 39.

In many cases domed structures can be approximated by parts of a sphere. In two dimensions, this
leads to the discussion of re�ection of rays at a small arc of a circle (Fig. 7.16).

k2

k1

aAB

C

D

E

Figure 7.16: Situation of the re�ection of sound rays at a small arc of a circle. On the circle k1 with
center A the arc between the points C and D is considered. The source position is assumed on the
line a or on the circle k2 where the points B and A de�ne the diameter of k2.

Re�ection at circles: source position on axis a

If the source point location is on the axis a (see Fig. 7.16), emitted sound rays are re�ected as shown
in Fig. 7.17.

37M. Vercammen, Sound Re�ections from Concave Spherical Surfaces. Part I: Wave Field Approximation, Acta Acustica
united with Acustica, vol. 96, 82-91 (2010).

38M. Vercammen, Sound Re�ections from Concave Spherical Surfaces. Part II: Geometrical Acoustics and Engineering
Approach, Acta Acustica united with Acustica, vol. 96, 92-101 (2010).

39K. Heutschi, Akustik der Evangelischen Filialkirche in Guarda-Giarsun, Schweizer Ingenieur und Architekt SI+A Nr.
41 (2000).
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Figure 7.17: Re�ection of sound rays at a circle for di�erent source positions.

According to Figure 7.17 the re�ection at a circle can show hyperbolic, parabolic or elliptic behavior,
depending on the source position in relation to the center of the circle. For a mathematical discussion,
a unity circle is assumed with center at xZ = 1.0, yZ = 0.0. The circle is then described by Eq. 7.38
or 7.39.

(x− 1)2 + y2 = 1 (7.38)

or

y2 = 2x− x2 (7.39)

In the following it is assumed that the source position is on the x-axis and that sound rays are emitted
into a small angular segment in −x-direction. For the re�ection only a small region of the circumference
(x small) is of interest. Eq. 7.39 can then be approximated by

y2 ≈ 2x (7.40)

It can be shown that Eq. 7.40 approximates a small portion of an ellipse, a parabola or a hyperbola.
The behavior of the re�ection can easily be discussed if the source point is interpreted as the focal
point of the corresponding conic section.

Ellipse The equation for an ellipse as shown in Fig. 7.18 is given by:

(x− a)2

a2
+
y2

b2
= 1 (7.41)

where:
a: semi-major axis
b: semi-minor axis
d = a−

√
a2 − b2: x-coordinate of the �rst focal point
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Figure 7.18: Ellipse with extreme point at the origin and the two focal points F1 and F2.

Equation 7.41 can be rewritten as:

y2 = 2x
b2

a
− x2

b2

a2
(7.42)

If only small values for x are of interest (see above), the second term in Eq. 7.42 can be ignored so
that the equation simpli�es to:

y2 ≈ 2x
b2

a
(7.43)

If the parameters a and b are chosen in such a way that b2 = a, the simpli�ed equation for the ellipse
(7.43) corresponds to the simpli�ed equation for the circle (7.40).

The x-coordinate d of the �rst focal point becomes

d = a−
√
a2 − b2 = a−

√
a2 − a (7.44)

If - the other way round - the x-coordinate d of the �rst focal point is given, the semi-major axis a is
found as

a =
d2

2d− 1
(7.45)

Eq. 7.45 reveals for a only positive (valid) solutions, if d > 0.5. For a source position with x-coordinate
xQ > 0.5, the re�ection at the circular arc can thus be approximated as re�ection at an ellipse where
the source point corresponds to the �rst focal point and the second focal point is given as:

xF2 = 2
x2Q

2xQ − 1
− xQ =

xQ
2xQ − 1

(7.46)

where:
xF2: x-coordinate of the second focal point

The re�ection at the elliptically shaped boundary manifests in such a way that rays emitted at the �rst
focal point all meet in the second focal point.

Fd

Figure 7.19: Parabola with vertex at the origin and focal point F .

Parabola The equation that describes the parabola in Fig. 7.19 is given by:

y2 = 2px (7.47)
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where:
p: parameter
d = p

2 : x-coordinate of the focal point

The equation for the parabola (7.47) with p = 1 corresponds directly to the equation for the circle in
the approximation (7.40) for small x. Consequently for a source point with xQ = 0.5, the re�ection at
the arc of a circle can be approximated by the re�ection at a parabola with focal point at xQ = 0.5.
All rays emitted at the focal point of a parabola are re�ected back in parallel to the x axis.

F1
daMitte

Figure 7.20: Hyperbola with vertex at the origin and the �rst focal point F1.

Hyperbola The hyperbola in Fig. 7.20 is described by:

(x+ a)2

a2
− y2

b2
= 1 (7.48)

where:
a: x-axis parameter
b: y-axis parameter
d = −a+

√
a2 + b2: x-coordinate of the �rst focal point

The equation for the hyperbola 7.48 can be rewritten as:

y2 = 2x
b2

a
+ x2

b2

a2
(7.49)

Under the assumption of small x values, the second term in Eq. 7.49 can be ignored:

y2 ≈ 2x
b2

a
(7.50)

If the parameters a and b are chosen in such a way that b2 = a, the approximated equation of the
hyperbola (7.50) corresponds to the approximated equation of the circle (7.40). The x-coordinate d of
the �rst focal point becomes

d = −a+
√
a2 + b2 = −a+

√
a2 + a (7.51)

If - the other way round - the x-coordinate d of the �rst focal point is given, the axis parameter a is
found as

a =
d2

1− 2d
(7.52)

In Eq. 7.52 positive (valid) solutions for a result only if d < 0.5. For a source point with xQ < 0.5,
the re�ection at an arc of a circle can be approximated by the re�ection at a hyperbola with the �rst
focal point corresponding to the source position and the second focal point at:

xF2 = −2
x2Q

1− 2xQ
− xQ =

xQ
2xQ − 1

(7.53)

where:
xF2: x-coordinate of the second focal point

Sound rays that are emitted at the �rst focal point are re�ected in such a way that they seem to
originate from the second focal point. According to Eq. 7.53 the x-coordinate of the second focal
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point is always smaller than −xQ which implies that the divergence of the re�ection is weaker than a
re�ection at a plane surface.

It should be noted that the equations for the second focal point are identical for the ellipse and the
hyperbola. Indeed the equation holds even for the parabola in the limiting condition of xF2 → ∞.

Table 7.5 summarizes the the above �ndings for the geometrical re�ection at a circular arc.

hyperbolic parabolic elliptical

x

y

r = 1

x

y

r = 1

x

y

r = 1

source position: xQ < 0.5 xQ = 0.5 xQ > 0.5
re�ection: divergent parallel focusing
second focal point: xF2 =

xQ

2xQ−1 ∞ xF2 =
xQ

2xQ−1

Table 7.5: Re�ection at a circular arc (bold) with radius r = 1 for di�erent source positions.

Re�ection at circles: source on the circle k2

If the source is located on the circle k2 (see Fig. 7.16) the re�ecting arc of the large circle corresponds
approximately to a segment of a vertically orientated ellipse with the �rst focal point at the source
position. Thus the re�ected rays all meet at the second focal point. The second focal lies symmetrically
to the �rst focal point relative to the line a (see Fig. 7.21).

k2

a

Figure 7.21: A source point on circle k2 produces re�ections that focus in a point symmetrical to the
source position relative to a.

The analytical investigation follows the considerations from above. Again the re�ecting circular arc can
be approximated for small x values by

y2 ≈ 2x (7.54)

A vertically orientated ellipse through the origin can be described by Eq. 7.55.

(x− b)2

b2
+
y2

a2
= 1 (7.55)
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where:
a: major half axis
b: minor half axis
x = b, y = +

√
a2 − b2: coordinate of the �rst focal point

x = b, y = −
√
a2 − b2: coordinate of the second focal point

For small values of x, Eq. 7.55 can be approximated by Eq. 7.56.

y2 ≈ 2x
a2

b
(7.56)

With the condition a2 = b, Eq. 7.56 corresponds to the equation of the circle (7.54). This implies that
the arc of the circle looks like a segment of an ellipse. The focal points of this ellipse are given by

y2 = x− x2 (7.57)

Eq. 7.57 describes a circle with center at xZ = 0.5, yZ = 0 and radius = 0.5 (7.58).

(x− 0.5)
2
+ y2 = 0.25 ⇔ y2 = x− x2 (7.58)

7.3 Room acoustics of small rooms, wave theoretical acous-

tics

The sound �eld in small rooms at low frequencies is dominated by discrete resonances (Eigenfrequencies)
with low spectral density. In these situations the methods of statistical and geometrical acoustics are
not applicable. The wave nature of sound has to be considered explicitly with help of wave theoretical
room acoustics.

7.3.1 Wave equation and boundary conditions

The possible sound �elds in a room are given by functions of sound pressure that ful�ll the wave equation
as well as the boundary conditions. If one restricts to sinusoidal time dependencies, the wave equation
can be replaced by the Helmholtz equation (1.51) with the complex, location dependent amplitude
function p̌:

△p̌+ k2p̌ = 0 (7.59)

where
k = ω

c (wave number)

The boundary conditions are de�ned by the room limiting surfaces. It is assumed that the surfaces are
locally reacting which means that they can be speci�ed by an impedance Z given as the ratio of sound
pressure and normal component of the sound particle velocity on the surface.

With Eq. 1.12 it can be written for a point on the surface:

∂p

∂n
= −ρ∂vn

∂t
(7.60)

Inserting the impedance Z of the surface, the sound particle velocity in Eq. 7.60 can be eliminated:

1

ρ

∂p

∂n
= − 1

Z

∂p

∂t
(7.61)

Introducing complex writing for the sinusoidal sound pressure p = p̌ejωt yields

∂p

∂t
= p̌jωejωt (7.62)

Insertion of (7.62) in (7.61) gives

1

ρ

∂p̌

∂n
= − 1

Z
p̌jω (7.63)
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or

Z
∂p̌

∂n
+ jωρp̌ = 0 (7.64)

7.3.2 Solution for rectangular rooms with acoustically hard surfaces

Solutions of the wave equations that ful�ll the boundary conditions can be found analytically for a
few special geometries only. One important example is the rectangular room. Rooms with such a
fundamental shape are often encountered in real life.

In the following, a rectangular room with dimensions Lx, Ly, Lz according to Fig. 7.22 is considered.

L

L

L

z

x

y

x

y

z

Figure 7.22: Coordinate system to be used for the discussion of the sound �eld in a rectangular room
with dimensions Lx, Ly, Lz.

As a simpli�cation it is assumed that all surfaces are acoustically hard (Z → ∞). With Eq. 7.64 the
boundary conditions read as:

∂p̌

∂x
= 0 for x = 0, x = Lx

∂p̌

∂y
= 0 for y = 0, y = Ly

∂p̌

∂z
= 0 for z = 0, z = Lz (7.65)

All possible sound �elds in the rectangular room are given by sound pressure functions p̌(x, y, z) that
ful�ll the Helmholtz equation (7.59) and the boundary conditions (7.65). In cartesian coordinates the
Helmholtz equation reads as

∂2p̌

∂x2
+
∂2p̌

∂y2
+
∂2p̌

∂z2
+ k2p̌ = 0 (7.66)

As a guess for the solution, the following approach will be tested:

p̌(x, y, z) = C cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
(7.67)

where
nx, ny, nz: arbitrary whole number ≥ 0
C: arbitrary constant

The approach (7.67) describes a �eld of standing waves with maxima and minima, depending on
location. As a proof, the approach is inserted into the Helmholtz equation and in the boundary
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condition equations.

Veri�cation of the boundary conditions

For that purpose the Eq. (7.67) is di�erentiated regarding the coordinates x, y and z. For the x-
coordinate this yields:

∂p̌

∂x
= −Cnxπ

Lx
sin

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
(7.68)

→ ∂p̌

∂x
= 0 for nx integer

Veri�cation of the Helmholtz equation

Eq. (7.67) is di�erentiated two times regarding the coordinates x, y and z:

∂2p̌

∂x2
= −Cn

2
xπ

2

L2
x

cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
(7.69)

∂2p̌

∂y2
= −C

n2yπ
2

L2
y

cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
∂2p̌

∂z2
= −Cn

2
zπ

2

L2
z

cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
Inserted in (7.66) yields:

C

[
−n

2
xπ

2

L2
x

−
n2yπ

2

L2
y

− n2zπ
2

L2
z

]
cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
+ (7.70)

k2C cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
= 0

The above equation is satis�ed if

k2 =
n2xπ

2

L2
x

+
n2yπ

2

L2
y

+
n2zπ

2

L2
z

(7.71)

In the rectangular room with acoustically hare surfaces the Helmholtz equation is only ful�lled for
discrete values of the wave number k (so called Eigenvalues). Each positive, whole numbered triple
nx, ny, nz determines with Eq. 7.71 an Eigenvalue. The corresponding function p̌(x, y, z) is called
mode.

With

k =
2π

λ
= 2π

f

c
(7.72)

relation (7.71) can be expressed in frequency f :

f =
c

2

√
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

(7.73)

Figure 7.23 shows some examples of sound pressure distributions (modes) in a rectangular room.
All modes have a sound pressure maximum in the corners of the room. Modes with one ni = 0 have a
maximum at the edges while modes with two ni = 0 show a maximum on the corresponding planes.
This is of relevance for the placement of low frequency absorbers that react on sound pressure (plate
or membrane absorbers).

Table 7.6 shows exemplarily the lowest ten Eigenfrequencies for a small rectangular room with dimen-
sions 4.7×4.1×3.1 m.
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Figure 7.23: Sound pressure amplitude distribution in a rectangular room for a few modes. The
amplitude is colour coded where red stands for maximum and blue for minimum amplitudes. From left
to right and top to bottom: mode (2,0,0), mode (1,1,0), mode (2,1,0), mode (3,2,0).

Eigenfrequency [Hz] nx ny nz
36.2 1 0 0
41.5 0 1 0
54.8 0 0 1
55.0 1 1 0
65.7 1 0 1
68.6 0 1 1
72.3 2 0 0
77.7 1 1 1
82.9 0 2 0
83.4 2 1 0

Table 7.6: The ten lowest Eigenfrequencies and the corresponding modes for a rectangular room with
dimensions 4.7×4.1×3.1 m.

The frequency di�erences between the adjacent Eigenfrequencies are quite large at the low frequency
end. For increasing frequency these di�erences become smaller. In [40] the number Nf of Eigenfre-
quencies between 0 and the frequency f [Hz] in a rectangular room of volume V [m3] is estimated
as

Nf ≈ 4π

3
V

(
f

c

)3

(7.74)

The density dNf/df (number of Eigenfrequencies per Hz) at frequency f is then

dNf
df

≈ 4πV

(
f2

c3

)
(7.75)

If the resonances overlap, the room modes are no longer isolated and lose their relevance. For practical
applications, a resonance width of about 1 Hz can be assumed. Evaluation of Eq. 7.75 yields a
corresponding frequency fS for a density of 1 mode per Hz:

fS ≈ 1800√
V

(7.76)

40Philip M. Morse, Vibration and Sound (1936).
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fS can be interpreted as lower limiting frequency, above which the investigation of the sound �eld with
statistical or geometrical acoustics is valid.

7.3.3 Source - receiver transfer function

The above discussed modes in a rectangular room represent the sound �elds that are allowed by the
room. In a concrete situation the question arises whether a certain mode can be excited. This leads
to the source - receiver transfer function. The mathematical treatment makes the introduction of a
source term in the wave equation necessary 41. Here only the solution is given. The sound pressure
amplitude p̌(E,ω) at a receiver point E, speci�ed by the coordinates ex, ey, ez, with volume excitation
at a source point Q given by (qx, qy, qz) and angular frequency ω is

p̌(E,ω) ∼ ω
∑
n

p̌n(E)p̌n(Q)

(ω2 − ω2
n)Kn

(7.77)

where∑
n: sum over all modes

p̌n(E): complex sound pressure amplitude for the mode n at point E
p̌n(Q): complex sound pressure amplitude for the mode n at point Q
ωn: Eigenfrequency for the mode n
Kn: constant

From Eq. 7.77 follows that a certain mode n produces relevant sound pressure at the receiver E only
if both Q and E are in the vicinity of a pressure maximum. As already mentioned, all modes have a
pressure maximum in the corners of a rectangular room. Thus if a loudspeaker is expected to excite
all possible modes, it should be placed in a corner.

Up to now perfectly hard surfaces were assumed. In reality all rooms show at least little absorption.
The consequences compared to the above derived results are

� at the resonance frequencies only quasi standing waves establish with �nite maxima and not
vanishing minima

� the quality of the resonances in the transfer function is �nite (lowering and widening of the peaks).

The bandwidth of a resonance in the transfer function is a measure for the damping of the corresponding
mode. In a well damped room this bandwidth is typically in the order of 5 Hz. The dying away of a
mode can be characterized by a sort of reverberation time which can be estimated according to 7.78 42

RT =
2.2

B
(7.78)

where
RT : reverberation time in seconds
B: bandwidth (at the -3 dB points)

7.3.4 Acoustical design of small rooms

Introduction

In small undamped rooms the following acoustical di�culties are typical:

� At low frequencies the transfer function is very uneven due to the low density of resonances.
Figure 7.24 shows an example.

� At mid and high frequencies strong re�ections lead to comb �lter distortions and errors in the
stereo image. These e�ects are irrelevant if there is no other contribution stronger than -15 dB
relative to the direct sound within 20 ms after the direct sound 43.

41H. Kuttru�, Room Acoustics, Elsevier, 1991.
42F. Alton Everest, Master Handbook of Acoustics, McGraw Hill, 2001
43James A. S. Angus, Controlling Early Re�ections Using Di�usion, AES Convention 102nd (1997).
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� At all frequencies the reverberation is too large which leads to low transparency of the acoustical
image.
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Figure 7.24: Example of a transfer function between a loudspeaker and a microphone in an undamped
studio room.

The acoustical design of a small room has to ensure tat the above mentioned problems are avoided.
There are two fundamental strategies:

� installation of absorbers

� installation of di�users

Absorbers

Low frequency absorbers for the low frequency range are typically realized as plate or membrane ab-
sorbers. To obtain a broad frequency band of absorption, di�erent modules are necessary with adjusted
resonance frequency. In the mid and high frequency range porous absorbers can be used.

Di�users

The use of di�users aims at replacing re�ections by scattering 44. In the best case the scattered sound
energy is equally distributed in all directions. In small rooms, scattering may help to avoid room
resonances. In order to create di�use re�ections a surface has to introduce locally inhomogeneous
re�ection conditions. This inhomogeneity can be realized by phase or amplitude variation. An
important category of di�users are Schroeder di�users that are based on thorough mathematical
investigations 45,46. Schroeder di�users are built from a series of narrow channels of varying depth
(Fig. 7.25). An incident sound wave that hits the di�user runs down in each channel, is re�ected and
re-emitted at the channel entrance. The varying channel depth introduces a random phase shift that
yields a more or less uniform radiation.

A serious drawback of this con�guration is the relative high absorption associated with the re�ection.
This is due to partial sound pressure compensation of adjacent channels during radiation. The channel
concept can be extended to fractal structures where the primary channel with and depth is designed
for low frequencies and the high frequency scattering is realized by a smaller structure at the bottom
of each channel (Fig. 7.26).

A di�culty arises if identical panels are put in line. Due to the introduced periodicity certain frequencies
will be re�ected predominantly in certain directions. This unwanted artefact can be overcome with the

44T. J. Cox, P. D'Antonio, Acoustic Absorbers and Di�users, Taylor and Francis, 2009.
45M. R. Schroeder, Di�use Sound Re�ection by Maximum Length Sequences, Journal of the Acoustical Society of

America, vol. 57, p. 149-150 (1975).
46M. R. Schroeder, Binaural Dissimilarity and Optimum Ceilings for Concert Halls: More Lateral Sound Di�usion,

Journal of the Acoustical Society of America, vol. 65, p.958-963 (1979).
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usage of di�erent panel types. An excellent overview of di�users can be found in 47.

Figure 7.25: Section through a Schroeder di�user with channels of varying depth according to a distinct
number sequence.

Figure 7.26: Example of a fractal Schroeder di�user.

Depending on the structure depth, the frequency range of a di�user is limited to low frequencies.
However recent developments show that it is possible to further lower this limit with help of active
strategies 48.

The determination of the di�usivity of a structure by measurements can be performed according to
the ISO standard 17497-1 49. The method yields a frequency independent single �gure in form of a
so called scattering coe�cient. The measurement is based on several impulse response measurements
in the reverberation chamber while the structure is rotating. By phase sensitive averaging of the re-
sponses, the specular re�ection (coherent contribution) separates from the di�use re�ection (incoherent
contribution).

Design of listening rooms

The design of listening rooms can be based on the standard DIN 15996 50. The standard speci�es
the maximum allowable noise level, the reverberation time and the sound insulation between di�er-
ent facilities. Listening rooms should be larger than 40 m3 and symmetrical relative to the listening axes.

The maximum allowable noise levels are given by limiting curves in form of third octave band spectra.
The noise may not be higher than the limiting values in none of the third octave bands. An advanced
listening room should comply with the limit GK10 (Fig. 7.27).

The sound insulation between two di�erent listening rooms should be so high that the mutual distur-
bance lies below the GK10 curve. For this evaluation a listening spectrum according to Fig. 7.28 is
assumed.

Depending on the room volume, the reverberation time in the 500 Hz third octave band should lie
between 0.3 (50 m3) and 0.5 (1000 m3) seconds. The reverberation time should be constant over
frequency (± 10% in the range from 125 to 2000 Hz).

47Peter D'Antonio, Trevor Cox, Two Decades of Sound Di�usor Design and Development, Part 1: Applications and
Design, Journal of the Audio Engineering Society, vol. 46, no. 11, p.955-976 (1998).

48Trevor Cox, et al., Maximum length sequences and Bessel di�users using active technologies, Journal of Sound and
Vibration, vol. 289, p.807-829 (2006).

49ISO 17497-1, Acoustics - Sound-scattering properties of surfaces - Measurement of the random-incidence scattering
coe�cient in a reverberation room (2004).

50DIN 15996, Elektronische Laufbild- und Tonbearbeitung in Film-, Video- und Rundfunkbetrieben (1996).
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Figure 7.27: Limiting curve GK10 to specify the maximum allowable noise level in third octave bands.
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Figure 7.28: Assumed sound pressure spectrum in a typical listening situation.

7.4 Room acoustical measurements

The traditional measurement quantity in room acoustics is reverberation time. There are di�erent ways
to measure the reverberation time as e.g. with noise that is switched-o� or by reverse integration of the
squared impulse response. The reverberation time represents a global attribute, in the frame of di�use
�eld theory the reverberation time does not depend on source and receiver positions. However in
practical measurements there occur di�erences for varying positions. Therefore the reverberation time
of a room has to be determined as the average over typically two source and �ve receiver positions.
Along with the measurements, the air temperature and humidity have to be logged to estimate and
normalize the e�ect of air absorption. Further information regarding room acoustical measurements
can be found in the standard ISO-3382.

In recent years room impulse response measurements become more and more popular. For given
source and receiver positions the impulse response contains the complete information of the
room (Fig. 7.29). The main advantage of room impulse responses lies in the possibility to investi-
gate the strength of single re�ections and to evaluate further objective criteria such as clarity, EDT, etc.

The impulse response and the derived objective criteria are very sensitive to the source directivity. To
get results of general validity an omnidirectional source is used. Possible sources to excite a room are
pistol shots or balloon bursts 51 or loudspeakers. However the practical realization of a wide-band,
omnidirectional loudspeaker is di�cult. One strategy is to place several speaker chassis on a sphere-like
surface such as a dodecahedron (Fig. 7.30).
If an impulse response measurement is performed with a line array of microphones, additional information

51J. P�'atynen et al., Investigations on the balloon as an impulse source, J. Acoust. Soc. Am., EL27-EL33, vol. 129
(2011).
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Figure 7.29: Example of a measured impulse response in a multi-purpose hall. The �rst peak corresponds
to the direct sound, followed by weak re�ections at the ground and at nearby objects. Later, more
pronounced re�ections from the walls and the ceiling arrive and �nally the reverberation tail can be
observed. From the section before the arrival of the direct sound the unwanted noise and thus the
quality of the measurement can be estimated.

about the sound incidence direction can be obtained 52. This allows for a more reliable identi�cation
of single re�ections.

52A. J. Berkhout, D. de Vries, J. J. Sonke, Array technology for acoustic wave �eld analysis in enclosures, J. of the
Acoustical Society of America, vol. 102, no. 5 (1997), p.2757-2770.
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Figure 7.30: Dodecahedron loudspeaker with 12 chassis for omnidirectional sound radiation.
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Chapter 8

Building acoustics

8.1 Introduction

Building acoustics deals with noise control in buildings. The fundamental aim is the avoidance or
su�cient reduction of noise from neighbors. Usually there is no connection by air between two adjacent
rooms. However air borne or structure borne sound in one room �nds its way to the other room by
vibration of the structure. Finally this vibration is emitted in form of air borne sound in the receiver
room. The capability of a wall to suppress this transmission is called sound insulation. Two forms
of excitation are possible. The �rst type of excitation is air borne sound such as a talking person or
a loudspeaker. The sound insulation in this context is called airborne sound insulation. The second
type is structure borne sound which means the structure is excited directly by a mechanical force. The
most important source of this type is impact sound that occurs while walking. In this case the sound
insulation is called impact sound insulation.

8.2 Airborne sound insulation

8.2.1 Sound insulation index R

The airborne sound insulation of a structure that separates two rooms (Figure 8.1) is described by the
transmission loss or airborne sound insulation index R according to Eq. 8.1.

sender room receiver room

structure under investigation

Figure 8.1: Con�guration of a sender and a receiving room with the separating structure to be investi-
gated.

R = 10 log

(
P1

P2

)
[dB] (8.1)

where
P1: incident sound power on the sender side
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P2: sound power that is radiated on the rear side of the structure

The sound insulation index R is independent of the area of the structure.

The measurement of R is based on a sound pressure level di�erence L1 − L2 in third octaves between
the sender and receiving room. However two corrections have to be applied:

� The level L1 describes the sound pressure square in the sender room. Under the assumption
that the sound �eld can be thought of as composed of plane waves arriving from all directions,
the incident sound power P1 can be determined by integration over a half sphere and taking the
cosine of the incident angle into account. With S as area of the structure the sound power results
as P1 = Sp21/4ρc.

� The sound pressure square p22 in the receiving room is inverse proportional to the total absorption
A2 in the receiving room. Consequently the power P2 is given as P2 = A2p

2
2/4ρc. A2 is

determined with the reverberation time T2 and the room volume V2 as A2 = 0.16V2/T2.

Finally for the sound insulation index can be written

R = L1 − L2 + 10 log

(
S

A2

)
[dB] (8.2)

Details about the measurement of sound insulation of building elements can be found in the series of
standards ISO 140-3. For easier handling the third octave spectrum of R is converted to a single �gure
Rw (rated sound insulation index) by application of a reference spectrum.

8.2.2 Sound insulation of single walls

Sound insulation of homogeneous and dense plates depends on frequency and the plate parameters:

� thickness

� density

� modulus of elasticity

The frequency dependency of R follows essentially the curve shown in Figure 8.2. Hereby three regions
A, B and C can be distinguished.

fg d

f d

R

A B

C

Figure 8.2: General frequency dependency of the sound insulation index R for a single wall. The
abscissa shows the product frequency × thickness of the element (= fd). Region A: mass law, region
B: coincidence, region C: above coincidence.

Region A:

For low frequencies the sound insulation follows the mass law that can be written for random incident
sound waves as 1

R = 20 log

(
πfm′′

ρc

)
− 5 [dB] (8.3)

1Fasold, Sonntag, Winkler, Bau- und Raumakustik, Verlag R. M�'uller (1987).
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where
f : frequency
m′′: area speci�c mass

For a given structure the sound insulation increases by 6 dB for a doubling of frequency. In the same
manner for a given frequency the sound insulation increases by 6 dB for a doubling of the mass.

Region B:

The excitation of the wall by a sound leads to the formation of bending waves. These waves
propagate along the surface with a velocity that depends on the modulus of elasticity and the
thickness and density of the structure. If the wave length of the airborne sound excitation on the wall
(projection of the wave) coincides with the wave length of the bending wave, the sound insulation
collapses. This condition is called coincidence. Exact coincidence occurs for a certain frequency
and a certain sound incidence direction. Due to the random distribution of the angle of incidences
the coincidence collapse is not that strong in the di�use �eld and smeared over a wider frequency region.

Region C:

For frequencies above the coincidence the sound insulation increases again with frequency. The steepness
is around 25 dB/decacde.

8.2.3 Sound insulation of double walls

An improvement of the sound insulation can be achieved by adding a second wall. The space between
the walls is usually air. The two walls together with the air space in between form a resonance system
with two masses coupled by a spring. At the resonance frequency the sound insulation breaks down and
is lower than in the case of a corresponding single wall. Above resonance the sound insulation increases
strongly with frequency up to the point where again coincidence kicks in.

8.2.4 Standard sound pressure level di�erence

In a given situation the disturbance of neighbors does not depend primarily on the sound insulation
index of the structural elements, but rather on the sound pressure level di�erence DnT between the
rooms. This level di�erence is given by the sound insulation index R and the shared area F . As the
sound pressure level in the receiving room is in�uenced by the total absorption A, an agreement has
to be achieved to get representative results. This is done by normalizing the results to a reverberation
time in the receiver room of 0.5 s. For a receiver room volume V , the standard sound pressure level
di�erence can be written as

DnT = R+ 10 log

(
V

F

)
− 4.9 (8.4)

If the rated sound insulation index Rw is inserted in Eq. 8.4, the corresponding value is called rated
standard sound pressure level di�erence with the symbol DnT,w.

8.3 Impact sound insulation

The measurement of the impact sound insulation is usually based on excitation by a standardized tapping
machine. The machine uses hammers of de�ned mass and form that fall on the �oor from de�ned height.
In the receiving room the resulting sound pressure level is measured at di�erent positions. From the
average sound pressure level Li the standard impact sound level Ln is determined by normalization for
a total absorption of 10 m2. With the receiving room volume V this can be expressed with help of the
reverberation time T in the receiving room as

Ln = Li − 10 log

(
10T

0.163V

)
(8.5)

The spectral values Ln can be translated into a single value Ln,w by comparison with a reference curve.

141



8.4 SIA 181

The Swiss standard SIA 181 represents the state of the art in building technology regarding building
acoustical requirements. The standard de�nes the necessary noise protection on two levels. The
minimal requirements have to be ful�lled in any case. Apart from the minimal requirements elevated
requirements are speci�ed that can be agreed by contract. In some cases such as single family houses
that are built together, the elevated requirements are compulsory.

The SIA 181 de�nes minimal values of sound pressure level di�erences of the building structure for
exterior airborne sound and interior airborne sound. In addition, limiting values are given for impact
sound. The limiting values di�erentiate regarding the intensity of the source and the degree of sensitivity
of the inhabitants for a certain usage of the room.

8.5 Construction hints for good building acoustical conditions

Arrangement of rooms Often building acoustical problems can be avoided by suitable arrangement
of rooms. It should be avoided that rooms with di�erent usage (e.g. a bed room and a kitchen)
are located next to each other (horizontally and vertically).

Doors and windows Doors and windows have typically a maximum sound insulation of 35 to 40 dB.
Higher values can only be obtained with special constructions. Compared to doors and windows
the sound transmission through the surrounding walls can usually be neglected.

Leakage The sound insulation between adjacent rooms is drastically reduced if there is leakage in form
of cracks. Similarly lead-throughs for cables or ventilation ducts are critical.

Floating �oors Usually walls are put directly on the concrete �oors. To avoid signi�cant structure
borne sound transmission through the �oor, �oating �oors can be installed. Hereby a layer of low
sti�ness is put in between the concrete �oor and the top cover. It is absolutely crucial that any
connection between the �oating �oor and other parts of the building construction is avoided.
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Chapter 9

Noise abatement

9.1 Introduction - de�nition of noise

Noise is sound but sound is not necessarily noise. The assessment of an acoustical situation regarding
possible annoyance for a human being depends strongly on the individual. Noise is very subjective and
as such can't be measured. Each person has his own noise scale. Furthermore annoyance depends on
the momentary condition of the individual (psychological situation, weariness, etc.). A short de�nition
of noise is:

Noise is unwanted sound

Noise has to be assessed, there is no objective scale. For well de�ned noise sources such as road tra�c
or railways a relation between an objective acoustical measure (exposure) and the annoyance can be
established. However such a relation is only valid for an average person, the individual reporting can
deviate signi�cantly. The outcome of studies about annoyance follows typically a curve as shown in
Fig. 9.1. The sigmoid curve expresses the fact that even for very low exposure always a certain portion
of people reports high annoyance. At the other end, there are very insensitive people that are not
signi�cantly annoyed even at very high exposure.
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Figure 9.1: Typical relation between noise exposure and annoyance, shown as percentage of people that
are highly annoyed.

In the meantime it is widely accepted that excess noise may cause health problems. The corresponding
relations are di�cult to establish due to the complexity and number of factors that play a role. However
it can be assumed that risk of health impairment due to noise increases for average sound pressure levels
higher than 65 to 70 dB(A) during the day. At night the sound pressure level at the ear of the sleeping
person should not exceed 30 dB(A) in order not to a�ect sleep quality.
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9.2 E�ects of noise

The e�ects of noise can be categorized as follows:

physiological e�ects such as headache, cardio-vascular diseases, increased blood pressure, extensive
pouring out of stress hormones, sleep disturbances and hearing defects in extreme cases

psychological e�ects such as stress and nervousness, reduction of productivity

social e�ects such as obstruction of communication, social segregation (those who can a�ord live in
quieter areas)

In addition to the above mentioned e�ects noise has economical consequences as well. The noise burden
is a factor that has signi�cant in�uence on the prices of real estates. In many situations measures have
to be taken against noise (such as e.g. noise barriers). In case of public noise sources (roads, railway
lines, etc.) the costs are payed by the public. Finally noise induced health problems cause health costs
and loss of productivity.

9.3 General remarks for the assessment of noise

The assessment of noise is usually based on the exposure principle. Besides the intensity of the
noise events the number of events in a certain time interval is taken into account. This leads to
the consideration of average values such as the Leq (energy equivalent sound pressure level). The
averaging period is often a year.

The sensitivity to noise is highest during nighttime, somewhat lower at the evening period and lowest
during the day. Switzerland has chosen the approach to de�ne separate limiting values for day and
night. In Europe and the U.S. the so called day-evening-night level Lden is used. The Lden maps the
noise exposure to a single number whereby the level for the night period is increased by 10 dB and the
evening level is increased by 5 dB. These �malus� values re�ect the increased sensitivity during night
and evening periods.

Lden = 10 log

(
1

24

[
12 · 100.1(Ld) + 4 · 100.1(Le+5) + 8 · 100.1(Ln+10)

])
(9.1)

where
Ld: average sound pressure level Leq during daytime (12 hours)
Le: average sound pressure level Leq during the evening period (4 hours)
Ln: average sound pressure level Leq at night (8 hours)

In some cases the day-night level Ldn is used. It is de�ned analogously to the Lden, however without
consideration of the evening period.

Ldn = 10 log

(
1

24

[
15 · 100.1(Ld) + 9 · 100.1(Ln+10)

])
(9.2)

where
Ld: average sound pressure level Leq during daytime (7:00 till 22:00)
Ln: average sound pressure level Leq during nighttime (22:00 till 7:00)

The assessment of a noise situation is �nally based on a comparison of the exposure at a receiver location
with a limiting value. This yields a simple �yes/no� decision. In addition there exist more sophisticated
assessment schemes that evaluate a continuous relationship between exposure and annoyance - an
example is the Z�'urcher Flugl�'armindex, ZFI.

9.4 In�uence of the source type

At equal exposure people report di�erent annoyance for di�erent noise sources. Railway noise for
example is signi�cantly less annoying compared to road tra�c noise or noise from aircrafts (Fig. 9.2)1.

1M. E. Miedema, H. Vos, Exposure-response relationships for transportation noise, Journal of the Acoustical Society
of America, vol. 104, p.3432-3445 (1998).

144



50 55 60 65 70 75 80

Ldn [dB(A)]

0

10

20

30

40

50

60

70

80

p
e
rc

e
n
ta

g
e
 o

f 
h
ig

h
ly

 a
n
n
o
y
e
d
 p

e
rs

o
n
s

railway
road
air traffic

Figure 9.2: Exposure - annoyance relation for di�erent noise sources. The annoyance is expressed as
percentage of people that are highly annoyed, the exposure is described as Ldn.

The curves in Fig. 9.2 correspond to the functions in Eq. 9.3, where %HA is the percentage of highly
annoyed people.

railwaynoise : %HA = 0.01(Ldn − 42) + 0.0193(Ldn − 42)2

roadtrafficnoise : %HA = 0.03(Ldn − 42) + 0.0353(Ldn − 42)2

aircraftnoise : %HA = 0.53(Ldn − 42) + 0.0285(Ldn − 42)2 (9.3)

There are several reasons for a source type dependent annoyance sensitivity. An important in�uence
factor is the personal attitude towards the noise polluter. Furthermore spectral or temporal di�erences
in the noise signal may play a role. Consequently in practice each kind of noise is investigated and
assessed separately.

9.5 De�nition of limiting values

As discussed above the noise burden is investigated by evaluating a suitable exposure measure and
subsequent comparison with limiting values. The de�nition of these limiting values is based on exposure
- annoyance relationships as shown in Fig. 9.1. Usually the annoyance is reported on a scale from 0 to
10. The percentage of highly annoyed people is then determined by counting the answers 8. . .10. The
limiting value is typically set to the exposure that creates between 15 and 25% highly annoyed people.
In other words if the limiting value is reached, almost one quarter of the people is highly annoyed.

9.6 Legal basis in Switzerland

9.6.1 Environment protection law USG

The environment protection law was implemented in 1985. It speci�es the fundamental principles for the
protection of humans, animals and plants against harmful and annoying impacts. As a central instruction
the principle of precaution was established. It says that potential impacts should be detected in advance
and limited accordingly. All emissions should be limited at the source according to the possibilities given.
The exposure at residents has to be assessed by comparison with impact thresholds. These limits have
to be �xed in such a way that - according to best knowledge - exposures below the limits guarantee that
the population is not sincerely annoyed. The law is further detailed in the Noise Abatement Ordinance
LSV.

9.6.2 Noise Abatement Ordinance LSV

The Noise Abatement Ordinance (LSV) speci�es the execution of the environment protection law in
the domain of noise. The LSV has been put into force in 1987 and has experienced di�erent extensions
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and adaptations since. The LSV gives declarations regarding construction, operation and rehabilitation
of facilities and regularizes the construction of new buildings with noise sensitive usage.

Scheme of limiting values

The LSV speci�es not only impact thresholds, but planning values and alarm values as well. The
planning values are typically 5 dB lower than the impact thresholds. They come into play for new
buildings and new facilities and implement the principle of precaution. The alarm values on the other
hand (typically 5 dB higher than the impact thresholds) help to identify severe situations with urgent
need for the realization of noise abatement measures. All limiting values are speci�ed separately for
day and night periods. Further they are di�erentiated according to four sensitivity levels. Sensitivity
level I corresponds to special zones for recreation, sensitivity level II quali�es zones for living, sensitivity
level III is assigned to zones for living and industry. Sensitivity level IV �nally corresponds to zones with
industry only.

Construction, operation and sanitation of facilities

As a fundamental principle the LSV claims that any noise source has to reduce its emissions as much
as possible at least to a degree that is a�ordable.

A new or heavily altered installation has to reduce its emissions, so that the planing values in the
neighborhood are respected. For private installations relaxations can be granted if the installation is of
general interest or if the e�ort to ful�ll the planing values would be disproportional. Public installations
can get relaxations as well, even if the impact threshold is violated. However in these cases protection
measures have to be taken at the receivers in form of sound-proof windows.

Existing installations have to respect the impact thresholds in the neighborhood. If a private installation
exceeds these values, the installation has to be improved. Relaxations are possible between the impact
threshold and the alarm value. Public installations can get relaxations even above the alarm value if
protection measures are taken at the receivers.

If a private installation is signi�cantly altered and the impact thresholds were violated so far, measures
have to be taken to respect the impact thresholds.

Construction permits

An important aim of the LSV is the prevention that new buildings with noise sensitive usage are
built in areas with high noise burden. Therefor the allowance for new buildings is coupled to certain
conditions regarding noise that is already present. The authorities can install new zones for buildings
only if the planing values can be respected. Similarly, areas that are already de�ned as zones for
buildings but are not developed yet have to respect the planing values. Houses are allowed in zones
for buildings that are already developed if the impact thresholds are kept. Exceptions are possible
if the construction is of public interest, e.g. if a gap in row of houses is closed to create a quiet backyard.

Relevant for the veri�cation of the limiting values is the center of the most exposed open window of a
room with noise sensitive usage such as living rooms or bed rooms. In the vicinity of line noise sources
such as roads or railway lines it may be possible to construct new houses even in short distance if the
orientation of the sensitive rooms is optimized. For windows that can not be opened the noise limits
do not apply.

Assessment of road tra�c noise

To evaluate the road tra�c noise burden two rating levels Lr are determined separately for day (6-22)
and night (22-6) as follows:

Lr = Leq +K1 (9.4)

Leq corresponds to the yearly average A-weighted sound pressure level, evaluated for day and night.
The correction K1 depends on tra�c volume. For less than 32 vehicles per hour K1 is -5 dB, for more
than 100 vehicles per hour K1 equals 0 dB.
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The two rating levels evaluated with Eq. 9.4 are �nally compared with the scheme of limiting values in
Table 9.1.

Sens.level PW-day PW-night IGW-day IGW-night AW-day AW-night
I 50 40 55 45 65 60
II 55 45 60 50 70 65
III 60 50 65 55 70 65
IV 65 55 70 60 75 70

Table 9.1: Scheme of limiting values for road tra�c noise for the sensitivity levels I to IV. PW is the
planning value, IGW is the impact threshold and AW is the alarm value.

Assessment of railway noise

To evaluate the railway noise burden two rating levels Lr are determined separately for day (6-22) and
night (22-6) as follows:

Lr = Leq +K1 (9.5)

Leq corresponds to the yearly average A-weighted sound pressure level, evaluated for day and night.
The correction K1 depends on tra�c volume. For less than 8 train passages per hour K1 is -15 dB,
for more than 80 passages per hour K1 equals -5 dB. This bonus re�ects the lower sensitivity against
railway noise compared to road tra�c noise.

Assessment of industry noise

Noise from industries shows larger variation in character compared with road tra�c or railway noise.
Usually industrial noise sources vary over time signi�cantly. For that reason the assessment is based on
di�erent phases of equal noise character. The rating level is de�ned for day (7-19) and night (19-7) as
follows

Lr = 10 log
(∑

10(0.1Lri)
)

(9.6)

where the Lri correspond to partial rating levels of the individual phases of equal noise character. The
partial rating levels are determined as

Lri = Leqi +K1i +K2i +K3i + 10 log

(
ti
to

)
(9.7)

where:
Leqi: energy equivalent A-weighted sound pressure level during phase i
K1i: source type dependent correction for phase i
K2i: tone correction for phase i
K3i: impulse correction for phase i
ti: average daily duration of phase i in minutes, where ti =

Ti

B
Ti: yearly duration of phase i in minutes
B: number of days per year the plant is in service 2

to = 720 minutes

The correction for the source type K1 lies between 5 and 10 dB (10 dB are applied for heating,
ventilation and air condition installations).

The correction for tonal sound is set according to the listening impression. If there is no tone (with
a distinct pitch) audible, K2 equals = 0, for weakly audible tones K2 is set to 2, for clearly audible
tones K2 is 4 and �nally if the signal contains tones that are strongly audible, K2 is set to 6.

2In some cases the de�nition of B is tricky.
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The correction for impulsive sound is determined subjectively as well. K3 = 0 stands for no audible
impulsiveness, K3 = 2 signi�es weakly audible impulses, K3 = 4 is for clearly audible impulses and
K3 = 6 is for strongly audible impulsiveness.

The day and night rating levels according to Eq. 9.6 are compared to the limiting values for road tra�c
noise (Table 9.1).

Assessment of noise from shooting ranges

The assessment of noise from 50 m and 300 m shooting ranges is based on a rating level Lr as follows:

Lr = L+K (9.8)

where L corresponds to the average maximum level (A-Fast) of a single shot. The correction K for the
number of shots is determined as:

K = 10 log(Dw + 3 ·Ds) + 3 log(M)− 44 (9.9)

where:
Dw: number of half-days with activity during the week per year
Ds: number of half-days with activity at Sundays per year
M : number of shots �red in one year

Finally the rating levels are compared with the limiting values scheme according to Table 9.2. As
shooting ranges operate only during daytime, there are no limiting values for the night period.

Sens.level PW IGW AW
I 50 55 65
II 55 60 75
III 60 65 75
IV 65 70 80

Table 9.2: Scheme of limiting values for noise from shooting ranges for the sensitivity levels I to IV.
PW is the planning value, IGW is the impact threshold and AW is the alarm value.

Assessment of aircraft noise

The assessment of aircraft noise in the surroundings of the airports Zurich, Basel and Geneva is based
on separate rating levels for the day period (6-22), the �rst hour of the night (22-23), the second hour
of the night (23-24) and the last hour of the night (5-6). The level for the day period Lrt is determined
as follows:

Lrt = 10 log(100.1Lrk + 100.1Lrg ) (9.10)

Lrk corresponds to the rating level for small aviation. The level is determined as the A-weighted
average sound pressure level for a day with average peak service and a correction based on the number
of �ight operations. Lrg is the A-weighted, yearly average sound pressure level stemming from large
aviation in the period between 6 and 22.

The rating levels for the night hours correspond directly to the A-weighted average sound pressure levels
produced by large aviation. The rating levels are �nally compared to the scheme given in Table 9.3.
The impact thresholds for the second and last night hour are identical to the nighttime values for
road tra�c noise. However the separate evaluation of hourly values in case of aircraft noise is stricter
compared to road tra�c noise where higher values in one hour are smeared over the whole night period.

9.7 Soundscape concept

Standard noise abatement strategies try to lower the A-level at the residents locations. However the
potential for attenuation measures in urban environments is usually rather small as classical solutions
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Sens.level PWd IGWd AWd PWn1 IGWn1 AWn1 PWn2l IGWn2l AWn2l
I 53 55 60 43 45 55 43 45 55
II 57 60 65 50 55 65 47 50 60
III 60 65 70 50 55 65 50 55 65
IV 65 70 75 55 60 70 55 60 70

Table 9.3: Scheme of limits for aircraft noise for the sensitivity levels I to IV. PW is the planning value,
IGW is the impact threshold and AW is the alarm value. The index d denotes the day period (6-22),
n1 indicates the �rst night hour (22-23), n2l means the second and last night hour (23-24, 5-6).

such as noise barriers are not applicable. Therefore acousticians and authorities start to reconsider the
fundamental noise abatement goal. The noise situation of residents can usually be improved by lowering
the A-level but this is not necessarily the only path to go. Indeed people assess noise annoyance by
taking into account many more factors. It seems therefore promising to consider additional aspects
when it comes to future noise abatement policies. All relevant aspects that a�ect noise perception are
usually summarized and described by the Soundscape.

A mighty factor in this context is the fact that subjective annoyance depends on the type of noise
source. At identical A-levels, we are usually more annoyed by man-made sounds compared to natural
sounds. This o�ers the possibility to mask unwanted sound by more favored sounds such as water
sounds 3.

3L. Galbrun, T. T. Ali, Acoustical and perceptual assessement of water sounds and their use over road tra�c noise,
J. Acoustical Society America, vol. 133, p. 227-237 (2013)
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Appendix A

Acoustic physical constants

A.1 speed of sound in air

temperature [◦C] speed of sound c [m/s]
0 331.3
10 337.3
20 343.2

A.2 density of air at sea level

temperature [◦C] density of air ρ [kg/m3]
0 1.292
10 1.247
20 1.204

A.3 acoustic impedance

temperature [◦C] ρc [Ns/m3]
0 428.0
10 420.5
20 413.3
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Index

A-�lter, 52
absorber, 97
absorption, 97
absorption coe�cient, 97
acoustical calibrator, 59
acoustical holography, 39
adiabatic strati�cation, 92
airborne sound, 4
airborne sound insulation, 139
air�ow speaker, 41
angular frequency, 10
atmospheric absorption, 85
auralization, 121
auto correlation function, 63

B-�lter, 52
bang, 24
basilar membrane, 73
boundary conditions, 9

C-�lter, 52
C80, 117
calibrators, 58
cent, 83
center time, 118
clarity, 117
cochlea, 73
cocktail party e�ect, 79
coherent sources, 16
complex tonal sound, 23
critical band, 76
critical distance, 109
cross correlation functions, 63
cylindrical waves, 15

day-evening-night-level, 144
day-night-Pegel, 144
dB - scale, 21
degrees of freedom, 55
di�raction, 3
di�use re�ection, 19
di�use sound �eld, 107
di�users, 134
dipole radiator, 17
dodecahedron loudspeaker, 136
Doppler e�ect, 19

ear, 73
Early Decay Time, 117

Eigenfrequencies, 129
emission measurements, 48
energy impulse response, 116
environment protection law, 145
equally tempered scale, 83
Equivalent continuous sound pressure level, 49
equivalent source technique, 40
Eyring, 112

FAST time constant, 50
�lters, 51
�nite element method, 35
free �eld response microphone, 58
frequency, 10
frequency analysis, 52
frequency analyzers, 60
frequency response, 62
Fresnel number, 90
Fresnel zone, 30
Fresnel zones, 123

Gabor pulse, 68
geometrical spreading, 2
ground e�ect, 86

head related transfer functions, 122
Helmholtz equation, 11
HRTF, 79, 122
Huygens elementary sources, 30

impedance, 5
impedance tube, 101
impulse correction, 148
impulse response, 62
incoherent sources, 16
interference, 3

Kirchho� - Helmholtz integral, 27
Kundt's tube, 100

L1, 60
L50, 60
Lambert's re�ection characteristics, 115
lateral energy fraction, 118
level recorders, 60
levels, 21
loudness, 74
loudness summation, 76

masking, 76
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maximum length sequences, 64
measurement uncertainty, 54
membrane absorbers, 99
membranes, 46
Micro�own, 61
microperforated absorbers, 98
microphones, 58
mirror source, 19
mirror sources (room acoustics), 120
MLS, 64
mode, 131
momentary level, 49

noise, 143
Noise Abatement Ordinance, 145
noise: evaluation of railway noise, 147
noise: evaluation of road tra�c noise, 146
noise: industrial installations, 147
noise: shooting ranges, 148

octave �lters, 54
organ pipe, 41
otoacoustic emission, 74

period length, 10
phon, 74
pink noise, 23
pistonphone, 58
plane waves, 12
point sources, 15
precedence e�ect, 81
pressure response microphone, 58
pressure zone con�guration, 71
principle of reciprocity, 40
pure tone, 23

quarter wave length resonator, 25

ray tracing (room acoustics), 120
Rayleigh integral, 27
re�ection, 2, 19, 97
re�ection coe�cient, 97
reverberation time, 69, 111, 116, 136
reverberation time measurement, 68
rods, 45
room impulse response measurement, 136

Sabine, 112
scale models, 120
scattering, 3, 26
Schroeder reverse integration, 69
Schroeder-di�users, 134
seat dip e�ect, 123

SIA 181, 142
siren, 41
SLOW time constant, 50
sone, 74
sonic boom, 20
sound exposure level, 49
sound �eld, 4
sound insulation, 139
sound insulation index, 139
sound intensity, 4
sound intensity level, 21
sound intensity meters, 61
sound level meter, 59
sound particle displacement, 4
sound particle velocity, 4
sound power, 4
sound power level, 21
sound pressure, 4
sound pressure level, 21
sound recorders, 60
soundscape, 149
source directivity, 19
specular re�ection, 18
spherical waves, 13
standing wave, 24
strength, 117
strings, 43
superposition of point sources, 15
superposition principle, 15
sweep, 24
system identi�cation, 62

temporal masking, 79
thermo-acoustical machines, 46
third-octave �lters, 54
time-bandwidth uncertainty principle, 67
time-reversed acoustics, 40
tone burst, 24
tone correction, 147
total absorption, 108
transmission, 97

uncertainty of measurements, 54

virtual pitch, 77
volume velocity, 5

wave equation, 5, 8
wave equation of a string, 43
wave length, 10
wave number, 10
white noise, 23
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