fundamenta equation

- directivity of the sou geometrical spreadin
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- back

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics I: sound propagation outdoors

Kurt Heutschi 2022-12-12

fundamental equation

- directivity of the source geometrical spreading
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- back

point-to-point propagation situation

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorption
- ground enec
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation meth
- back

fundamental equation for point-to-point propagation

fundamental equation

- directivity of the sourd geometrical spreading atmospheric absorptio ground effect vegetation obstacles
- reflections

meteorological effects

- mechanisms calculation metho
- back

fundamental equation according to ISO 9613-2

$$L_p(ext{receiver}) = L_W + D - \sum A$$

- L_p: sound pressure level at the receiver
- \blacktriangleright *L_W*: sound power level of the source
- D: possible directivity correction of the source
- ► A: attenuation terms describing propagation effects
 - ► attenuation terms A are typically frequency dependent → calculation in frequency bands (third-octaves or octaves)

fundamenta equation

directivity of the source

- geometrical spreadir
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation met
- back

directivity of the source

fundamenta equation

directivity of the source

geometrical spreading atmospheric absorption ground effect vegetation obstacles reflections

meteorologica effects

mechanisms calculation meth

back

directivity of the source

directivity corrections D for an omnidirectional point source in different arrangements:

source configuration	radiation solid angle	D[dB]
open space	4π	0
next to a surface	2π	+3
next to an edge	π	+6
next to a corner	$\frac{\pi}{2}$	+9

fundamental equation directivity of the source geometrical spreading atmospheric absorptio ground effect

obstacles

reflections

meteorologica effects

mechanisms calculation met

back

attenuation: geometrical spreading

fundamental equation directivity of the source geometrical spreading atmospheric absorption ground effect vegetation obstacles

reflections

meteorological effects mechanisms

calculation met

back

attenuation: geometrical spreading

- reduction of sound pressure with increasing distance due to the distribution of the radiated sound power over an increasing area
- frequency independent

relation for a point source:

$$V = \frac{W}{4\pi d^2}$$

where

I: intensity in distance *d* from the source *W*: sound power of the source

fundamental equation directivity of the source geometrical spreading atmospheric absorptio

vegetation

obstacles

reflections

meteorologica effects

mechanisms

back

attenuation: geometrical spreading

for distances larger than a few wavelengths (far field):

$$I = \frac{p^2}{\rho_0 c} \rightarrow p^2 = \frac{W \rho_0 c}{4\pi d^2}$$
$$\frac{p^2}{p_0^2} = \frac{W}{W_0} \cdot \frac{1}{d^2} \cdot \frac{W_0 \rho_0 c}{4\pi p_0^2}$$

$$\mathcal{A}_{div} = 20 \log \left(rac{d}{d_0}
ight) + 11$$
 [dB]

where

d: distance source - receiver [m] d_0 : reference distance = 1 m

fundamental equation directivity of the source geometrical spreading atmospheric absorption ground effect vegetation

obstacles

reflections

meteorologica effects

mechanisms

back

attenuation: atmospheric absorption

fundamental equation directivity of the source geometrical spreading atmospheric absorption ground effect vegetation obstacles

- neteorolo
- effects
- mechanisms calculation methe
- back

attenuation: atmospheric absorption

- conversion of sound energy into heat
- constant fraction of absorbed energy per unit distance
- depends strongly on frequency
- depends on temperature and humidity

fundamental equation directivity of the source geometrical spreading atmospheric absorption

manual affects

vogetation

obstacles

reflections

meteorologica effects

mechanisms

back

attenuation: atmospheric absorption

$$A_{atm} = \alpha d \qquad [dB]$$

α in [dB/km]:

T[°C]	H[%]	125	250	500	1k	2k	4k	8k
10	70	0.4	1.0	1.9	3.7	9.7	33	117
20	70	0.3	1.1	2.8	5.0	9.0	23	77
15	50	0.5	1.2	2.2	4.2	11	36	129
15	80	0.3	1.1	2.4	4.1	8.3	24	83

fundamenta equation

directivity of the sour

atmospheric absorptio

ground effect

vegetation

obstacles

reflections

meteorologica effects

mechanisms

back

attenuation?: ground effect

fundamental equation

directivity of the source geometrical spreading

ground effect

- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation metho
- back

attenuation?: ground effect

experiment:

recordings:

- noise in 50 m at 3m, 1m, 0.4m, 0.2m, 0.0m
- noise in 100 m at 3m, 1m, 0.4m, 0.2m, 0.0m

ground effect

3 m

0.4 m

attenuation?: ground effect

experiment: spectra of the microphone signals

50 m

Terzbandpegel [dB] 10 00 00 00 00 20 00 00 00 00 0.0 m 8

š 关

fundamental equation directivity of the so

atmospheric absorpti

ground effect

vegetation

obstacles

reflections

meteorologica effects

mechanisms calculation metho

back

attenuation?: ground effect

▶ sound propagation close to the ground → significant ground reflection
 ▶ constructive and destructive interference with the direct sound

fundamental equation

directivity of the source geometrical spreading

ground effect

vegetation obstacles

meteorologica effects

- mechanisms calculation metho
- back

attenuation?: Ground effect

calculation tools available today:

- approximations for octave bands (ISO 9613-2)
- "exact" numerical solution of the interference effect between direct and ground reflected sound for a point source above flat and homogeneous ground
- $\blacktriangleright \rightarrow \mathsf{groundf}.\mathsf{exe}$

fundamental equation directivity of the so geometrical spread

a critospiterie ao.

vegetation

obstacles reflections

meteorologica effects

mechanisms

back

attenuation: vegetation

fundamental equation

directivity of the source geometrical spreading atmospheric absorption ground effect

vegetation

obstacles reflections

meteorologic effects

mechanisms calculation metho

back

attenuation: vegetation

attenuation due to vegetation is usually overestimated
 relevant only for depths > 10 m

A_{foliage}:

depth	250	500	1k	2k
1020m	1dB	1dB	1dB	1dB
20200m	0.04 dB/m	0.05 dB/m	0.06 dB/m	0.08 dB/m
> 200 m	8dB	10dB	12dB	16dB

fundamenta equation

- directivity of the sour
- geometrical spreadir
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- back

attenuation: obstacles

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- calculation
- back

attenuation: obstacles - noise barriers

- $\blacktriangleright\,$ noise barriers with specific mass $> 10~kg/m^2$
- acoustically relevant if sightline between source and receiver is interrupted

fundamental equation

- directivity of the source geometrical spreading
- ground offect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation metl
- back

attenuation: obstacles - noise barriers

barrier attenuation is determined by effect of diffraction:

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles

meteorologica effects

- mechanisms calculation metho
- back

attenuation: obstacles - noise barriers

 attenuation is mainly influenced by the path length difference (in wavelengths) introduced by the obstacle

path length difference:

increasing attenuation with frequency

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- reflections

meteorologica effects mechanisms

. . .

attenuation: obstacles - noise barriers

calculation:

$$A_{screen} = 10 \log \left(3 + C_2 rac{z}{\lambda}
ight)$$
 [dB]

where

$$C_2 = 20$$

 λ : wavelength

z: path length difference

example: z = 0: prediction by A_{screen} in comparison to Fresnel zone approach?

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- back

attenuation: obstacles - noise barriers

calculation with a wave theoretical model:

500 Hz

fundamenta equation

- directivity of the sour
- geometrical spreadin
- atmospheric absor
- ground effect
- vegetation
- obstacles
- reflections

meteorologic effects

- mechanisms
- back

amplification: reflections

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation method

back

amplification: reflections

2 type of reflections:

- specular reflections
 - large and smooth surfaces
- diffuse reflections
 - surfaces that are significantly structured in depth (measured in wavelengths)
 - surfaces with inhomogeneous surface properties (impedance)

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- reflections

meteorologica effects mechanisms

- calculation method
- back

amplification: reflections: specular

- e.g. at a smooth facade or noise barrier
- \blacktriangleright application of mirror source concept \rightarrow energetic superposition
- \blacktriangleright check, whether point of reflection is on the reflector \rightarrow yes/no
- consider possible attenuation due to absorption

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- reflections

meteorologica effects

- mechanisms calculation metho
- back

amplification: reflections: specular

- e.g. at a smooth facade or noise barrier
- \blacktriangleright application of mirror source concept ightarrow energetic superposition
- \blacktriangleright check, whether point of reflection is on the reflector ightarrow yes/no
- consider possible attenuation due to absorption

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation metho
- back

amplification: reflections: specular

- e.g. at a smooth facade or noise barrier
- \blacktriangleright application of mirror source concept \rightarrow energetic superposition
- check, whether point of reflection is on the reflector \rightarrow yes/no
- consider possible attenuation due to absorption

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation metho
- back

amplification: reflections: specular

specular reflections:

- e.g. at a smooth facade or noise barrier
- \blacktriangleright application of mirror source concept \rightarrow energetic superposition
- \blacktriangleright check, whether point of reflection is on the reflector \rightarrow yes/no

consider possible attenuation due to absorption

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation metho
- back

amplification: reflections: specular

- e.g. at a smooth facade or noise barrier
- \blacktriangleright application of mirror source concept \rightarrow energetic superposition
- $\blacktriangleright\,$ check, whether point of reflection is on the reflector $\rightarrow\,$ yes/no
- consider possible attenuation due to absorption

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- meteorolog effects
- mechanisms
- back

- discontinuous transition at border of reflector
- size of reflector has no effect

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- meteorolog effects
- mechanisms
- back

- discontinuous transition at border of reflector
- size of reflector has no effect

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- meteorolog effects
- mechanisms
- la e e la

- discontinuous transition at border of reflector
- ▶ size of reflector has no effect

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- reflections

meteorologica effects

- mechanisms
- back

- discontinuous transition at border of reflector
- size of reflector has no effect

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation method
- back

amplification: reflections: diffuse

diffuse reflections:

- e.g. at structured facades, at forest rims, rocks, ...
- handling is less obvious compared to mirror source concept for specular reflection
 - assumption of energy conservation
 - assumption of Lambert directivity

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorological effects

- mechanisms calculation method
- back

amplification: reflections: diffuse

diffuse reflections:

- ▶ e.g. at structured facades, at forest rims, rocks, ...
- handling is less obvious compared to mirror source concept for specular reflection
 - assumption of energy conservation
 - assumption of Lambert directivity

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorological effects

- mechanisms calculation method
- back

amplification: reflections: diffuse

diffuse reflections:

- e.g. at structured facades, at forest rims, rocks, ...
- handling is less obvious compared to mirror source concept for specular reflection
 - assumption of energy conservation
 - assumption of Lambert directivity

fundamental equation directivity of the se

- geometrical spreadin atmospheric absorpt
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- calculation me

back

amplification: reflections: diffuse

example: reflections caused by an explosion in front of a forest rim:

fundamenta equation

- directivity of the sour
- geometrical spreadin
- atmospheric abs
- ground effect
- vegetation
- obstacles
- reflections

meteorological effects

- mechanisms calculation metho
- back

meteorological effects on sound propagation

fundamenta equation

- directivity of the sour
- geometrical spreadir
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

mechanisms

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorpti
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation metho

back

meteorological influences on sound propagation

relevant meteorological parameters:

- temperature and humidity
- vertical gradient of temperature
- vertical gradient of wind speed
- inhomogeneities and turbulences

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

back

consequences of temperature and humidity variations for atmospheric absorption

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- vegetation
- vegetation
- obstacles

meteorologica effects

- mechanisms
- calculation method
- back

consequences of temperature and humidity variations for atmospheric absorption

- atmospheric absorption depends on the condition of the atmosphere:
 - humidity
 - temperature
- calculation with formulas in ISO 9613-1
- ► yearly average values for CH:
 - humidity: 76%
 - temperature: 8°C

fundamenta equation

- directivity of the sour
- geometrical spreadin
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of temperature gradients

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of temperature gradients

temperature dependency of speed of sound:

$$c \approx 343.2 \sqrt{\frac{T}{293}}$$

c: speed of sound in [m/s]T: air temperature in Kelvin

typical +0.6 m/s per degree C

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- reflections

meteorologica effects

mechanisms calculation metho

back

consequences of temperature gradients

tilting of plane wave fronts:

temp. decrease with height

temp. increase with height

fundamenta equation

- directivity of the source
- geometrical spreadir
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of wind

fundamental equation

- directivity of the sou
- atmospheric abso
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- calculation methods
- back

consequences of wind

- stepwise construction of wave fronts in a moving medium
 - given: point of wave front at time t_0
 - to be determined: point of wave front at time t_1

fundamental equation

- directivity of the sou geometrical spreadin
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms
- back

consequences of wind

- wind field always exhibits a vertical gradient
- \blacktriangleright \rightarrow sound propagation speed depends on height above ground
- curved propagation similar to situation with temperature gradients

fundamental equation

- directivity of the sour
- atmospheric absorpt
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of curved propagation

fundamenta equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of curved propagation

- \blacktriangleright upwards curvature: formation of shadow zones \rightarrow substantial attenuation
- \blacktriangleright downwards curvature: sound wave may rise above barriers, barrier attenuation and ground effect are reduced \rightarrow amplification

fundamenta equation

- directivity of the source
- geometrical spreadin
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

consequences of turbulences

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

back

consequences of turbulences

consequences at a receiver point:

- ▶ temporal level fluctuations (\approx energy neutral)
- scattering of sound energy into shadow zones
- coherence loss between different propagation paths

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologic effects

mechanisms calculation methods

methods to calculate meteorological effects on sound propagation

fundamental equation

- directivity of the source geometrical spreading atmospheric absorptio ground effect
- vegetation
- obstacles

meteorologica effects

mechanisms calculation methods

back

methods to calculate meteorological effects on sound propagation

- empirical approach to predict barrier attenuation (ISO 9613-2) under favorable propagation conditions
- analytical geometrical approach to handle curved propagation: description with circles
- numerical geometrical approach to handle curved propagation: ray tracing
- numerical solutions of the wave equation:
 - Parabolic Equation (PE)
 - Finite Differences in the Time Domain (FDTD)

fundamenta equation

- directivity of the sour
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

empirical extension of barrier attenuation formula

fundamental equation

directivity of the source geometrical spreading atmospheric absorption ground effect vegetation

reflections

meteorologica effects

mechanisms

back

empirical approaches for barrier attenuation

calculation of barrier attenuation according to ISO 9613-2:

$$D_z = 10 \log \left(3 + C_2 \frac{z}{\lambda} \kappa_{\text{met}}\right)$$

where

 $\begin{array}{l} C_2 = 20 \\ z : \text{path length difference [m]} \\ K_{\text{met}} = \exp\left(-\frac{1}{2000}\sqrt{\frac{d_{ss}d_{sr}d}{2z}}\right) < 1.0 \\ d_{ss}: \text{ distance source - barrier [m]} \\ d_{sr}: \text{ distance barrier - receiver [m]} \\ d: \text{ distance source - receiver [m]} \end{array}$

fundamental equation

- directivity of the sour geometrical spreading
- atmospheric abso
- ground effect
- vegetation
- obstacles
- reflections

meteorologic effects

mechanisms

calculation methods

back

analytical geometrical approach: circular sound rays

fundamental equation

- directivity of the sour geometrical spreading
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

analytical geometrical approach: description with circles

- necessary assumption: linear vertical profile of the effective sound speed
 - constant gradients
 - curvature corresponds to circles
- curvature (radius) can be determined analytically
- with help of the circles calculation of modified barrier attenuation and altered ground effect

fundamental equation

- directivity of the sou geometrical spreadin atmospheric absorpt ground effect
- vegetation
- obstacles

meteorologica effects

mechanisms calculation methods

back

calculation of the radius of the circle

radius of circles depends on

- vertical gradient of the effective sound speed: $\frac{dc}{dz}$
- \blacktriangleright elevation angle of emission direction θ
 - ▶ for $\theta = 0$ and $\frac{dc}{dz} \approx \pm 0.05$ [s⁻¹], $R \approx$ a few kilometers

caution: the fundamental assumption of constant gradients is problematic!

fundamenta equation

- directivity of the sour
- geometrical spreadin
- atmospheric ab
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

numerical geometrical approach: ray tracing

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles

meteorologica effects

mechanisms calculation methods

back

ray tracing

- sound ray: curve in space that describes the propagation of a point on a wave front
- numerical procedure for a stepwise construction
- > arbitrary wind and sound speed gradients can be modeled

fundamenta equation

- directivity of the source
- geometrical spreadin
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

ray tracing

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio ground effect
- vegetation
- obstacles

meteorologica effects

mechanisms calculation methods

back

ray tracing

evaluation of the ray tracing process for propagation attenuation calculations:

- 1. search of all rays that connect source and receiver
- 2. determination of sound pressure at the receiver by summation of all rays

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

ray tracing

advantages:

- relative fast algorithm
- empirically extendable for further effects such as reflections

challenges:

- singularities (extremely high local ray density)
- due to its geometrical nature, wave phenomena are ignored
- unrealistic discontinuous transitions (shadow zones)
- empirical extensions necessary to handle barriers

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

ray tracing

advantages:

- relative fast algorithm
- empirically extendable for further effects such as reflections

challenges:

- singularities (extremely high local ray density)
- due to its geometrical nature, wave phenomena are ignored
- unrealistic discontinuous transitions (shadow zones)
- empirical extensions necessary to handle barriers

fundamental equation

- directivity of the source
- Section of the
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

numerical solutions of the wave equation: parabolic Equation

fundamental equation

- directivity of the sourgeometrical spreading atmospheric absorptio ground effect
- vegetation
- obstacles

meteorologica effects

- mechanisms calculation methods
- back

parabolic equation, PE

- originally developed in underwater acoustics, since 50 years in use for outdoor sound predictions
- formulation in the frequency domain (Helmholtz eq.: $\triangle \check{p} + \frac{\omega^2}{c^2}\check{p} = 0$)
- Helmholtz equation in cylindrical coordinates for axial-symmetrical approximation (2D calculation for point source behavior)
- split of the sound field into a slowly varying amplitude information and an oscillation term
- simulation region: 2D grid with mesh size
 - $\blacktriangleright pprox 0.1\lambda$ horizontally
 - $\blacktriangleright pprox 10\lambda$ vertically

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- originally developed in underwater acoustics, since 50 years in use for outdoor sound predictions
- formulation in the frequency domain (Helmholtz eq.: $\triangle \check{p} + \frac{\omega^2}{c^2} \check{p} = 0$)
- Helmholtz equation in cylindrical coordinates for axial-symmetrical approximation (2D calculation for point source behavior)
- split of the sound field into a slowly varying amplitude information and an oscillation term
- simulation region: 2D grid with mesh size
 - $\blacktriangleright pprox 0.1\lambda$ horizontally
 - $\blacktriangleright pprox 10\lambda$ vertically

fundamental equation

- directivity of the sourgeometrical spreading atmospheric absorptio ground effect vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- originally developed in underwater acoustics, since 50 years in use for outdoor sound predictions
- formulation in the frequency domain (Helmholtz eq.: $\triangle \check{p} + \frac{\omega^2}{c^2} \check{p} = 0$)
- Helmholtz equation in cylindrical coordinates for axial-symmetrical approximation (2D calculation for point source behavior)
- split of the sound field into a slowly varying amplitude information and an oscillation term
- simulation region: 2D grid with mesh size
 - $\blacktriangleright pprox 0.1\lambda$ horizontally
 - $\blacktrianglerightpprox 10\lambda$ vertically
fundamental equation

- directivity of the sourgeometrical spreading atmospheric absorptio ground effect vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- originally developed in underwater acoustics, since 50 years in use for outdoor sound predictions
- formulation in the frequency domain (Helmholtz eq.: $\triangle \check{p} + \frac{\omega^2}{c^2} \check{p} = 0$)
- Helmholtz equation in cylindrical coordinates for axial-symmetrical approximation (2D calculation for point source behavior)
- split of the sound field into a slowly varying amplitude information and an oscillation term

▶ simulation region: 2D grid with mesh size

- $\blacktriangleright pprox 0.1\lambda$ horizontally
- $lacksim lpha = 10\lambda$ vertically

fundamental equation

- directivity of the sourgeometrical spreading atmospheric absorptio ground effect vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- originally developed in underwater acoustics, since 50 years in use for outdoor sound predictions
- formulation in the frequency domain (Helmholtz eq.: $\triangle \check{p} + \frac{\omega^2}{c^2} \check{p} = 0$)
- Helmholtz equation in cylindrical coordinates for axial-symmetrical approximation (2D calculation for point source behavior)
- split of the sound field into a slowly varying amplitude information and an oscillation term
- ▶ simulation region: 2D grid with mesh size
 - \blacktriangleright pprox 0.1 λ horizontally
 - \blacktriangleright pprox 10 λ vertically

fundamenta equation

- directivity of the sou
- atmospheric absor
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

parabolic equation, PE

advantage compared to FE: stepwise solution p(r, z) → p(r + Δr, z)
 ⇒ only a system of equations with M variables has to be solved (M: number of elements in height)

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles

reflections

meteoroic effects

mechanisms calculation methods

back

parabolic equation, PE

- strictly speaking only applicable for flat ground
- however, approximations available for undulating ground
- abrupt changes in topography (e.g. barriers) are difficult to handle
- high computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorological effects

mechanisms calculation methods

back

parabolic equation, PE

challenges:

strictly speaking only applicable for flat ground

however, approximations available for undulating ground

- abrupt changes in topography (e.g. barriers) are difficult to handle
- high computational effort

fundamental equation

- directivity of the sou geometrical spreading atmospheric absorpti
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- strictly speaking only applicable for flat ground
- however, approximations available for undulating ground
- abrupt changes in topography (e.g. barriers) are difficult to handlehigh computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorpti
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- strictly speaking only applicable for flat ground
- however, approximations available for undulating ground
- abrupt changes in topography (e.g. barriers) are difficult to handle
 high computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

parabolic equation, PE

- strictly speaking only applicable for flat ground
- however, approximations available for undulating ground
- abrupt changes in topography (e.g. barriers) are difficult to handle
- high computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorpti
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

numerical solution of the wave equation: finite differences in the time domain (FDTD)

fundamental equation

- directivity of the source geometrical spreading atmospheric absorption
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

finite differences in the time domain (FDTD)

basic equations:

- $grad(p) = -\rho \frac{\partial \vec{v}}{\partial t}$ • $-\frac{\partial p}{\partial t} = \kappa P_0 \operatorname{div}(\vec{v})$
- simulation region: 2/3D grid with mesh size $\approx 0.1\lambda$
- calculation by step-wise updating of the sound field variablesadvantage:
 - no system of equations has to be solved
 - result is an impulse response (containing all frequencies)

fundamental equation

- directivity of the sour
- geometrical spreadin
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

finite differences in the time domain (FDTD)

$$\mathbf{v}_{x}^{\mathsf{new}} = \mathbf{v}_{x}^{\mathsf{old}} - \alpha \left(\mathbf{p}_{\mathsf{right}} - \mathbf{p}_{\mathsf{left}} \right)$$

$$\mathbf{p}^{\mathsf{new}} = \mathbf{p}^{\mathsf{old}} - \beta \left(\mathbf{v}_{\mathsf{xright}} - \mathbf{v}_{\mathsf{xleft}} \right) - \beta \left(\mathbf{v}_{\mathsf{ytop}} - \mathbf{v}_{\mathsf{ybottom}} \right)$$

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio ground effect
- vegetation
- obstacles

reflections

meteorologic effects

mechanisms calculation methods

back

finite differences in the time domain (FDTD)

difficulties:

approximation of ground impedance in the time domain is delicate
 high computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

finite differences in the time domain (FDTD)

difficulties:

approximation of ground impedance in the time domain is delicate
 high computational effort

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio ground effect
- obstacles
- reflections

meteorological effects

mechanisms calculation methods

back

finite differences in the time domain (FDTD)

difficulties:

- ▶ approximation of ground impedance in the time domain is delicate
- high computational effort

fundamenta equation

- directivity of the source
- geometrical spreadir
- atmospheric absorp
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

input parameters?

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorption
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation methods

back

input parameters?

- today meteorological effects on sound propagation can be predicted with sophisticated calculation tools
- current meteorological models offer sufficiently fine local resolution (example. COSMO2 Meteo Schweiz, 2.1 km mesh size) that can be used as input

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorption ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

- mechanisms calculation methods
- back

input parameters?

- today meteorological effects on sound propagation can be predicted with sophisticated calculation tools
- current meteorological models offer sufficiently fine local resolution (example. COSMO2 Meteo Schweiz, 2.1 km mesh size) that can be used as input

fundamental equation

- directivity of the sour geometrical spreading atmospheric absorptio
- ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms

calculation methods

back

Example: COSMO2 evaluation of probability of near ground inversion

fundamenta equation

- directivity of the sour geometrical spreading atmospheric absorptic ground effect
- vegetation
- obstacles
- reflections

meteorologica effects

mechanisms calculation metho

back

eth-acoustics-1