introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traff situation

hi and brite ke

example: railway li cutting

acoustical holography

back

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics I: sound field calculations

Kurt Heutschi 2022-12-12

introduction

- Kirchhoff -Helmholtz integra
- Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traff situation
- noise barrier
- Hardbrücke
- example: railway cutting

acoustical holography

back

introduction

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

introduction

- calculation of a situation specific location- and time dependent sound field (often p)
- conditions for a valid solution:
 - fulfillment of the wave equation or Helmholtz equation
 fulfillment of the boundary conditions:
 - Sources
- analytical solutions for special geometries only
- numerical solutions in the general case:
 - finite elements
 - boundary elements
 - time domain methods such as FDTD

introduction

Kirchhoff -Helmholtz integr

Boundary Elements Meth Rayleigh Integral Kirchhoff's approximation

finite elements

FDTD

- example: road traffic situation
- Hardbrücke
- example: railway lir cutting

acoustical holography

back

introduction

- calculation of a situation specific location- and time dependent sound field (often p)
 - conditions for a valid solution:
 - fulfillment of the wave equation or Helmholtz equation
 fulfillment of the boundary conditions:
 - sources
 boundaries (borders of space).
 - analytical solutions for special geometries only
 - numerical solutions in the general case:
 - finite elements
 - boundary elements
 - time domain methods such as FDTD

introduction

Kirchhoff -Helmholtz integr

- Boundary Elements Meth Rayleigh Integral
- Kirchhoff's approximation

EDTD

- example: road traff situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

introduction

- calculation of a situation specific location- and time dependent sound field (often p)
- conditions for a valid solution:
 - fulfillment of the wave equation or Helmholtz equation
 - fulfillment of the boundary conditions:
 - sources
 - boundaries (borders of space)
- analytical solutions for special geometries only
- numerical solutions in the general case:
 - finite elements
 - boundary elements
 - time domain methods such as FDTD

introduction

Kirchhoff -Helmholtz integr

- Boundary Elements Meth Rayleigh Integral
- Kirchnoff's approximatio

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

introduction

sound field calculations:

- calculation of a situation specific location- and time dependent sound field (often p)
- conditions for a valid solution:
 - fulfillment of the wave equation or Helmholtz equation
 - fulfillment of the boundary conditions:
 - sources
 - boundaries (borders of space)

analytical solutions for special geometries only

- numerical solutions in the general case:
 - finite elements
 - boundary elements
 - time domain methods such as FDTD

introduction

Kirchhoff -Helmholtz integr

- Boundary Elements Meth Rayleigh Integral
- Calleration

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

introduction

- calculation of a situation specific location- and time dependent sound field (often p)
- conditions for a valid solution:
 - fulfillment of the wave equation or Helmholtz equation
 - fulfillment of the boundary conditions:
 - sources
 - boundaries (borders of space)
- analytical solutions for special geometries only
- numerical solutions in the general case:
 - finite elements
 - boundary elements
 - time domain methods such as FDTD

introduction

Kirchhoff -Helmholtz integral

- Boundary Elements Method Rayleigh Integral Kirchhoff's approximations
- finite elements

FDTD

- example: road traf situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Kirchhoff - Helmholtz integral

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation noise barrier
- example: railwa

acoustical holography

back

Kirchhoff - Helmholtz integral

Green's theorem: Helmholtz equation \sim Kirchhoff - Helmholtz integral:

$$\dot{p}(x,y,z,\omega) = \frac{1}{4\pi} \int_{S} \left(j\omega \rho_0 \check{v}_S(\omega) \frac{e^{-j\omega r/c}}{r} + \check{p}_S(\omega) \frac{\partial}{\partial n} \frac{e^{-j\omega r/c}}{r} \right) \mathrm{d}S$$

- S: closed surface
- \check{v}_S : sound particle velocity on and normal to S
- \check{p}_S : sound pressure on S
- r: distance of the surface point to the receiver point (x, y, z)
 - \blacktriangleright Kirchhoff-Helmholtz integral \rightarrow wave field synthesis

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

Kirchhoff - Helmholtz integral

- Kirchhoff-Helmholtz integral KHI is valid:
 - \blacktriangleright in the interior of S
 - \blacktriangleright in the exterior of S
 - on the surface S with a correction factor of 2

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral

Kirchhoff's approximations

finite elements

FDTD

- example: road trafi situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Boundary Elements Method

introduction

Kirchhoff -Helmholtz integra

- Boundary Elements Method Rayleigh Integral Kirchhoff's approximations
- finite elements

FDTD

- example: road traffic situation noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Boundary Elements Method

typical radiation problem:

- surface velocity is given as boundary condition
- search for sound pressure field inside or outside of S
- solution with the Boundary Elements Method:
 - discretisation of the radiator surface in n elements
 - with KHI: $\check{p}_{S,i} = \sum_{j=1}^{n} f(\check{p}_{S,j},\check{v}_{S,j})$
 - ▶ solve the system of equations with *n* unknowns $\rightarrow \check{p}_{S,i}$
 - calculate sound pressure at any point in space with the KHI

introductio

Kirchhoff -Helmholtz integra

Boundary Elements Method

Rayleigh Integral

Kirchhoff's approximations

finite elements

FDTD

example: road trafi situation

noise barrie

Hardbrücke

example: railway l cutting

acoustical holography

back

Rayleigh Integral

introduction

Kirchhoff -Helmholtz integral Boundary Elements Methoo Rayleigh Integral

Kirchhoff's approximations

finite elements

FDTD

example: road traffi situation

Hardbrücke

example: railway lii cutting

acoustical holography

back

Rayleigh Integral

radiation of an oscillating piston → Kirchhoff-Helmholtz Integral
 special case: oscillating piston mounted in a large and rigid wall
 wall introduces boundary condition: v_n = 0

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral

finite elements

FDTD

- example: road traffi situation noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

Rayleigh Integral

- replace the effect of the wall by a mirror source
- \blacktriangleright oscillating piston \rightarrow pulsating piston

introduction

Kirchhoff -Helmholtz integral

Rayleigh Integral

Kirchhoff's approximations

finite elements

FDTD

example: road traffi situation

Hardbrücke

example: railway li cutting

acoustical holography

back

Rayleigh Integral

evaluation of the Kirchhoff Helmholtz Integral:

$$\check{p}(x, y, z, \omega) = \frac{1}{4\pi} \int_{S} \left(j\omega \rho_0 \check{v}_S(\omega) \frac{e^{-j\omega r/c}}{r} + \check{p}_S(\omega) \frac{\partial}{\partial n} \frac{e^{-j\omega r/c}}{r} \right) \mathrm{d}S$$

contribution of sound pressure = 0!

introduction

Kirchhoff -Helmholtz integral Boundary Elements Methor Rayleigh Integral

Kirchhoff's approximation

finite elements

FDTD

example: road traffic situation

Hardbrücke

example: railway lin cutting

acoustical holography

back

Rayleigh Integral

Kirchhoff Helmholtz Integral simplifies to the Rayleigh Integral:

$$\check{p}(x, y, z, \omega) = \frac{j\omega\rho_0}{2\pi} \int_{S} \check{v}_n(x, y, \omega) \frac{e^{-jkr}}{r} \mathrm{d}S$$

S: visible piston surface (front) v_n: piston velocity

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traff situation

noise barrie

example: railway

acoustical holography

back

Kirchhoff's approximations

introduction

- Kirchhoff -Helmholtz integral Boundary Elements Method
- Kirchhoff's approximations

finite elements

FDTD

- example: road traffi situation noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

- screen with aperture:
 - plane wave incident on aperture in a hard screen
 - sound pressure field behind the screen?

introduction

- Kirchhoff -Helmholtz integral Boundary Elements Method
- Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway lir cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

- solution: application of the Rayleigh Integral
 - needed: sound particle velocity in the apertureKirchhoff's approximation:
 - assume sound particle velocity as if no screen is present
 - \blacktriangleright \rightarrow ignore edge
 - error decreases with decreasing ratio wavelength / diameter

introduction

Kirchhoff -Helmholtz integral Boundary Elements Methoo Rayleigh Integral

Kirchhoff's approximations

finite elements

FDTD

example: road traff situation noise barrier

Hardbrücke

example: railway l cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

example: sound field of a plane wave behind an aperture of 25 cm diameter

sound field behind aperture with Kirchhoff's aproximation

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

Rayleigh Integral:

$$\check{p}(x, y, z, \omega) = \frac{j\omega\rho_0}{2\pi} \int_{S} \check{v}_n(x, y, \omega) \frac{e^{-jkr}}{r} \mathrm{d}S$$

- approximation with Fresnel zones for receivers not too close:
 - ignore small changes of r
 - differentiate phase in classes + (0 degrees) and (180 degrees) only
 - corresponding regions in the aperture: Fresnel zones

introduction

- Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral
- Kirchhoff's approximations
- finite elements

FDTD

- example: road traff situation
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

Fresnel zones in case of circular aperture:

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffie situation noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

Kirchhoff's approximations: diffraction problems

$$p \sim \frac{A_1}{r_1} - \frac{A_2}{r_2} + \frac{A_3}{r_3} - \frac{A_4}{r_4} \dots$$

A_i: area of the *i*-th Fresnel zone r_i: average distance to the *i*-th Fresnel zone

for large apertures:

 $p\sim rac{A_1}{2r_1}$

if aperture = 1. Fresnel zone \rightarrow amplification of +6 dB re. free field

introduction

- Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral
- Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway lir cutting

acoustical holography

back

Fresnel zones for reflection problems

- reflection at inhomogeneous or finite surfaces:
 - \blacktriangleright half of the 1. Fresnel zone defines the relevant region F on a reflector
 - concept allows for the estimation of situations with:
 - ▶ small reflectors $F < \frac{A_1}{2} \rightarrow p_{\text{refl}} \approx \frac{2F}{A_1} p_{\text{refl}\infty}$
 - inhomogeneous reflectors

introductio

- Kirchhoff -Helmholtz integra
- Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traff situation
- Hardbrücke
- example: railway l cutting

acoustical holography

back

finite elements

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation noise barrier
- Hardbrücke
- example: railway lir cutting

acoustical holography

back

finite elements

- common method to numerically solve differential equations by discretization of the field volume
- well suited for:
 - bounded field regions such as vehicle interiors
 - coupled structure/fluid systems, e.g. simulation of airborne sound insulation in the laboratory
 - simulation of inhomogeneous properties of the medium (c, density)
- not well suited for:
 - radiation in unbounded space

introduction

Kirchhoff -Helmholtz integr

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation noise barrier Hardbrücke
- example: railway li cutting

acoustical holography

back

- discretization of the field volume in finite elements
- establish one equation per element and node
- assembly of the system of equations

finite elements

solve the system of equation for each frequency of interest

introduction

- Kirchhoff -Helmholtz integral
- Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traff situation
- noise barrier
- Hardbrücke
- example: railway lir cutting

acoustical holography

back

FDTD: finite differences in the time domain

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway cutting

acoustical holography

back

Finite Differences in the Time Domain (FDTD)

standard method to find solutions of differential equations numerically

- usage of the fundamental acoustical partial differential equations in the time domain:
 - grad(p) = −ρ^{∂v}/∂t
 −^{∂p}/∂t = κP₀div(v)
- Newton
- Poisson, mass conservation

- strategy:
 - discretisation of simulation domain in space and time
 replacement of derivatives by differences (space and time)

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral

finite elements

FDTD

- example: road traffi situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

Finite Differences in the Time Domain (FDTD)

- standard method to find solutions of differential equations numerically
- usage of the fundamental acoustical partial differential equations in the time domain:

•
$$grad(p) = -\rho \frac{\partial \vec{v}}{\partial t}$$

• $-\frac{\partial p}{\partial t} = \kappa P_0 \operatorname{div}(\vec{v})$

Newton

Poisson, mass conservation

discretisation of simulation domain in space and time
 replacement of derivatives by differences (space and time)

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway cutting

acoustical holography

back

Finite Differences in the Time Domain (FDTD)

- standard method to find solutions of differential equations numerically
- usage of the fundamental acoustical partial differential equations in the time domain:

•
$$grad(p) = -\rho \frac{\partial \vec{v}}{\partial t}$$

• $-\frac{\partial p}{\partial t} = \kappa P_0 \operatorname{div}(\vec{v})$

Newton

Poisson, mass conservation

- strategy:
 - discretisation of simulation domain in space and time
 replacement of derivatives by differences (space and time)
 - $\blacktriangleright \ \rightarrow$ updating equations in time

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffi situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

finite differences in the time domain (FDTD) 2D-formulation:

$$\begin{array}{lll} \mathbf{v}_{\mathrm{x}}^{\mathrm{new}} & = & \mathbf{v}_{\mathrm{x}}^{\mathrm{old}} - \alpha \left(\mathbf{p}_{\mathrm{right}} - \mathbf{p}_{\mathrm{left}} \right) \\ \mathbf{p}^{\mathrm{new}} & = & \mathbf{p}^{\mathrm{old}} - \beta \left(\mathbf{v}_{\mathrm{xright}} - \mathbf{v}_{\mathrm{xleft}} \right) - \beta \left(\mathbf{v}_{\mathrm{ytop}} - \mathbf{v}_{\mathrm{ybottom}} \right) \end{array}$$

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway cutting

acoustical holography

back

finite differences in the time domain (FDTD)

- typical simulation / calculation:
 - impulse-like pressure distribution as starting condition
 - time-stepwise updating of the field variables at the grid points

advantages:

- no system of equation that has to be solved
- impulse response as a result contains information about all frequencies

disadvantage:

implementation of frequency domain boundary conditions is not straight forward

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

finite differences in the time domain (FDTD)

- typical simulation / calculation:
 - impulse-like pressure distribution as starting condition
 - time-stepwise updating of the field variables at the grid points
- advantages:
 - no system of equation that has to be solved
 - impulse response as a result contains information about all frequencies

disadvantage:

implementation of frequency domain boundary conditions is not straight forward

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway l cutting

acoustical holography

back

finite differences in the time domain (FDTD)

- typical simulation / calculation:
 - impulse-like pressure distribution as starting condition
 - time-stepwise updating of the field variables at the grid points
- advantages:
 - no system of equation that has to be solved
 - impulse response as a result contains information about all frequencies

disadvantage:

 implementation of frequency domain boundary conditions is not straight forward

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

finite differences in the time domain (FDTD)

computational effort:

- $\blacktriangleright\,$ 2D-simulation of a region of 200 m $\times\,$ 40 m
- $f_{max} = 2 \text{ kHz} \rightarrow \text{discretization in space: } 0.02 \text{ m}$
- mesh size $10'000 \times 2'000 = 20 \cdot 10^6$ grid points
- calculation time \rightarrow a few minutes

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral

finite elements

FDTD

example: road traffic situation

noise barrier

Hardbrücke

example: railway lin cutting

acoustical holography

back

mapping of 3-dimensional geometries onto 2 independent coordinates:

- translation invariant situation
- rotation invariant situation

2-/3-D simulations

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traff situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

2-/3-D simulations

translation invariant situation

- cartesian coordinate system
- situation geometry does not change in y-direction
- all derivatives of the sound field equations with respect to y-direction are set to 0
- \blacktriangleright simulated source = coherent line source with extension in y-direction
- coherent incoherent line source??

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

2-/3-D simulations

rotation invariant situation

- cylindrical coordinate system
- $\blacktriangleright\,$ situation geometry does not change with angle $\phi\,$
- \blacktriangleright all derivatives of the sound field equations with respect to $\phi\text{-direction}$ are set to 0
- simulated source = point source in the origin
- \blacktriangleright caution: reflections lead to focusing effects at the source position \rightarrow only strictly propagating waves allowed

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traffic situation

noise barrier

Hardbrücke

example: railway li cutting

acoustical holography

back

finite differences in the time domain (FDTD)

example: road traffic situation

road traffic noise situation

reflection at noise barrier

noise barrier

reflection at noise barrier

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method

Rayleigh Integral Kirchhoff's approximation

finite elements

FDTD

example: road traffi situation noise barrier

Hardbrücke

example: railway l cutting

acoustical holography

back

finite differences in the time domain (FDTD)

example: Hardbrücke, effect of absorbing layer at the bottom of bridge

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road trafi situation

Hardbrücke

example: railway li cutting

acoustical holography

back

finite differences in the time domain (FDTD)

reflecting bridge:

Hardbrücke - reflecting

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road trafi situation

Hardbrücke

example: railway l cutting

acoustical holography

back

finite differences in the time domain (FDTD)

absorbing bridge:

Hardbrücke - absorbing

introduction

Kirchhoff -Helmholtz integral

Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation noise barrier
- Hardbrücke
- example: railway line cutting

acoustical holography

back

finite differences in the time domain (FDTD) example: railway line cutting

introduction

Kirchhoff -Helmholtz integral Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traffi situation

noise barrie

Hardbrücke

example: railway line cutting

acoustical holography

back

finite differences in the time domain (FDTD)

example: railway line cutting

E-Einschnitt-KB4KH8KW0KA0GL2

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traff situation

noise barrier

Hardbrücke

example: railway li cutting

acoustical holography

back

acoustical holography

introduction

Kirchhoff -Helmholtz integral

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- noise barrier
- Hardbrücke
- example: railway li cutting

acoustical holography

back

acoustical holography

Kirchhoff-Helmholtz integral is valid for arbitrary surfaces

$$\check{p}(x, y, z, \omega) = \frac{1}{4\pi} \int_{S} \left(j\omega \rho_0 \check{v}_S(\omega) \frac{e^{-j\omega r/c}}{r} + \check{p}_S(\omega) \frac{\partial}{\partial n} \frac{e^{-j\omega r/c}}{r} \right) \mathrm{d}S$$

▶ for some specially designed surfaces, simplifications are possible

introductio

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traffi situation noise barrier

Hardbrücke

example: railway l cutting

acoustical holography

back

acoustical holography

for a plane S that closes in infinity

sound pressure in the right half space is given as:

$$\check{p}(x, y, z, \omega) = j \int_{S} \check{p}_{S}(\omega) \cos \phi \left(1 - \frac{j}{kr}\right) \frac{e^{-jkr}}{\lambda r} \mathrm{d}S$$

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Metho Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

- example: road traffic situation
- Hardbrücke
- example: railway line cutting

acoustical holography

back

- equation from above describes p̃ in 3D-space by a p̃ distribution on a 2D-plane
- \blacktriangleright \rightarrow principle of holography

acoustical holography

- how to capture a hologram in practice:
 - simultaneous determination of sound pressure distribution (amplitude and phase) at discrete grid points on a suitable plane
 - usage of microphone arrays
 - sequential sampling by using a fixed reference (phase)
 - \blacktriangleright \rightarrow complete information about the 3D field

introduction

Kirchhoff -Helmholtz integra

Boundary Elements Method Rayleigh Integral Kirchhoff's approximations

finite elements

FDTD

example: road traffi situation noise barrier

Hardbrücke

example: railway lir cutting

acoustical holography

back

eth-acoustics-1