measurement tasks

signal attributes

filters

frequency weighting filter

measuring randon signals

instruments

reliability of measurements

special

measurements

intensity measuremen

measurements

reverberation time measurements

time - bandwi uncertainty

back

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics I: measurements

Kurt Heutschi 2022-12-12

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randor

measurement

reliability of measurements

special

measurements

intensity measurement

measurements

reverberation tim

time - bandwic

back

measurement tasks

typical measurement tasks

measurement tasks

signal attribu

filters

frequency weighting filter

measuring rando

measurement

instruments

reliability of measurements

special

intensity measures

. . .

measurements

reverberation time measurements

time - bandwid uncertainty

back

- emission measurements (passive)
 - description of a sound source
 - ightharpoonup ightharpoonup sound radiation of a lawn mover
- measurements at a receiver position (passive)
 - description of the strength of a source including the propagation to the receiver
 - ightharpoonup
 ightharpoonup o road traffic noise measurement in the living room of a resident
- measurements of a transmission system (often active)
 - description of a transmission system
 - ightharpoonup
 igh
 - ightharpoonup
 igh

typical measurement tasks

measurement tasks

signal attribu

filters

frequency weighting filte

measuring rando

measurement

reliability of

measurements

measurement

intensity measureme

measurements

measurements time - bandwid

uncertainty

emission measurements (passive)

- description of a sound source
- ightharpoonup ightharpoonup sound radiation of a lawn mover
- measurements at a receiver position (passive)
 - description of the strength of a source including the propagation to the receiver
 - lacktriangleright ightarrow road traffic noise measurement in the living room of a resident
- measurements of a transmission system (often active)
 - description of a transmission system
 - ightharpoonup
 igh
 - ightharpoonup
 igh

typical measurement tasks

measurement tasks

- emission measurements (passive)
 - description of a sound source
 - \rightarrow sound radiation of a lawn mover
- measurements at a receiver position (passive)
 - description of the strength of a source including the propagation to the receiver
 - ightharpoonup road traffic noise measurement in the living room of a resident
- measurements of a transmission system (often active)
 - description of a transmission system
 - ightharpoonup ightharpoonup measurement of the frequency response of a loudspeaker
 - ightharpoonup measurement of the impulse response in a concert hall

typical measurement tasks

measurement tasks

signal attribute

filters

- frequency weighting filte bandpass filters
- measuring randoi signals
- measurement
- instruments
- reliability of measurements

.....

- measurement
- intensity measureme
- impulse respons
- reverberation tim
- time bandwin

hack

- complete description of a sound field requires:
 - sound pressure at all positions for each moment in time
 - sound particle velocity at all positions for each moment in time
 - however: $grad(p) = -\rho \frac{\partial \vec{v}}{\partial t}$ may be used
 - nost important quantity: sound pressure
 - ear is sensitive to sound pressure
 - excellent transducers are available

typical measurement tasks

measurement tasks

signal attribut

C1.....

frequency weighting filter bandpass filters

signals

measuremer instruments

reliability of

measuremer

enocial

intensity measuren

impulse response

measurements

reverberation tin measurements

time - bandwi uncertainty

back

- complete description of a sound field requires:
 - sound pressure at all positions for each moment in time
 - sound particle velocity at all positions for each moment in time
 - however: $grad(p) = -\rho \frac{\partial \vec{v}}{\partial t}$ may be used
 - most important quantity: sound pressure
 - ear is sensitive to sound pressure
 - excellent transducers are available

measurement tasks

signal attributes

filters

frequency weighting filters

manauring va

signals

measurement instruments

reliability of

special

measurements

intensity measurement

measurements

reverberation time

time - bandwidt uncertainty

back

signal attributes

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filter

measuring rando signals

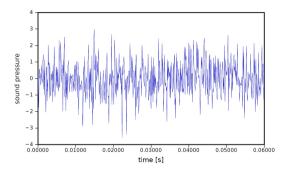
measurements instruments

reliability of measurement

special

measurements

intensity measurem


measurements

reverberation tin measurements

time - bandwin uncertainty

hack

example of a typical sound pressure time history:

attributes that can be evaluated?

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randor signals

measuremen

reliability of measurements

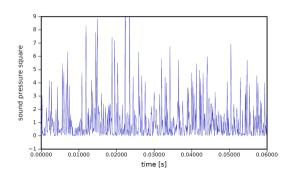
specia

measurements

intensity measurem

measurements

reverberation tin


time - bandwid

uncertainty

back

► first step:

calculate signal square

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randor signals

measurement

instruments

reliability of measurements

specia

measurement

intensity measurem

measurements

reverberation tim measurements

time - bandwid uncertainty

back

- peak value
- integral quantities
 - lacktriangle infinite time window with exponential weighting o moving average
 - $hildsymbol{ riangle}$ finite time window ightarrow average value
- statistical quantities, e.g. the fraction of the signal duration with sound pressure exceeding a certain threshold

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randor signals

measuremer

instruments

reliability of measurements

special

measurement

.....

measurements

measurements

time - bandwi uncertainty

back

- peak value
- integral quantities
 - lacktriangle infinite time window with exponential weighting ightarrow moving average
 - $ilde{\hspace{1.5cm}}$ finite time window o average value
- statistical quantities, e.g. the fraction of the signal duration with sound pressure exceeding a certain threshold

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filters

measuring rando signals

measurement

instruments

measuremen

intensity measurem

impulse respons

reverberation tim

time - bandwid

back

- peak value
- integral quantities
 - lacktriangle infinite time window with exponential weighting ightarrow moving average
 - ightharpoonup finite time window ightarrow average value
- ▶ statistical quantities, e.g. the fraction of the signal duration with sound pressure exceeding a certain threshold

signal attributes

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rando

measuremen

reliability of

measurements

measuremen

intensity measurem

impulse response

reverberation tim measurements

time - bandwi

back

- peak value
- integral quantities
 - lacktriangle infinite time window with exponential weighting ightarrow moving average
 - ightharpoonup finite time window ightarrow average value
- statistical quantities, e.g. the fraction of the signal duration with sound pressure exceeding a certain threshold

signal attributes: integral quantities

measurement tasks

signal attributes

filters

frequency weighting filters

measuring rando

measuremen

reliability of

measurements

special

measuremen

impulse response

reverberation tir

time - bandwid

uncertainty

hack

momentary sound pressure level L(t)

$$L(t) = 10 \log \left(\frac{1}{RC} \int_{-\infty}^{t} \frac{p^2(\tau)}{p_0^2} e^{\frac{\tau - t}{RC}} d\tau \right)$$
 [dB]

where

RC: time constant, SLOW = 1 s, FAST = 0.125 s

 $p(\tau)$: instantaneous sound pressure

 p_0 : reference sound pressure = 2×10^{-5} Pa

signal attributes: integral quantities

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rando signals

measuremen

reliability of

measurement

specia

measurement

measurements

measurements reverberation tim

time - bandwic

hack

Equivalent continuous sound pressure level *Leq*

$$\textit{Leq} = 10 \log \left(rac{1}{T} \int\limits_0^T rac{
ho^2(au)}{
ho_0^2} \mathrm{d} au
ight) \qquad ext{[dB]}$$

where

T: measurement time interval

 $p(\tau)$: instantaneous sound pressure

 p_0 : reference sound pressure = 2×10^{-5} Pa

signal attributes: integral quantities

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rando signals

measuremen

reliability of

measurement

specia

intensity measure

measurements

reverberation tim

time - bandwid uncertainty

back

Sound exposure level L_E (SEL former designation)

$$L_E = 10 \log \left(\frac{1}{1 \sec} \int_0^{\tau} \frac{p^2(\tau)}{p_0^2} d\tau \right)$$
 [dB]

where

T: measurement time interval

 $p(\tau)$: instantaneous sound pressure

 p_0 : reference sound pressure = 2×10^{-5} Pa

signal attributes: applications

signal attributes

momentary sound pressure level L(t):

- maximum level with time constant FAST: Lmax, $Fast \rightarrow descriptor$ for shooting noise or the pass-by of road vehicles
- minimum level: $Lmin \rightarrow \text{estimation of a stationary signal with}$ occurrence of transient disturbing noise

signal attributes: applications

measurement tasks

signal attributes

filters

frequency weighting filter

measuring rando

signals

measurements instruments

reliability of

enecial

measurements

intensity measuren

impulse respons

reverberation time

time - bandwi

back

equivalent continuous sound pressure level Leq:

characterization of non-stationary sources and signals

signal attributes: applications

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rand

measuremen

instruments

reliability of measurements

specia

measurements

intensity measurer

impulse respons

reverberation time measurements

time - bandwi uncertainty

back

sound exposure level L_E , SEL:

measurement of single events such as e.g. train pass-bys

signal attributes: applications

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rando

measurement

reliability of

measurements

special

measurements

intensity measure

impulse respons

reverberation tim

time - bandw

back

 \rightarrow software sound level meter (Delphi) demo

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random signals

measurement

reliability of measurements

special

measurements

impulse response

measurements reverberation tim

time - bandwidth

back

filters

filters

filters

- frequency weighting filters (to mimick frequency response of the ear)
 - A-filter
 - C-filter
- bandpass filters for frequency analysis
 - constant relative bandwidth (perception related)
 - third-octave band filters
 - octave hand filters
 - constant absolute bandwidth (technical analysis)
 - narrow band filters (e.g. 1 Hz, 3 Hz, 10 Hz)
 - ► FFT

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random signals

measurements instruments

reliability of measurements

special

measurements

!----!-- -----

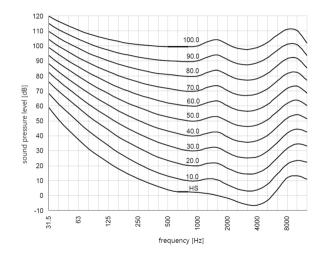
measurements

measurements

time - bandw uncertainty

back

frequency weighting filters


frequency weighting filters

equal loudness contours:

frequency weighting filters

level dependent frequency response \rightarrow A- / C-filter \rightarrow dB(A) / dB(C)

frequency weighting filters

frequency weighting filters

standard C-filter:

$$\mathcal{T}_{\mathsf{C-Filter}}(s) = rac{\mathcal{K}s^2}{(s+\omega_1)^2(s+\omega_2)^2}$$

where

$$\omega_1 = 1.29 imes 10^2 ext{ [rad/sec]}$$

$$\omega_2 = 7.67 \times 10^4 \text{ [rad/sec]}$$

$$\mathit{K}$$
: adjusted for $|\mathit{T}_{\mathsf{C-filter}}| = 1$ at 1 kHz

frequency weighting filters

frequency weighting filters

standard A-filter:

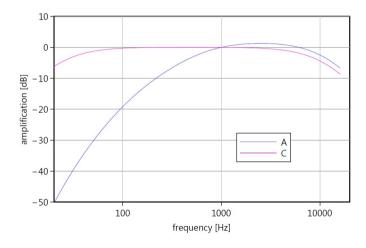
$$\mathcal{T}_{\mathsf{A-Filter}}(s) = rac{\mathcal{K}s^4}{(s+\omega_1)^2(s+\omega_2)^2(s+\omega_3)(s+\omega_4)}$$

where

 $\omega_1 = 1.29 \times 10^2 \, [rad/sec]$

 $\omega_2 = 7.67 \times 10^4$ [rad/sec]

 $\omega_3 = 6.77 \times 10^2$ [rad/sec]


 $\omega_{4} = 4.64 \times 10^{3} \text{ [rad/sec]}$

K: adjusted for $|T_{A-filter}| = 1$ at 1 kHz

frequency weighting filters

frequency weighting filters

frequency response curves:

measurement tasks

signal attributes

filters

frequency weighting filte

bandpass filters

measuring random signals

measurement instruments

reliability of

special

measurements

intensity measurement

measurements

reverberation tim measurements

time - bandv uncertainty

back

bandpass filters: filters for frequency analysis

frequency analysis by third-octave band filters

handnass filters

 \triangleright standard filter series with one center frequency f_m at 1000 Hz

 $f_{m,n} = 1000 \cdot (2^{\frac{1}{3}})^n$ for $n = \cdots - 2, -1, 0, 1, 2, \ldots$

 \triangleright B = 0.23 · f_m . B: bandwidth

 $ightharpoonup f_u = f_m \cdot \frac{1}{2^{\frac{1}{6}}}, f_u$: lower limiting frequency

 $ightharpoonup f_0 = f_m \cdot 2^{\frac{1}{6}}, f_0$: upper limiting frequency

frequency analysis by octave band filters

measurement tasks

71.

frequency weighting filter

handnass filters

oandpass filte

measuring rando signals

measurement

instruments

reliability of

......

measurements

imensity measures

measurements

reverberation tim

time - bandwi uncertainty

back

 \triangleright standard filter series with one center frequency $f_{\rm m}$ at 1000 Hz

 $f_{m,n} = 1000 \cdot 2^n$ for $n = \dots -2, -1, 0, 1, 2, \dots$

 \triangleright $B = 0.71 \cdot f_m$, B: bandwidth

 $ightharpoonup f_u = f_m \cdot \frac{1}{2^{\frac{1}{2}}}, f_u$: lower limiting frequency

• $f_o = f_m \cdot 2^{\frac{1}{2}}$, f_o : upper limiting frequency

measurement tasks

signal attributes

filter

frequency weighting filter

measuring random

measurement

reliability of measurements

special

measurements

intensity measurement

measurements

measurements

time - bandw uncertainty

back

uncertainty of measurements of random signals

measurement uncertainty of random signals

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring random signals

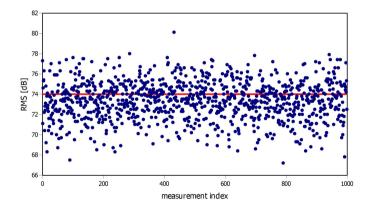
measuremer instruments

reliability of measurement

special

intensity measure

1 1


measurements

reverberation tim

time - bandwid uncertainty

back

example: 0.5 sec-Leq analysis of pink noise evaluated in a band of 10 Hz:

measurement uncertainty of random signals

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring random signals

measuremen instruments

reliability of

special

measurements

intensity measuren

impulse respons

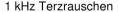
reverberation tim

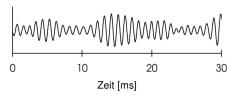
time - bandwic

uncertainty

back

frequency band limited analysis of a random signal is inevitably uncertain for finite observation intervals


measurement uncertainty of random signals


measuring random signals

 \triangleright band limitation \rightarrow subsequent samples are no longer statistically independent

- neighbor sample does not provide completely new information
- ▶ the narrower the analysis bandwidth, the longer the period to wait for a new independent sample

example: 1 kHz third-octave band noise:

measurement uncertainty of random signals

measurement tasks

signal attribut

filters

bandpass filters

measuring random signals

measurements instruments

reliability of measurements

special

measurements

intensity measures

impulse response measurements

reverberation tim measurements

time - bandwic uncertainty

back

degrees of freedom of a bandlimited random signal:

- random signal
 - bandwidth B
 - ▶ analyzing time *T*
- yields n statistically independent samples

$$n = 2BT$$

▶ n: degrees of freedom

measurement uncertainty of random signals

measurement tasks

filters

frequency weighting filter bandpass filters

measuring random signals

measuremen instruments

reliability of measurements

special

measurement

intensity measurer

impulse respons

reverberation tim

time - bandwi uncertainty

back

given a random signal u(t):

- ▶ analysis within the bandwidth *B* during time *T*
- ightharpoonup n = 2BT statistically independent samples u_i

$$rms = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_i^2}$$

 $\triangleright \sum_{i=1}^n u_i^2$ is χ^2 distributed

measurement uncertainty of random signals

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring random signals

measuremen

reliability of

measurement

special

measurement

intensity measuren

measurements

reverberation tim

time - bandwi uncertainty

hack

error intervals for selected probabilities p:

n	p = 0.90	p = 0.99
10	$-4.0\cdots+2.6~dB$	$-6.6\cdots+4.0~dB$
100	$-1.1\cdots + 0.9~\mathrm{dB}$	$-1.7\cdots+1.5~dB$
1000	$-0.3\cdots+0.3~\mathrm{dB}$	$-0.5\cdots+0.5~\mathrm{dB}$

measurement tasks

signal attributes

filters

frequency weighting filters

manauring range

signals

measurement instruments

reliability of measurements

special

measurements

intensity measurement

impulse response measurements

reverberation time

time - bandwidt

back

measurement instruments

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon

signals

measurement instruments

reliability of

measurements

special

measurements

intensity measurement

measurements

reverberation time measurements

time - bandwid uncertainty

back

microphones

microphones

measurement tasks

IIILEIS

trequency weighting filte

measuring randor signals

measurement instruments

reliability of measurements

special

.

mediately mediative

measurements

reverberation time measurements

time - bandwic

- > standard sensor: electrostatic sound pressure microphone
- directivity:
 - omnidirectional at low frequencies
 - amplification on axis for high frequencies (sound field distortion)
 - corrections:
 - free field microphones
 - pressure response microphones

microphones: directivity

example: sensitivity as a function of θ for a 1/2 inch capsule:

example: sensitivity as a funct

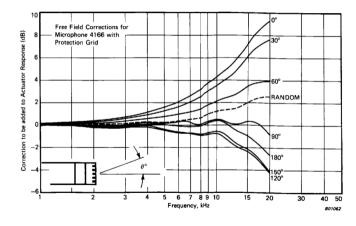
measuring randor signals

measurement instruments

reliability of measurements

special

......


impulse respon

measurements

measurements time - bandwidt

time - bandwid uncertainty

microphones

measurement task

signal attributes

filters

frequency weighting filters bandpass filters

measuring randon signals

measurement instruments

reliability of measurements

illeasuremen

measurement

incubul cilicit.

impulse response

measurements

reverberation tir measurements

time - bandwid

back

further specifications:

- upper limiting frequency
 - maximal for small membrane area
 - maximal for high membrane stiffness
- self-noise
 - minimal for large membrane area
 - minimal for low membrane stiffness
- maximal sound pressure
 - maximal for small membrane area
 - maximal for high membrane stiffness

microphones

measurement task

signal attributes

filters

frequency weighting filters bandpass filters

measuring randon signals

measurement instruments

reliability of

measurements

measuremen

intensity measuren

impulse respons measurements

reverberation tin measurements

time - bandwid uncertainty

back

further specifications:

- upper limiting frequency
 - maximal for small membrane area
 - maximal for high membrane stiffness
- self-noise
 - minimal for large membrane area
 - minimal for low membrane stiffness
- maximal sound pressure
 - maximal for small membrane area
 - maximal for high membrane stiffness

microphones

measurement instruments

further specifications:

- upper limiting frequency
 - maximal for small membrane area
 - maximal for high membrane stiffness
- self-noise
 - minimal for large membrane area
 - minimal for low membrane stiffness
- maximal sound pressure
 - maximal for small membrane area
 - maximal for high membrane stiffness

microphones

measurement task

agnai attributes

filters

frequency weighting filt bandpass filters

measuring rando signals

measurement instruments

reliability of measurements

special

measuremen

.....

measurements

reverberation time measurements

time - bandwi uncertainty

back

examples:

microphone \emptyset	dynamic range	frequency range
inch = 2.5cm	dB(A)	Hz
1	10146	2 18'000
1/2	15146	2 20'000
1/4	29164	2100'000

measurement tasks

signal attributes

filters

frequency weighting filters

signals

measurement instruments

reliability of

measurements

special

measurements

intensity measurement

measurements

reverberation time

time - bandwi uncertainty

back

calibrators

calibrators

measurement

instruments

microphone calibrators are sound pressure references

calibrators

measurement task

signal attributes

Tilters

frequency weighting filter

measuring randor signals

measurement instruments

reliability of measurements

special

measurements

intensity measurem

impulse respons

reverberation time measurements

time - bandwi uncertainty

- microphone calibrators are sound pressure references
- **constructions**:
 - pistonphone
 - pressure generation by moving pistons
 - ightharpoonup operation typically at 250 Hz, 124 dB (\pm 0.15 dB
 - correction needed for atmospheric pressure (density of air)
 - acoustical calibrator
 - pressure generation by small loudspeaker
 - ightharpoonup operation typically at 1000 Hz, 94 or 114 dB (\pm 0.30 dB)

calibrators

measurement instruments

- microphone calibrators are sound pressure references
- constructions:
 - pistonphone
 - pressure generation by moving pistons
 - \triangleright operation typically at 250 Hz, 124 dB (\pm 0.15 dB)
 - correction needed for atmospheric pressure (density of air)!
 - acoustical calibrator

calibrators

measurement tasks

signal attributes

filter

frequency weighting filte

measuring rando signals

measurement instruments

reliability of measurements

special

1 1

measurements

measurements

time - bandwic uncertainty

- microphone calibrators are sound pressure references
- **constructions:**
 - pistonphone
 - pressure generation by moving pistons
 - ightharpoonup operation typically at 250 Hz, 124 dB (\pm 0.15 dB)
 - correction needed for atmospheric pressure (density of air)!
 - acoustical calibrator
 - pressure generation by small loudspeaker
 - lacktriangle operation typically at 1000 Hz, 94 or 114 dB (\pm 0.30 dB)

calibrators

measurement tasks

cianal attributes

filters

frequency weighting filters bandpass filters

measuring randon signals

measurement instruments

reliability of measurements

special

measurement

intensity measurem

measurements

reverberation time

time - bandw uncertainty

measurement tasks

signal attributes

filters

frequency weighting filters

signals

measurement instruments

reliability of measurements

special

measurements

intensity measurement

measurements

reverberation tim

time - bandwid

back

sound level meter

sound level meter

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring rando signals

measurement instruments

reliability of measurements

enecial

incubal cinent

. . .

measurements

reverberation time measurements

time - bandwic uncertainty

- measurement of sound pressure and evaluation of various signal attributes
 - momentary level, RC = Fast, Slow
 - maximum / minimum level
 - equivalent continuous sound pressure level Leq
 - event level L_E, SEL
 - evaluation in frequency bands or with frequency weighting A/C

sound level meter

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring randor signals

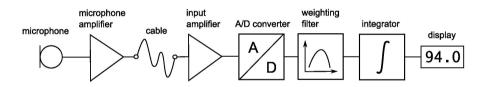
measurement instruments

reliability of measurement

special

measurement

impulse respons


measurements

reverberation time measurements

time - bandwid uncertainty

back

block diagram:

sound level meter

measurement tasks

signal attribut

filters

frequency weighting filters bandpass filters

measuring randon signals

measurement instruments

reliability of measurements

special

measurement

intensity measure

measurements

reverberation tin measurements

time - bandwid uncertainty

sound level meter and wind screen

sound level meter: precision classes

measurement tasks

signal attributes

filters

requency weighting filte pandpass filters

measuring randor signals

measurement instruments

reliability of

measurement

measurement

intensity measurem

impulse respons

reverberation tim

time - bandwi

hack

- ► IEC specifications for sound level meters:
 - class 1: precise instruments for field applications
 - class 2: survey instruments with larger tolerances
- requirements for measurements relating to Swiss noise legislation:
 - ▶ instrument is type approved by *METAS*: Federal Institute of Metrology
 - initial calibration by METAS
 - recalibration every two years

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon

measurement

instruments

reliability of measurements

special

measurements

intensity measurement

measurements

reverberation tim

time - bandwidt

back

level recorder

level recorder

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randor

measurement instruments

reliability of

measurements

specia

measurement

intensity measurer

impulse respons

reverberation tim

time - bandwid

- registration of the time history of sound pressure level
- instrument specs:
 - ▶ typ. dynamic range 80...120 dB
 - typ. temporal resolution: 1 ms
 - data available for further evaluations

measurement tasks

signal attributes

filters

frequency weighting filter

signals

measurement instruments

reliability of measurements

special

measurements

intensity measurement

impulse response

reverberation time

time - bandwid

back

analyzers for level statistics

analyzers for level statistics

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randon signals

measurement instruments

reliability of measurements

special

measurements

meensiey measure

measurements

reverberation time measurements

time - bandwi uncertainty

- evaluation of attributes in level statistics, such as:
 - ► *L*1: level, that is exceeded during 1 % of the measuring time
 - ▶ *L*50: level, that is exceeded during 50 % of the measuring time
- statistical levels play a minor role

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon

signais

measurement instruments

reliability of measurements

special

measurements

intensity measurement

impulse response

reverberation time

time - bandwidth

back

frequency analyzers

frequency analyzers

measurement instruments

- frequency dependent evaluation of the signal attributes
- most widely used: third-octave band analyzers
- todav:
 - handheld
 - operating in realtime: two-channels from 20 Hz...20 kHz

frequency analyzers

measurement tasks

signal attribute

filters

frequency weighting filters bandpass filters

measuring randon signals

measurement instruments

reliability of measurements

specia

measurement

intensity measurer

impulse respons

reverberation tim

time - bandw

la a a la

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon

measurement instruments

reliability of

. .

measurements

illeasurements

.....

measurements

reverberation tim measurements

time - bandw uncertainty

back

sound recorders

sound recorders

measurement instruments

- recording of the microphone signal for subsequent analysis
- digital recorders:
 - stand-alone hard-disc recorder
 - audio interface with PC.
- ▶ formats with data compression (perceptual coders) do not make sense for measuring purposes

measurement tasks

signal attributes

filters

frequency weighting filters

measuring rando

measurement

reliability of measurements

special

measurements

intensity measuremen

measurements

reverberation tin

measurements

time - bandw uncertainty

back

reliability of acoustical measurements

reliability of acoustical measurements

measurement tasks

signal attributes

filters

frequency weighting filter

neasuring randor

measuremen

instruments

reliability of measurements

special

measurement

. . .

impulse respons

reverberation time measurements

time - bandwic uncertainty

back

discussion of uncertainties in the following measurement task:

- determination of the yearly average sound pressure level on a building facade due to road traffic
 - how to do that?
 - sources of uncertainty?

reliability of acoustical measurements

measurement tasks

signal attributes

filters

frequency weighting filt bandpass filters

measuring randor signals

measurements instruments

reliability of measurements

measurem

measurement

intensity measurem

impulse response measurements

reverberation tim

time - bandwic

uncertainty

back

uncertainties checklist:

- is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- ▶ is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- errors due to possible unwanted noise
- ▶ fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randor

measurement

instruments

reliability of measurements

. . .

measurement

intensity measuren

impulse response measurements

reverberation time measurements

time - bandwic uncertainty

back

uncertainties checklist:

- ▶ is the source under investigation in a representative condition?
- is the propagation medium in a representative condition?
- ▶ is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- errors due to possible unwanted noise
- ▶ fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

measurement tasks

signal attribut

filters

frequency weighting filte

measuring rando

measuremen

reliability of

measurements

special

measurement

impulse response

measurements

measurements

time - bandwid uncertainty

hack

uncertainties checklist:

- ▶ is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- ▶ is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- errors due to possible unwanted noise
- ▶ fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

reliability of

measurements

uncertainties checklist.

- is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- ▶ fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

measurement tasks

signal attributes

filter

frequency weighting filter

measuring randon

measurement

reliability of

measurements

special

measuremen

impulse response measurements reverberation tin

time - bandwidt

hack

uncertainties checklist:

- is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- errors due to possible unwanted noise
- ▶ fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

reliability of

measurements

uncertainties checklist.

- is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument.
- errors due to possible unwanted noise
- fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

measurement tasks

signal attributes

filter

frequency weighting filte

measuring randor

measuremen

reliability of

measurements

measuremer

intensity measures

measurements

time - bandwid

uncertainty

hack

uncertainties checklist:

- ▶ is the source under investigation in a representative condition?
- ▶ is the propagation medium in a representative condition?
- is the microphone surrounding representative for the location of interest?
 - local reflections?
 - local screening effects?
- errors due to the calibration and tolerances of the instrument
- errors due to possible unwanted noise
- fundamental uncertainty in the evaluation of random signals

reliability of acoustical measurements

measurement task

signal attributes

filters

frequency weighting filters

measuring rando

measuremen

instruments

reliability of measurements

special

measurements

impulse respons

reverberation tim

time - bandwi

back

declaration of results:

- e.g. $63.2 \text{ dB}(A) \pm 0.9 \text{ dB}(A)$
 - number of decimals of a level result should reflect its uncertainty
 - ▶ standard uncertainty represents the range for a 66 % probability

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random signals

measurement

reliability of measurements

special measurements

intensity measurement

impulse response

reverberation time

time - bandwidt

back

special measurements

measurement tasks

signal attributes

filters

frequency weighting filters

signals

measurement instruments

reliability of measurements

special

intensity measurement

impulse respons

reverberation tin

time - bandw

uncertainty

back

intensity measurement

intensity measurement

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring randor signals

measuremen

reliability of

measurement

special

measurements

intensity measurement

impulse respons measurements

reverberation ti

time - bandwi

hack

- **>** sound intensity is a vector quantity where $|\vec{l}| = \overline{p(t) |\vec{v}(t)|}$:
 - ightharpoonup sound pressure ightharpoonup no problem
 - sound particle velocity
 - pressure gradient method
 - hot-wire anemometer

intensity measurement: pressure gradient method

intensity measurement

fundamental relation between sound particle velocity and sound pressure:

$$\rho_0 \frac{\partial v_x}{\partial t} = -\frac{\partial p}{\partial x}$$

or:

$$v_{x} = -\frac{1}{\rho_{0}} \int \frac{\partial p}{\partial x} \mathrm{d}t$$

> sound particle velocity can be estimated from pressure gradient

intensity measurement: pressure gradient method

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring rando signals

measuremen

reliability of

measuremen

special

intensity measurement

.....

impulse respons measurements

measurements time - bandwidt

uncertainty

back

approximation of pressure gradient by the pressure difference at two positions in close neighborhood:

$$\frac{\partial p}{\partial x} pprox \frac{p(x) - p(x + \Delta x)}{\Delta x}$$

- ightharpoonup optimal choice of Δx ?
- practical limitations?

intensity measurement: pressure gradient method: probe

measurement tasks

filters

frequency weighting filter bandpass filters

measuring randor signals

measurements instruments

reliability of measurements

special

intensity measurement

impulse response measurements

reverberation tin measurements

time - bandwid uncertainty

back

intensity measurement

intensity measurement: pressure gradient method: residual intensity

typical values for the **residual intensity** $(L_p - L_l)$ for a plane wave under 90° re. probe axis:

	residual intensity
8.5 mm	$>$ 15 dB for 250 Hz \scriptstyle 6.3 kHz
12 mm	$>$ 17 dB for 250 Hz $_{\cdot\cdot}$ 5 kHz
50 mm	> 15 dB for 250 Hz 6.3 kHz > 17 dB for 250 Hz 5 kHz > 23 dB for 250 Hz 1.25 kHz

measurement tasks

signal attributes

filters

frequency weighting filter

measuring randor signals

measurements instruments

reliability of

special

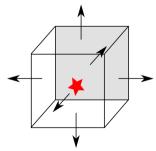
measurements
intensity measurement

impulse response

impulse respons measurements

reverberation tin measurements

time - bandwid


back

intensity probe

applications:

- ightharpoonup sensor with accurate cosine(ϕ) directivity
- measurement of sound power with suppression of the contribution of unwanted sources

$$W = \int_{S} \vec{I} d\vec{S}$$
 [W

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random

measurement instruments

reliability of measurements

special

measurements

ntensity measurement

impulse response

reverberation tim

time - bandwidth

back

impulse response measurements

measurement tasks

signal attributes

filter

frequency weighting filter

neasuring randon

measuremer instruments

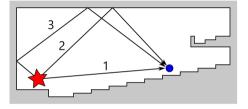
reliability of measurement

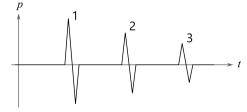
specia

1

intensity measuren

impulse response measurements


reverberation time measurements


time - bandwid

back

motivation

impulse response between a source and a receiver resolves different propagation paths:

difficulty

measurement tasks

at annual contraction and

filters

frequency weighting filter

measuring randon signals

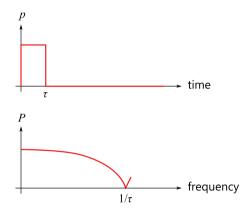
measurements instruments

reliability of

special

measurements

intensity measureme


impulse response measurements

reverberation time measurements

time - bandwid uncertainty

back

excitation impulse has to be short:

challenge:

how to excite the system with sufficient energy?

excitation

impulse response

measurements

possible excitations:

- pistol shots (spectrum?, directivity?)
- bursting balloons (spectrum?, directivity?)
- electrical sparks (spectrum?, directivity?)

preferred choice:

▶ loudspeakers (often poor $S/N \rightarrow trick?$)

averaging process

measurement tasks

signal attributes

frequency unighting

frequency weighting filte bandpass filters

measuring randor

measurement

instruments

reliability of measurements

specia

intensity management

. . .

impulse response measurements

reverberation time measurements time - bandwidth

time - bandwic uncertainty

back

possible strategy to overcome poor S/N: averaging

repetition of single impulse measurements (only for time-invariant systems!)

```
increase of wanted signal: +6 dB per doubling increase of noise: +3 dB per doubling 
S/N improvement: +3 dB per doubling
```

averaging process: summation of several measurements

measurement tasks

signal attributes

filters

frequency weighting filter

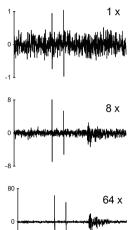
measuring randon signals

measuremer instruments

reliability of measurements

special

measurement


intensity measurem

impulse response

reverberation tim

time - bandwidt

back

-80

averaging process

impulse response

- multiple averaging over single impulse measurements is very time consuming
 - wait until system response has dropped to sufficiently low values (in rooms: seconds)
 - \triangleright averaging numbers O(10'000) are needed
- correlation methods implement averaging processes very efficiently

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random

measurement

reliability of measurements

special

measurements

ntensity measurement

impulse response measurements

reverberation tin

time - bandwidtl

back

correlation methods

correlation functions

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randor signals

measurements instruments

reliability of measurements

special

measurement

intensity measure

impulse response measurements

reverberation tim measurements

time - bandwid uncertainty

hack

ightharpoonup system input signal: x(t)

ightharpoonup system output signal: y(t)

auto-correlation function:

$$R_{xx}(\tau) = \frac{1}{2T} \int_{-T}^{+T} x(t-\tau)x(t)dt \qquad (T \to \infty)$$

cross-correlation function:

$$R_{xy}(\tau) = \frac{1}{2T} \int_{-\tau}^{+T} x(t-\tau)y(t)dt \qquad (T \to \infty)$$

Wiener-Hopf-equation

measurement task

Signal accilibates

filters

bandpass filters

signals

measurements instruments

reliability of

special

measurements

impulse response

measurements

measurements time - bandwidt uncertainty

uncertainty

for a system with impulse response h(t):

$$R_{xy}(\tau) = h(t) * R_{xx}(\tau)$$

if $R_{xx}(au)$ corresponds to a Dirac pulse, the relation simplifies to

$$R_{xy}(au) = h(t)$$

signals with dirac-like ACF?

signals with dirac-like ACF

measurement tasks

signal attributes

niters

frequency weighting filte

neasuring rando

signals

measurements

reliability of

measurements

special

intensity measuremer

impulse response

reverberation tim measurements

time - bandwic

back

signals with dirac-like ACF:

- Dirac pulse
- white noise
- periodically continued maximum length sequences (pseudo random sequences)

maximum length sequences

measurement tasks

signal attribute

filters

frequency weighting filte bandpass filters

measuring rando

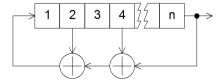
measuremen

reliability of

measurements

measurement

intensity measureme


impulse response measurements

reverberation tim

time - bandwi uncertainty

back

- ▶ two-valued signal (+1,-1) for lengths $L=2^n-1$ with (n: integer > 1)
- white spectrum
- optimal crest-factor = 1 (= 0 dB)
- ► fast algorithm (Hadamard transformation) for the correlation calculation
- generation with help of shift registers with appropriate feed-back

measurement tasks

signal attributes

frequency weighting fi

bandpass filters

measuring randor signals

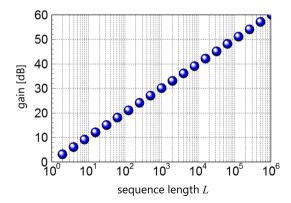
measurements instruments

reliability of measurement

special

intensity measurements

impulse response measurements


reverberation time measurements

time - bandwic uncertainty

back

benefit

- ightharpoonup correlation with sequence of length L corresponds to averaging L times a single impulse measurement
- ▶ gain or S/N improvement = $log_2(L) \cdot 3 dB$

MLS Demo

measurement tasks

signal attributes

filters

bandpass filters

measuring randor signals

measurement

reliability of

special

measurements

intensity measurem

impulse response measurements

reverberation tim

time - bandwidth uncertainty

back

MLS demo

measurement tasks

signal attributes

filters

frequency weighting filters

measuring random signals

measurement

reliability of

special

measurements

intensity measurement

impulse response measurements

reverberation time

time - bandwidt

back

application hints

applications hints

measurement tasks

...

frequency weighting filt

neasuring randon

signals

measuremen instruments

reliability of

measurements

measurements

intensity measureme

impulse response

reverberation tin

time - bandwi

back

to be considered in MLS measurements:

- periodicity of the maximum length sequence
- validity of time-invariance property of the system under test
- ▶ linearity of the system (inclusive excitation, e.g. loudspeaker)

measurement tasks

signal attribut

filters

frequency weighting filter

measuring randor signals

measurements

reliability of

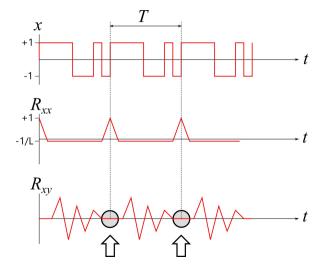
measureme

special

intensity measure

impulse response

measurements


reverberation tim

time - bandwid

hack

periodicity of the ML sequence

possible aliasing by the periodic repetition of the maximum length sequence:

measurement tasks

Jigirar accribat

frequency

frequency weighting filte bandpass filters

measuring rando signals

measuremer instruments

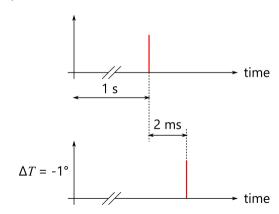
reliability of measurement

special

measuremen

intensity measureme

impulse response


reverberation tim measurements

time - bandwid

hack

time-invariance of the system

fundamental requirement for averaging: time-invariance of the system! caution: e.g. temperature dependency of the speed of sound: $\Delta T = -1^\circ \to \Delta c = -0.6 \text{ m/s}$

linearity of the system

impulse response

- ▶ air and boundaries are linear in good approximation
- serious problem: exciting loudspeaker
- correlation process is extremely sensitive to nonlinear distortion
- results in increased background noise in the impulse response
- optimal S/N is obtained for moderate loudspeaker volume

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring rando signals

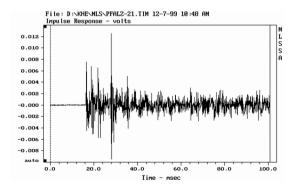
measurements

reliability of measurements

special

measurement

impulse response


reverberation time measurements

time - bandwid

back

evaluation of an impulse response measurement

- any disturbing noise shows up homogeneously distributed over the whole impulse response
- ▶ discussion of S/N is possible in a signal-free section: e.g. before the direct sound component

measurement tasks

signal attributes

filters

frequency weighting filters bandpass filters

signals

measurement instruments

reliability of measurements

special

measurements

intensity measurement

impulse response

reverberation time measurements

time - bandwid uncertainty

back

reverberation time measurements

reverberation time measurements

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon signals

measurements instruments

rolia bilita of

measurements

special

measurements

intensity measurem

measurements

reverberation time measurements

time - bandwid uncertainty

back

reverberation time RT: decrease of energy density to 10^{-6} of the initial value after muting the exciting source

- ▶ RT is the most important global indicator for the acoustical characterisation of a room
- standard measurement:
 - pink noise excitation by a loudspeaker
 - recording of the sound pressure decay after muting the source
 - third-octave or octave band filtering
 - typical range for the evaluation: time T' for decay from -5 dB...-35 dB $\rightarrow RT = 2T'$

reverberation time measurements

measurement tasks

signal attributes

filters

frequency weighting filters bandpass filters

measuring random signals

measurements instruments

reliability of measurements

special

measurements

impulse response

impulse respons measurements

reverberation time measurements

time - bandwi

back

- reverberation time RT: decrease of energy density to 10^{-6} of the initial value after muting the exciting source
- ▶ RT is the most important global indicator for the acoustical characterisation of a room
- standard measurement:
 - pink noise excitation by a loudspeaker
 - recording of the sound pressure decay after muting the source
 - third-octave or octave band filtering
 - typical range for the evaluation: time T' for decay from -5 dB...-35

reverberation time measurements

reverberation time

reverberation time RT: decrease of energy density to 10^{-6} of the initial value after muting the exciting source

▶ RT is the most important global indicator for the acoustical characterisation of a room

standard measurement:

- pink noise excitation by a loudspeaker
- recording of the sound pressure decay after muting the source
- third-octave or octave band filtering
- \triangleright typical range for the evaluation: time T' for decay from -5 dB...-35 $dB \rightarrow RT = 2T'$

reverberation time measurements

measurement tasks

signal attributes

filter

frequency weighting filter

measuring randon signals

measuremer instruments

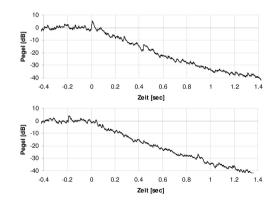
reliability of measurement

special

incubal cilicin

intensity measure

measurements


reverberation time measurements

time - bandwid uncertainty

la a a la

problem with the standard measurement:

ightharpoonup randomness of the decay process ightharpoonup uncertainty in the evaluation

Schroeder inverse integration

reverberation time

randomness in the decay curve asks for averaging over several measurements $s^2(t)$

derived by Schroeder:

$$\langle s^2(t) \rangle \sim \int\limits_t^\infty r^2(\tau) \mathrm{d} \tau$$

where

 $\langle s^2(t) \rangle$: average of all possible decays of the squared time response $r^{2}(t)$: squared impulse response of the room for the selected source and microphone position

Schroeder inverse integration

measurement tasks

signal attribute

filters

frequency weighting filt

measuring randor signals

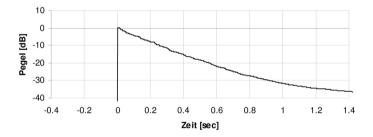
measurements

reliability of measurements

special

measurements

impulse respons


measurements

reverberation time measurements

time - bandwi uncertainty

back

example Schroeder inverse integration:

reverberation time measurements

reverberation time measurements


evaluation of short reverberation times with small filter bandwidths:

ightharpoonup narrow bandpass filters (lowest third octaves) ightarrow significant temporal broadening of the impulse

filter decay may be slower than room decay

ightharpoonup necessary condition: $B \cdot T60 > 16$

e.g. impulse response of a 63 Hz third octave band filter:

reverberation time measurements

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring randon signals

measuremen instruments

reliability of

specia

measuremen

......

measurements


reverberation time measurements

time - bandwic uncertainty

. .

impulse response of a bandpass filter is asymmetrical

- with respect to decay it is beneficial to invert time axis (frequency behavior is unaltered!):
 - digital filter with inverted time axis or
 - backwards play-back of recorded impulse responses
- ▶ \rightarrow new relaxed condition: $B \cdot T60 > 4$

measurement tasks

signal attributes

filters

frequency weighting filters

measuring randon signals

measuremen

reliability of

enecial

measurements

intensity measuremen

impulse response

reverberation time

time - bandwidth uncertainty

back

time - bandwidth uncertainty principle

time - bandwidth uncertainty

measurement tasks

signal attributes

filters

frequency weighting filte bandpass filters

measuring rando signals

signais

instruments

reliability of measurements

special

measurements

intensity measure

impulse response

roughoration tim

time - bandwidth uncertainty

hack

b bandpass filtering with bandwidth Δf of an impulse response results in a temporal broadening Δt (-3 dB points) where

$$\Delta t \cdot \Delta f \geq 0.5$$

time - bandwidth uncertainty

time - bandwidth uncertainty

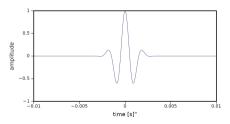
▶ challenge: find 'optimal' filter function for $\Delta t \cdot \Delta f = 0.5$:

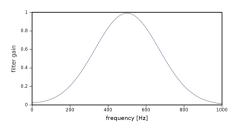
$$G(\omega) = 0.5 rac{\sqrt{\pi}}{lpha} \left(e^{-(\omega+\omega_0)^2/4lpha^2} + e^{-(\omega-\omega_0)^2/4lpha^2}
ight)$$

where

 ω_0 : filter center angular frequency in rad/s

$$\alpha = \frac{\Delta\omega}{\sqrt{2\pi}}$$


 $\Delta\omega$: filter bandwidth in rad/s


time - bandwidth uncertainty

time - bandwidth uncertainty

impulse response of 'optimal' filter: Gabor pulse

$$g(t) = e^{-lpha^2 t^2} \cos(\omega_0 t)$$

measurement tasks

signal attributes

filters

frequency weighting filter bandpass filters

measuring rand

measurement

instruments

reliability of measurements

special

measurements

impulse response

measurements reverberation time

time - bandwidth uncertainty

back

eth-acoustics-1