introduction

sound wave phenomena special topics in acousti history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effec

standing waves

diffraction

dB-scale

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics I: fundamentals

Kurt Heutschi 2022-12-12

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

introduction

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

introduction

Acoustics: science of sound

- generation of sound
- propagation of sound
- effect of sound on humans and matter

Sound:

- mechanical oscillation with wave-like propagation
- propagation in air
- propagation in liquids
- propagation in solid bodies

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

introduction

Acoustics: science of sound

- generation of sound
- propagation of sound
- effect of sound on humans and matter
- Sound:
 - mechanical oscillation with wave-like propagation
 - propagation in air
 - propagation in liquids
 - propagation in solid bodies

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

- specular reflection diffuse Reflexion
- Sonic boom
- standing waves
- diffraction
- dB-scale

introduction

frequency ranges:

- infra-sound: f < 20Hz
- listening range of humans: 20Hz < f < 20kHz
- ultra-sound: f > 20 kHz

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave

 $\mathsf{dB}\operatorname{-scale}$

sound wave phenomena

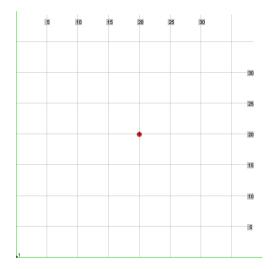
introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmholtz equation

types of waves

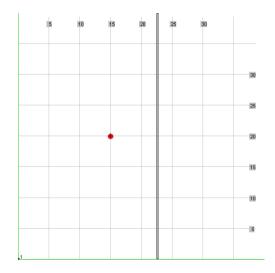
plane waves spherical waves cylindrical waves superposition of point sources

reflection

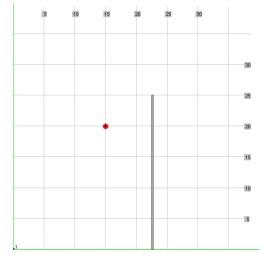

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves
- diffractio
- $\mathsf{dB}\operatorname{-scale}$

sound wave phenomena

- geometrical spreading
- ► reflection
- ► scattering
- ► diffraction
- ► interference

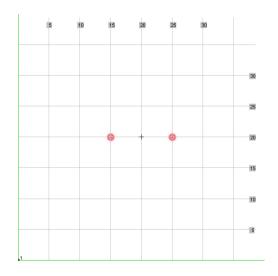

wave phenomena: geometrical spreading

wave phenomena: reflection


wave phenomena: reflection - scattering

Π

wave phenomena: diffraction



wave phenomena: interference

standing waves

diffraction

introductio

sound wave phenomena special topics in acoustics

basic quantities

basic equations

wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Sonic boom

standing wav

diffractio

dB-scale

special topics

introduction

- special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction dB-scale

special topics

Theoretical acoustics analytical and numerical sound field calculations. Nonlinear acoustics investigation of non-linear effects that come along with very high amplitudes of the field quantities (e.g. explosions or sonic booms).

Underwater acoustics sound propagation in water, sonar systems, seismic explorations.

Ultrasound non-destructive test procedures for materials, medical applications.

Vibrations vibrational behavior of bodies, sound radiation of vibrating structures.

Noise control description and modeling of noise sources, investigations on noise protection measures.

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

special topics

- Room acoustics assessment, planing and prediction of sound fields in rooms.
- Building acoustics noise control in buildings, transmission loss of building structures.
- Electroacoustics transducers (microphones, loudspeakers), recording devices, public address systems, signal processing in acoustics. Acoustics of the ear structure of the ear, characteristics of the ear, perception and subjective evaluation of noise.

introductio

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Sonic boom

diffraction

dB-scale

history of acoustics

introductio

sound wave phenomena special topics in acoustics history of acoustics

hacie quantitio

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing way

diffraction

dB-scale

before Christ

▶ 500 B.C.: Pythagoras: Begin of scientific acoustics:

- experiments with vibrating strings
- discovery of the relation between length of strings and pitch of the sound
- establishment of a relation between numbers and musical intervals

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect

standing wave

diffraction

dB-scale

around 0

- Vitruv: De architectura: 10 books for architects:
 - complete manual for the design and the construction of buildings
 - description of possible acoustical problems in theaters:
 - no proper direct sound supply in the audience
 - to much reverberation
 - discrete reflections (echoes)

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- dD asala

17th century

- ▶ 1630: Marin Mersenne:
 - reliable measurement of speed of sound:
 - boom of canons for optical and acoustical signals
 - \blacktriangleright result: speed of sound independent of location and sound intensity = 450 m/s
 - quantitative relation between pitch and frequency:
 - experiments with vibrating strings
 - \blacktriangleright usage of relation: pitch $\sim rac{1}{ ext{stringLength}}$
 - \blacktriangleright usage of relation: pitch $\sim \sqrt{ ext{tension}}$
 - down-scaling for visual inspection
- 1670: Christian Huygens: understanding of sound as a wave phenomenon
 - development of the concept of secondary sources

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- . Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave diffraction

17th century

- 1630: Marin Mersenne:
 - reliable measurement of speed of sound:
 - boom of canons for optical and acoustical signals
 - \blacktriangleright result: speed of sound independent of location and sound intensity = 450 m/s
 - quantitative relation between pitch and frequency:
 - experiments with vibrating strings
 - usage of relation: pitch $\sim \frac{1}{\text{stringLength}}$
 - usage of relation: pitch $\sim \sqrt{ ext{tension}}$
 - down-scaling for visual inspection

1670: Christian Huygens: understanding of sound as a wave phenomenon

development of the concept of secondary sources

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

17th century

- ▶ 1630: Marin Mersenne:
 - reliable measurement of speed of sound:
 - boom of canons for optical and acoustical signals
 - result: speed of sound independent of location and sound intensity = 450 m/s
 - quantitative relation between pitch and frequency:
 - experiments with vibrating strings
 - usage of relation: pitch $\sim \frac{1}{\text{stringLength}}$
 - usage of relation: pitch $\sim \sqrt{\text{tension}}$
 - down-scaling for visual inspection
- 1670: Christian Huygens: understanding of sound as a wave phenomenon
 - development of the concept of secondary sources

introductio

- sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- types of wave
- plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- $\mathsf{dB}\operatorname{-scale}$

17th century

- ▶ 1673: Athanasius Kircher
 - introduction of rays as model of sound propagation in rooms
 - extended studies on the focussing effect of concave structures

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

- Doppler effect sonic boom standing wave
- diffraction
- $\mathsf{dB}\operatorname{-scale}$

18th century

1710: Isaac Newton

- theoretical derivation of the speed of sound
- value about 16 % too low due to wrong assumption of an isothermal process

1711: John Shore

invention of the tuning fork
 → availability of a frequency standard

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equatio

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom

standing wave

diffraction

dB-scale

18th century

1710: Isaac Newton

- theoretical derivation of the speed of sound
- value about 16 % too low due to wrong assumption of an isothermal process
- ▶ 1711: John Shore
 - invention of the tuning fork
 - \blacktriangleright \rightarrow availability of a frequency standard!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effec

standing waves

diffraction

dB-scale

18th century

▶ 1759: Leonhard Euler

publication of the one-dimensional wave equation for sound:

 $\overline{\kappa P_0} \overline{\partial t^2}$

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound

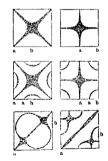
types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effec


standing wav

diffraction

dB-scale

18th century

- ▶ 1787: E. F. F. Chladni
 - investigations on the vibrational behavior of plates
 - \blacktriangleright visualizations with sand that accumulates in node lines \rightarrow Chladni figures

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equatio

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

$\mathsf{dB}\operatorname{-scale}$

19th century

1810

- ► discovery of the adiabatic behavior of sound → varying temperature for fast processes
- based on this assumption, a correct theoretical derivation of the speed of sound was achieved

1818: Augustin Fresnel

mathematically correct description of interference and diffraction

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- -----
- diffraction
- dB-scale

19th century

1810

- ► discovery of the adiabatic behavior of sound → varying temperature for fast processes
- based on this assumption, a correct theoretical derivation of the speed of sound was achieved
- ▶ 1818: Augustin Fresnel
 - mathematically correct description of interference and diffraction

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Sonic boom

standing waves

diffraction

dB-scale

19th century

▶ 1843: G. S. Ohm

- Ohm's law of acoustics:
 - discovery of the ability of the ear to resolve complex tones in the fundamental (pitch) and the harmonics (tone color)
 - insensitivity regarding the phase of the harmonics

introductior

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound

Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

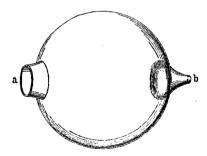
specular reflection diffuse Reflexion

Doppler effec

standing wav

diffraction

dB-scale


19th century

▶ 1865: H. L. F. von Helmholtz

publication of the book: "Über die Tonempfindung"

milestone in knowledge about the human auditory system

Helmholtz resonator:

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

- Doppler effect
- standing waves
- diffraction
- dB-scale

19th century

► 1877: Lord Rayleigh

- publication of the book: "Theory of Sound"
 - derivation of theoretical solutions for a variety of classical problems in acoustics
 - calculation of vibrating structures
 - radiation, diffraction and scattering of sound
- the most relevant theoretical problems are solved!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effec

standing wave

diffraction

dB-scale

19th century

▶ 1877: Thomas Alva Edison

- invention of the phonograph
 - ▶ for the first time possible to store sound for later play-back

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

20th century

- 1900: Wallace C. Sabine
 - founder of scientific room acoustics
 - investigations about reverberation of organ tones in the Lecture Room of the Fogg Art Museum in Harvard
 - development of the concept of reverberation time as an indicator to describe the acoustical quality of rooms
 - discovery of the Sabine reverberation time formula:

$$T=\frac{0.16V}{A}$$

room acoustical design of Boston Symphony Hall

introductior

sound wave phenomena special topics in acoustics history of acoustics

hasic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect

standing waves

diffraction

dB-scale

20th century

- ► 1920-1940: Harvey Fletcher (Bell Telephone Labs)
 - founder of psychoacoustics
 - investigations on loudness of complex sounds
 - discovery of masking effects

introductio

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

basic quantities

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

- sonic boom
- standing wave
- diffraction
- dB-scale

- atmosphere creates a static pressure due to the weight of the air mass
 - atmospheric pressure at sea level: around 1'000 hPa (1000 hectoPascal = 1000 Millibar = 100'000 Newton/m²)
 - \blacktriangleright pprox 12 Pa atmospheric pressure change per meter height difference

sound pressure

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

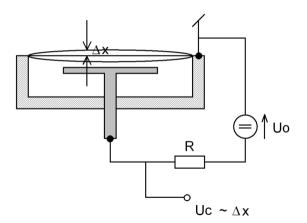
types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect


standing wave

diffraction

dB-scale

sound pressure

device for pressure measurement:

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave

diffraction

dB-scale

sound pressure p(t): quick pressure fluctuations (short term variations of the momentary air pressure):

$$p(t) = P(t) - P_{\mathsf{atm}}$$

where

sound pressure

P(t): momentary air pressure P_{atm} : atmospheric pressure

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

sound pressure: typical numerical values

- ▶ normal speech in 1 m: $p_{\rm typ, rms} \approx 0.1$ Pa
- ▶ hearing threshold at 1 kHz: $p_{\rm min,rms} \approx 2 \times 10^{-5}$ Pa
- ▶ threshold of pain of the ear: $p_{\max, rms} \approx 100$ Pa

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

sound particle displacement

- local pressure variations propagate as sound waves
 - \blacktriangleright in air: longitudinal waves \rightarrow oscillations of air particles in propagation direction
 - on average the air particles remain at the same location \rightarrow sound does not transport matter but energy
- sound particle displacement ζ

• • • • • • • • • • • • • • • • • •

animation open tube

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

sound particle displacement: numerical values

- \blacktriangleright normal speech 1 m / 1 kHz: $\zeta_{
 m typ,rms} pprox$ 4 imes 10⁻⁸ m
- $\blacktriangleright\,$ hearing threshold at 1 kHz: $\zeta_{\rm min,rms}\approx 8\times 10^{-12}$ m
- \blacktriangleright threshold of pain of the ear at 1 kHz: $\zeta_{\rm max,rms} \approx 4 \times 10^{-5} \ {\rm m}$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave

diffraction

dB-scale

sound particle velocity

sound particle velocity $\vec{v}(t)$:

$$|ec{v}(t)| = rac{d\zeta}{dt}$$

 sound particle velocity is a vector and points in direction of propagation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

sound particle velocity: typical numerical values

- ▶ normal speech in 1 m: $v_{
 m typ,rms} \approx 2.5 imes 10^{-4} \ {
 m m/s}$
- \blacktriangleright hearing threshold at 1 kHz: $\textit{v}_{\rm min,rms}\approx5\times10^{-8}~m/s$
- ▶ threshold of pain of the ear: $v_{max,rms} \approx 0.25 \text{ m/s}$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing waves diffraction dB-scale

sound intensity

sound intensity describes the energy transport of a sound wave:

- energy per second (= power) through an area of 1 m² (perpendicular to propagation direction)
- sound intensity is a vector that points in the direction of sound particle velocity

average sound intensity $|\vec{l}|$:

$$|\vec{l}| = \overline{pv}$$
 $[W/m^2]$

note: phase between p and v is relevant!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction dB-scale

sound power

average sound power W through an area S:

$$W = \int_{S} \vec{l} \cdot \mathrm{d}\vec{S}$$
 [W]

integrand:

• dot product of the intensity vector \vec{l} and the surface normal of the area element $d\vec{S}$

if the area S encapsules a source completely, the sound power corresponds to the sound power of the source

 \rightarrow demo: sound power

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

- Doppler effect
- standing wave

dB-scale

sound power

typical sound power values:

	sound power [W]
human voice normal	7×10^{-6}
human voice max.	2×10^{-3}
violin, fortissimo	1×10^{-3}
loudspeaker (10 W el.)	0.1
jackhammer	1
organ, fortissimo	10
orchestra (75 instruments)	70
air plane Boeing 747	6'000
air plane FA-18	200'000

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

impedance

acoustic impedance Z:

$$Z = rac{\check{p}}{\check{v}}$$

- *p i*
 - amplitude and
 - phase
- Z is usually a complex quantity with non-vanishing imaginary part

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation

Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom

diffraction

dB-scale

volume velocity

volume velocity Q:

$$Q = \int_{S} ec{v} \cdot \mathrm{d}ec{S}$$

integrand:

 \blacktriangleright dot product of sound particle velocity and the surface normal of the area element $\mathrm{d}\vec{S}$

introductio

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

basic equations

introductio

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

wave equation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Sonic boom standing wave
- diffraction
- dB-scale

→ differential equation describing propagation of waves
 > compact description of the physics of sound fields

wave equation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

approach: seeking for formulations that describe the relations between sound pressure and sound particle velocity

- step 1: formulation of consequences of sound pressure for sound particle velocity
- step 2: formulation of consequences of sound particle velocity for sound pressure
- step 3: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- dB-scale

- approach: seeking for formulations that describe the relations between sound pressure and sound particle velocity
 - step 1: formulation of consequences of sound pressure for sound particle velocity
 - step 2: formulation of consequences of sound particle velocity for sound pressure
 - step 3: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wav
- diffraction
- dB-scale

- approach: seeking for formulations that describe the relations between sound pressure and sound particle velocity
 - step 1: formulation of consequences of sound pressure for sound particle velocity
 - step 2: formulation of consequences of sound particle velocity for sound pressure

step 3: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- some boom
- standing wav
- diffraction
- dB-scale

- approach: seeking for formulations that describe the relations between sound pressure and sound particle velocity
 - step 1: formulation of consequences of sound pressure for sound particle velocity
 - step 2: formulation of consequences of sound particle velocity for sound pressure
 - step 3: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

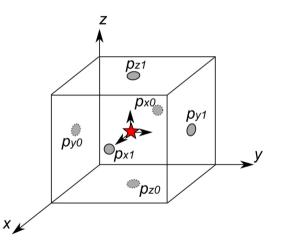
wave equation

speed of sound Helmholtz equatior

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection


specular reflection diffuse Reflexion

Doppler effec

sonic boom standing wav

wave equation: $p \rightarrow \vec{v}$

p is given on the sides of the cube $\Delta I \cdot \Delta I \cdot \Delta I$. Consequences for \vec{v} ?

wave equation: $p \rightarrow \vec{v}$

 $F \leftrightarrow p$ $a \leftrightarrow \vec{v}$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

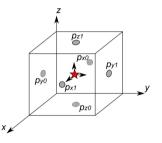
basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave

diffraction

dB-scale

• fundamental physical relation: Newton: $F_{res} = m \cdot a$

wave equation: $p \rightarrow \vec{v}$

introduction

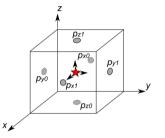
sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation


types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction dB-scale

in *x*-direction:

$$\Delta l^2(p_{ imes 0}-p_{ imes 1})=mrac{\Delta v_x}{\Delta t}$$

wave equation: $p \rightarrow \vec{v}$

introduction

sound wave phenomena special topics in acoustics history of acoustics

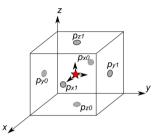
basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves


plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

Doppler effect

- standing wave
- diffraction
- dB-scale

$$m = \Delta l^3 \cdot \rho_0$$

$$\Delta l^2(p_{x0}-p_{x1})=\Delta l^3\cdot\rho_0\frac{\Delta v_x}{\Delta t}$$

wave equation: $p \rightarrow \vec{v}$

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction $\begin{array}{c}
z \\
p_{z1} \\
p_{y0} \\
p_{x1} \\
p_{z0} \\$

X

$$\Delta l^{2}(p_{x0} - p_{x1}) = \Delta l^{3} \cdot \rho_{0} \frac{\Delta v_{x}}{\Delta t} \qquad |:\Delta l^{3}$$
$$\frac{p_{x0} - p_{x1}}{\Delta l} = \rho_{0} \frac{\Delta v_{x}}{\Delta t}$$
$$\frac{\partial p}{\partial x} = -\rho_{0} \frac{\partial v_{x}}{\partial t}, \quad \frac{\partial p}{\partial y} = -\rho_{0} \frac{\partial v_{y}}{\partial t}, \quad \frac{\partial p}{\partial z} = -\rho_{0} \frac{\partial v_{z}}{\partial t}$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

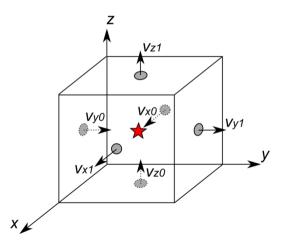
types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect


sonic boom

diffractio

 $\mathsf{dB}\operatorname{-scale}$

wave equation: $\vec{v} \rightarrow p$

\vec{v} is given on the sides of the cube $\Delta I \cdot \Delta I \cdot \Delta I$. Consequences for p?

wave equation: $\vec{v} \rightarrow p$

introduction

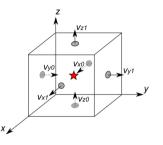
sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation


types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- diffraction
- dB-scale

- fundamental physical relation: (adiabatic process): Poisson's law: $P \cdot V^{\kappa} = constant$
 - $\blacktriangleright \Delta P \leftrightarrow p$
 - $\blacktriangleright \Delta V \leftrightarrow \vec{v}$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

- ▶ of interest: consequences of *small* change in volume
- change in volume $\Delta V \leftrightarrow$ change in pressure ΔP ?
- small changes \rightarrow linearization of Poisson's law

wave equation: $\vec{v} \rightarrow p$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave

diffraction

dB-scale

wave equation: $\vec{v} \rightarrow p$

Poisson's law reformulated:

first term.

$$egin{aligned} (P_0+\Delta P)(V_0+\Delta V)^\kappa &= P_0V_0^\kappa \ P_0+\Delta P &= P_0\left(1+rac{\Delta P}{P_0}
ight) \end{aligned}$$

second term (ignoring higher order contributions of the series): $(V_0 + \Delta V)^{\kappa} \approx V_0^{\kappa} + \Delta V \kappa V_0^{\kappa-1} = V_0^{\kappa} \left(1 + \kappa \frac{\Delta V}{V_0}\right)$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

wave equation: $\vec{v} \rightarrow p$

approximation inserted in Poisson's law:

$$P_{0}\left(1+\frac{\Delta P}{P_{0}}\right)V_{0}^{\kappa}\left(1+\kappa\frac{\Delta V}{V_{0}}\right)\approx P_{0}V_{0}^{\kappa}$$
$$\left(1+\frac{\Delta P}{P_{0}}\right)\left(1+\kappa\frac{\Delta V}{V_{0}}\right)\approx 1$$
$$\frac{\Delta P}{P_{0}}\approx -\kappa\frac{\Delta V}{V_{0}}-\kappa\frac{\Delta P}{P_{0}}\frac{\Delta V}{V_{0}}$$

$$\Delta P \cdot \Delta V$$
 is very small, $ightarrow$

$$\frac{\Delta P}{P_0}\approx -\kappa \frac{\Delta V}{V_0}$$

wave equation: $\vec{v} \rightarrow p$

introduction

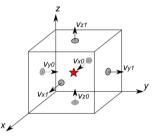
sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation


types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

search for change ΔV in volume caused by \vec{v} inserted in linearized form of Poisson's law $\rightarrow \Delta P$

wave equation: $\vec{v} \rightarrow p$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

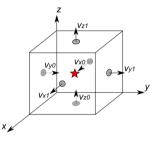
speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion


Doppler effect sonic boom standing waves diffraction

$$V(t) = \Delta l^3$$

volume at time $t + \Delta t$:

$$V(t+\Delta t) = [\Delta l + \Delta t(v_{x1}-v_{x0})] \cdot [\Delta l + \Delta t(v_{y1}-v_{y0})] \cdot [\Delta l + \Delta t(v_{z1}-v_{z0})]$$

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom

standing waves

diffraction

dB-scale

$$egin{aligned} V(t+\Delta t) &pprox \Delta l^3 + \Delta l^2 \Delta t (v_{ ext{x1}}-v_{ ext{x0}}) + \ + \Delta l^2 \Delta t (v_{ ext{y1}}-v_{ ext{y0}}) + \Delta l^2 \Delta t (v_{ ext{z1}}-v_{ ext{z0}}) \end{aligned}$$

change in volume during Δt :

wave equation: $\vec{v} \rightarrow p$

$$\Delta V = V(t+\Delta t)-V(t)pprox \Delta l^2 \Delta t (v_{x1}-v_{x0})+ \ +\Delta l^2 \Delta t (v_{y1}-v_{y0})+\Delta l^2 \Delta t (v_{z1}-v_{z0})$$

٠

wave equation

wave equation: $\vec{v} \rightarrow p$

inserted in
$$\frac{\Delta P}{P_0}\approx -\kappa \frac{\Delta V}{V_0}$$
:

$$\Delta P pprox rac{-\kappa P_0}{\Delta l^3} \left[\Delta l^2 \Delta t (v_{x1} - v_{x0}) + \Delta l^2 \Delta t (v_{y1} - v_{y0}) + \Delta l^2 \Delta t (v_{z1} - v_{z0})
ight]$$

$$\frac{\Delta P}{\Delta t} \approx -\kappa P_0 \left(\frac{v_{x1} - v_{x0}}{\Delta l} + \frac{v_{y1} - v_{y0}}{\Delta l} + \frac{v_{z1} - v_{z0}}{\Delta l} \right)$$

wave equation: $\vec{v} \rightarrow p$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equatio

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

Sonic boom

standing waves

diffraction

dB-scale

$$\frac{\Delta P}{\Delta t} = -\kappa P_0 \left(\frac{\mathbf{v}_{x1} - \mathbf{v}_{x0}}{\Delta I} + \frac{\mathbf{v}_{y1} - \mathbf{v}_{y0}}{\Delta I} + \frac{\mathbf{v}_{z1} - \mathbf{v}_{z0}}{\Delta I} \right)$$
$$\frac{\partial P}{\partial t} = -\kappa P_0 \left(\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} \right)$$

$$\frac{\partial p}{\partial t} = -\kappa P_0 \mathsf{div}(\vec{v})$$

wave equation: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

- find derivatives of Eq. A relative to x, y, z
- Find derivative of Eq. B relative to t

$$A1: \quad \frac{\partial p}{\partial x} = -\rho_0 \frac{\partial v_x}{\partial t}$$
$$A2: \quad \frac{\partial p}{\partial y} = -\rho_0 \frac{\partial v_y}{\partial t}$$
$$A3: \quad \frac{\partial p}{\partial z} = -\rho_0 \frac{\partial v_z}{\partial t}$$
$$B: \quad \frac{\partial p}{\partial t} = -\kappa P_0 \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right)$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction dB scale

wave equation: compilation

derivatives of Eq. A relative to x, y, z:

$$A1: \quad \rightarrow \frac{\partial^2 p}{\partial x^2} = -\rho_0 \frac{\partial^2 v_x}{\partial t \partial x} =^{*} -\rho_0 \frac{\partial^2 v_x}{\partial x \partial t}$$
$$A2: \quad \rightarrow \frac{\partial^2 p}{\partial y^2} = -\rho_0 \frac{\partial^2 v_y}{\partial t \partial y} =^{*} -\rho_0 \frac{\partial^2 v_y}{\partial y \partial t}$$
$$A3: \quad \rightarrow \frac{\partial^2 p}{\partial z^2} = -\rho_0 \frac{\partial^2 v_z}{\partial t \partial z} =^{*} -\rho_0 \frac{\partial^2 v_z}{\partial z \partial t}$$

*) theorem of Schwarz

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

sonic boom

standing waves

diffraction

dB-scale

wave equation: compilation

derivative of Eq. B relative to t:

$$B: \rightarrow \frac{\partial^2 p}{\partial t^2} = -\kappa P_0 \left(\frac{\partial^2 v_x}{\partial x \partial t} + \frac{\partial^2 v_y}{\partial y \partial t} + \frac{\partial^2 v_z}{\partial z \partial t} \right)$$

wave equation: compilation

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

or

reflection

specular reflection diffuse Reflexion

Doppler effect

standing waves

diffraction

dB-scale

inserted \rightarrow wave equation:

$$\frac{\partial^2 p}{\partial t^2} = \frac{\kappa P_0}{\rho_0} \left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right)$$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{\rho_0}{\kappa P_0} \frac{\partial^2 p}{\partial t^2}$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

wave equation

- is the fundamental equation for the description of sound fields
- has to be fulfilled for each field point in time and space
- specification of specific problem introduces boundary conditions
- solution to a specific sound field problem:
 - search sound pressure field p(x, y, z, t), that fulfills:
 - the wave equation.
 - all boundary conditions
- ▶ note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

wave equation

- ▶ is the fundamental equation for the description of sound fields
- has to be fulfilled for each field point in time and space
- specification of specific problem introduces *boundary conditions* solution to a specific sound field problem:
 - search sound pressure field p(x, y, z, t), that fulfills
 - the wave equation
 - all boundary conditions
- ▶ note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

wave equation

- ▶ is the fundamental equation for the description of sound fields
 - has to be fulfilled for each field point in time and space
- specification of specific problem introduces *boundary conditions* solution to a specific sound field problem:
 - search sound pressure field p(x, y, z, t), that fulfills
 - The wave equation
 - all boundary conditions
- ▶ note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

wave equation

- ▶ is the fundamental equation for the description of sound fields
- has to be fulfilled for each field point in time and space
- specification of specific problem introduces boundary conditions
- solution to a specific sound field problem:
 - search sound pressure field p(x, y, z, t), that fulfills:
 - the wave equation
 - all boundary conditions
- ▶ note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!

- wave equation

wave equation

- is the fundamental equation for the description of sound fields
- has to be fulfilled for each field point in time and space
- specification of specific problem introduces boundary conditions
- solution to a specific sound field problem:
 - **•** search sound pressure field p(x, y, z, t), that fulfills:
 - the wave equation
 - all boundary conditions
- \triangleright note: wave equation made use of the linearized Poisson equation \Rightarrow

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

- wave equation
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave

diffraction

dB-scale

wave equation

- is the fundamental equation for the description of sound fields
- has to be fulfilled for each field point in time and space
- specification of specific problem introduces boundary conditions
- solution to a specific sound field problem:
 - search sound pressure field p(x, y, z, t), that fulfills:
 - the wave equation
 - all boundary conditions
- ▶ note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

- wave equation
- speed of sound
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

speed of sound

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

wave equation speed of sound

Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave diffraction

speed of sound

- sound field distortion propagates with the speed of sound c
- ▶ assumption: one-dimensional propagation: p = f(x ct) with f: arbitrary function

inserted in equation from above yields:

$$c = \sqrt{\kappa \frac{P_0}{
ho_0}}$$

$$c \approx 343.2 \sqrt{\frac{T}{293}}$$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

dB-scale

speed of sound: wave equation

insertion of c in wave equation:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

$$\Delta p = rac{1}{c^2} rac{\partial^2 p}{\partial t^2}$$

Z

where

or

 $\triangle p$: three-dimensional Laplace operator

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

- wave equation
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

Helmholtz equation

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation
- Helmholtz equation

types of waves

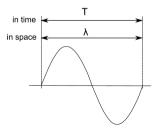
plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effec sonic boom

standing wave


diffraction

dB-scale

- waves with sinusoidal time and space dependency are of special importance in the discussion of theoretical problems
- characterization:

sinusoidal waves

- amplitude
- ▶ period length T or frequency f = 1/T, or angular frequency $\omega = 2\pi f$
- wave length λ or wave number $k = 2\pi/\lambda$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

- Doppler effect
- sonic boom

diffraction

dB-scale

sinusoidal waves

relation between λ , f, k, ω :

 $\lambda = \frac{c}{f}$ $k = \frac{\omega}{c}$

frequency f	wave length λ
100 Hz	3.4 m
1 kHz	34 cm
10 kHz	3.4 cm

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave

diffractio

dB-scale

sinusoidal waves: Helmholtz equation

complex writing for sinusoidal oscillations:

$$\underline{p}(\textit{location},t) = \check{p}(\textit{location}) \cdot e^{j\omega t}$$

where:

p: p,check p(location): complex, location dependent amplitude function $e^{j\omega t}$: oscillation term

calculate $\triangle \underline{p}$ and $\frac{\partial^2 p}{\partial t^2}$:

$$riangle \underline{p} = riangle \check{p} e^{j\omega t}$$

$$\frac{\partial^2 \underline{p}}{\partial t^2} = -\omega^2 \check{p} e^{j\omega t}$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction dB scale

sinusoidal waves: Helmholtz equation

inserted in the wave equation:

$$\triangle p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

yields the Helmholtz equation:

$$\bigtriangleup \check{p} + \frac{\omega^2}{c^2} \check{p} = 0$$

complex amplitude function \check{p} is exclusively a function of location \rightarrow *no explicit time variable*.

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

types of waves

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves

spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

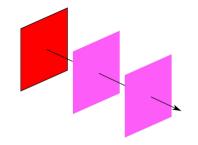
plane waves

plane waves

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations


wave equation speed of sound Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing wave
- diffraction
- dB-scale

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **b** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

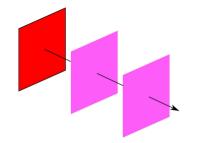
plane waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation


types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

reflection

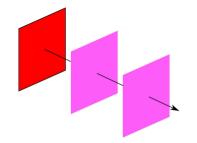
- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- 1100-11-11-11
- unnaction
- dB-scale

excitation by a plane surface

- propagation in one direction only
- wave fronts = plane surfaces
- **b** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

plane waves

introduction


- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

plane waves

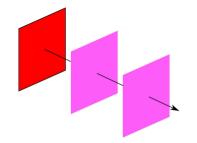
spherical waves cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing wave
- diffraction
- dB-scale

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **b** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

plane waves

introduction


- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing wave
- diffraction
- dB-scale

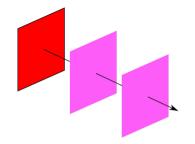
- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **b** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

plane waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations


speed of sound Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **>** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

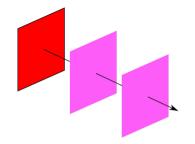
plane waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

speed of sound Helmholtz equation


types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **>** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:

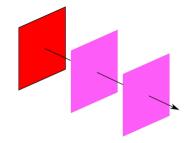
waves at low frequencies propagating in a tube

plane waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations


speed of sound Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effec
- sonic boom
- standing wave
- diffraction
- dB-scale

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- **>** sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - waves at low frequencies propagating in a tube

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation
- Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

plane waves

plane waves fulfill the one-dimensional wave equation:

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

all solutions p(x, t) have the form

$$p(x,t) = f(ct \pm x)$$

where:

f(ct - x): wave traveling in positive x-direction (\rightarrow right) f(ct + x): wave traveling in negative x-direction (\rightarrow left)

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves

spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

plane waves

sinusoidal plane wave (sound pressure) in positive *x*-direction in complex representation:

$$\underline{p}(x,t) = \hat{p}e^{j(-kx+\phi)}e^{j\omega t}$$

where

 \hat{p} : pressure amplitude ϕ : initial phase

assumption for sound particle velocity:

$$\underline{v}_x(x,t) = \check{v}_x e^{j\omega t}$$

where

 \check{v}_x : complex, location dependent amplitude function

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves

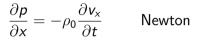
spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom

standing waves


diffraction

dB-scale

plane waves

inserted in

vields:

$$\underline{v}_{x}(x,t) = \frac{1}{\rho c} \underline{p}(x,t)$$

sound pressure and sound particle velocity are in phase, the ratio of their amplitudes (impedance) is

$$Z_0 = rac{\check{p}}{\check{v}} =
ho c$$

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves

spherical waves

cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

- standing waves
- diffraction
- dB-scale

spherical waves

spherical waves

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves

spherical waves

cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wave
- diffraction
- dB-scale

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wav

ical waves

excited by a point source

- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons ightarrow p and $ec{v}$ depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- Helmholtz equation

types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wav
- diffraction
- dB-scale

- excited by a point source
 - propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound

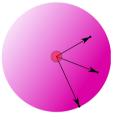
types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of poin sources

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons ightarrow p and $ec{v}$ depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves


introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound

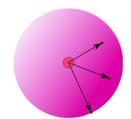
types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of poin sources

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing wave
- diffraction
- dB-scale

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves


introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound

types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of point sources

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- unnaction
- dB-scale

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

spherical waves

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound

types of waves

- plane waves
- spherical waves
- cylindrical waves superposition of poin sources

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing wave
- diffraction
- dB-scale

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - wave radiated by a pulsating sphere

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmboltz equation

types of waves

plane waves

spherical waves

cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing wave

diffractio

dB-scale

spherical waves

guess for sound pressure *p* as function of radius *r*:

$$\underline{p}(r,t) = rac{1}{r} \cdot \underline{p}_{ ext{plane.wave}} = rac{1}{r} \hat{p} e^{j(-kr+\phi)} e^{j\omega t}$$

verification with help of Helmholtz equation in spherical coordinates:

$$\frac{\partial^2 \check{p}}{\partial r^2} + \frac{2}{r} \frac{\partial \check{p}}{\partial r} + k^2 \check{p} = 0$$

insertion \rightarrow o.k.

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves

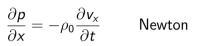
spherical waves

cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect


standing waves

diffraction

dB-scale

spherical waves

with

the sound particle velocity in radial direction is found as:

$$\underline{v}_r(r,t) = \underline{p}(r,t) \left(\frac{1}{\rho c} + \frac{1}{j \omega \rho r}\right)$$

for the impedance Z_s follows

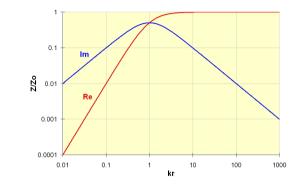
$$Z_s = \frac{\check{p}}{\check{v}} = \rho c \frac{jkr}{1+jkr}$$

roduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound
- Helmholtz equation

types of waves

plane waves


spherical waves

cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wave diffraction
- dB-scale

spherical waves impedance:

 proximity effect for sound particle velocity sensors (e.g. cardioid microphones)

$$\blacktriangleright \ r \to \infty \Rightarrow Z_{\rm spherical.wave} = Z_{\rm plane.wave}$$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves

spherical waves

cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

standing wave

diffraction

dB-scale

sound pressure and sound power of a point source

sound power W of an omnidirectional point source:

$$W = \int_{S} \vec{I} \mathrm{d}\vec{S}$$

if S is the surface of a sphere with radius r, $|\vec{l}(r)|$ is constant:

$$W = I(r)4\pi r^2$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves

spherical waves

cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom

stanting wav

diffraction

dB-scale

sound pressure and sound power of a point source

far field approximation:

$$Z=\frac{p(r)}{v(r)}=\rho_0 c$$

and therefore:

and:

$$\nu(r)=\frac{p(r)}{\rho_0 c}$$

$$I(r) = p_{\rm rms}(r)v_{\rm rms}(r) = \frac{p_{\rm rms}^2(r)}{\rho_0 c}$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound

types of waves

plane waves

spherical waves

cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Sonic boom

diffraction

dB-scale

sound pressure and sound power of a point source

and finally:

near-field?

$$W = \frac{p_{\rm rms}^2(r)}{\rho_0 c} 4\pi r^2$$

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical wave

cylindrical waves

superposition of point sources

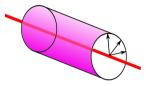
reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

cylindrical waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation
- speed of sound Helmholtz equation


types of waves

- plane waves spherical wave
- cylindrical waves
- superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffractio
- dB-scale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation
- speed of sound Helmholtz equation


types of waves

- plane waves spherical wave
- cylindrical waves
- superposition of poir sources

reflection

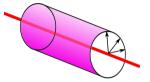
- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffractio
- dB-scale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound
- Helmholtz equation


types of waves

- plane waves spherical wave
- cylindrical waves
- superposition of poin sources

reflection

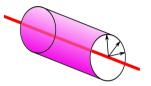
- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- annaetto

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry ightarrow p and $ec{v}$ depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound


types of waves

- plane waves spherical wav
- cylindrical waves
- superposition of poi sources

reflection

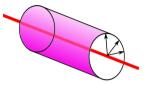
- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffractio
- dB-scale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry ightarrow p and $ec{v}$ depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound


types of waves

- plane waves spherical wave
- cylindrical waves
- superposition of poi sources

reflection

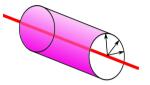
- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffractio
- dB-scale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
 - due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound


types of waves

- plane waves spherical wav
- cylindrical waves
- superposition of poi sources

reflection

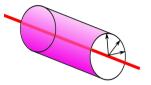
- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- dR coale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations wave equation speed of sound


types of waves

- plane waves spherical wav
- cylindrical waves
- superposition of po sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wave diffraction
- dB-scale

cylindrical waves

- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - hum noise of a high voltage power line

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves
- cylindrical waves
- superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

dB-scale

cylindrical waves

guess for sound pressure *p* as a function of radius *r*:

$$\underline{p}(r,t) = rac{1}{\sqrt{r}} \cdot \underline{p}_{ ext{planewave}} = rac{1}{\sqrt{r}} \hat{p} e^{j(-kr+\phi)} e^{j\omega t}$$

verification with help of the Helmholtz equation in cylindrical coordinates

similar impedance curve as for spherical waves, however near-field / far-field transition for somewhat smaller kr values.

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical wave

cylindrical waves

superposition of poin sources

reflection

specular reflection diffuse Reflexion

- Doppler effect
- standing waves
- diffraction
- dB-scale

overview: wave types

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves

cylindrical waves

superposition of poin sources

reflection

specular reflection diffuse Reflexion

- Doppler effect
- standing waves
- diffraction
- dB-scale

overview: wave types

	plane wave	spherical wave	cylindrical wave
р	const	$\sim \frac{1}{r}$	$\sim rac{1}{\sqrt{r}}$
Ζ	ho c	near/far	near/far

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

- wave equation speed of sound
- Helmholtz equation

types of waves

- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

superposition of point sources

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

superposition of point sources

- determination of total sound pressure stemming from several point sources
- application of the superposition principle (linear acoustics assumed)coherent sources:
 - phase sensitive summation of sound pressure and sound particle velocity
 - $\underline{P}_{tot} = \sum_{i=1}^{N} \underline{P}_i$
 - ightarrow
 ightarrow constructive and destructive interference possible

incoherent sources:

- ► energetic summation → sum of the mean square values of sound pressure or sound particle velocity
 - $ho_{
 m rms,tot}^2 = \sum_{i=1}^N
 ho_{rms,i}^2$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound
- types of waves
- plane waves spherical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

determination of total sound pressure stemming from several point sources

- application of the superposition principle (linear acoustics assumed)
 coherent sources:
 - phase sensitive summation of sound pressure and sound particle velocity
 - $\underline{P}_{\rm tot} = \sum_{i=1}^{N} \underline{P}_i$

superposition of point sources

ightarrow
ightarrow constructive and destructive interference possible

incoherent sources:

► energetic summation → sum of the mean square values of sound pressure or sound particle velocity

 $p_{
m rms,tot}^2 = \sum_{i=1}^N p_{
m rms,i}^2$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

superposition of point sources

- determination of total sound pressure stemming from several point sources
- application of the superposition principle (linear acoustics assumed)
 coherent sources:
 - phase sensitive summation of sound pressure and sound particle velocity
 - <u>P</u>_{tot} = ∑_{i=1}^N <u>P</u>_i
 → constructive and destructive interference possib

incoherent sources:

► energetic summation → sum of the mean square values of sound pressure or sound particle velocity

 $p_{
m rms,tot}^2 = \sum_{i=1}^N p_{
m rms,i}^2$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical wav
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

superposition of point sources

- determination of total sound pressure stemming from several point sources
- ▶ application of the superposition principle (linear acoustics assumed)
- coherent sources:
 - phase sensitive summation of sound pressure and sound particle velocity
 - $\underline{p}_{tot} = \sum_{i=1}^{N} \underline{p}_{i}$
 - \blacktriangleright \rightarrow constructive and destructive interference possible
- incoherent sources:
 - energetic summation \rightarrow sum of the mean square values of sound pressure or sound particle velocity
 - $p_{\rm rms,tot}^2 = \sum_{i=1}^n p_{\rm rms,i}^2$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing waves
- diffraction
- dB-scale

- determination of total sound pressure stemming from several point sources
- ▶ application of the superposition principle (linear acoustics assumed)
- coherent sources:
 - phase sensitive summation of sound pressure and sound particle velocity
 - $\blacktriangleright \underline{p}_{tot} = \sum_{i=1}^{N} \underline{p}_i$

superposition of point sources

- \blacktriangleright \rightarrow constructive and destructive interference possible
- incoherent sources:
 - energetic summation \rightarrow sum of the mean square values of sound pressure or sound particle velocity
 - $\blacktriangleright p_{\rm rms,tot}^2 = \sum_{i=1}^N p_{\rm rms,i}^2$

superposition of point sources

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

- examples of coherent summation?
- examples of incoherent summation?

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound
- types of waves
- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing waves
- diffraction
- dB-scale

superposition of point sources

examples of coherent sources:

- a source and its mirror source
- several transformers that emit 100 Hz due to magnetostriction
- a pair of stereo loudspeakers emitting the same signal
- examples of incoherent sources
 - several machines in a factory building
 - cars on a road

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical wave

superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

incoherent point sources

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound
- types of wave
- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

incoherent point sources along a straight line

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

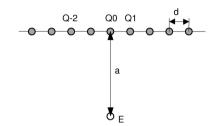
wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves

superposition of point sources

reflection


specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave

- diffractior
- dB-scale

infinite line of incoherent point sources

situation:

contribution of source *n*:

$$p_{\mathrm{rms},n}^2 = \frac{K}{a^2 + (nd)^2}$$

where

K: constant (source strength)

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves

superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave diffraction

dB-scale

infinite line of incoherent point sources

superposition of all contributions:

$$p_{
m rms,tot}^2 = \sum_{n=-\infty}^{+\infty} p_{
m rms,n}^2 = K rac{1}{d^2} \sum_{n=-\infty}^{+\infty} rac{1}{a^2} + n^2$$

with series representation of coth:

$$\coth x = rac{1}{x} + rac{2x}{\pi^2} \sum_{n=1}^{+\infty} rac{1}{rac{x^2}{\pi^2} + n^2}$$

follows:

$$p_{\text{rms,tot}}^2 = \frac{K}{d^2} \frac{\pi d}{a} \coth\left(\frac{\pi a}{d}\right) = \frac{K\pi}{ad} \coth\left(\frac{\pi a}{d}\right)$$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

- wave equation speed of sound
- Helmholtz equation

types of waves

plane waves spherical waves cylindrical wave

superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves
- dB-scale

infinite line of incoherent point sources

discussion \rightarrow two cases:

- $\frac{\pi a}{d}$ small (\rightarrow small distances)
 - $\operatorname{coth}\left(\frac{\pi a}{d}\right) \approx \frac{d}{\pi a}$ • $p_{\mathrm{rms,tot}}^2 \approx \frac{K}{a^2}$
 - $p_{\rm rms,tot} \approx \frac{\sqrt{K}}{a}$
 - spherical wave behavior
- ▶ $\frac{\pi a}{d}$ large (→ large distances) ▶ $\operatorname{coth}\left(\frac{\pi a}{d}\right) \approx 1$
 - $P_{\text{rms,tot}}^2 \approx \frac{K\pi}{ad}$
 - $p_{\rm rms,tot} \approx \sqrt{\frac{K\pi}{d}} \frac{1}{\sqrt{a}}$
 - cylindrical wave behavior

transition (both approximations identical):

$$a=rac{d}{\pi}$$

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical wave

superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wav
- diffractio
- dB-scale

incoherent point sources distributed over an area

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equatio

types of waves

plane waves spherical waves cylindrical waves

superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effec
- standing waves
- diffraction
- $\mathsf{dB}\operatorname{-scale}$

area of incoherent point sources

situation:

- incoherent point sources spread over a rectangular area
 length: L
 width: D
 - ▶ width: *B*

sound pressure as a function of distance *a*:

 $m{a} < m{B}/\pi \ m{B}/\pi < m{a} < L/\pi \ m{L}/\pi < m{a}$

behavior of a plane wave behavior of a cylindrical wave behavior of a spherical wave

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound
- Helmholtz equation

types of wave

- plane waves spherical waves cylindrical wave
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

coherent point sources along a straight line

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound

types of wave

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

infinite line of coherent point sources

phase sensitive summation

- ▶ simplified calculation with help of Fresnel zones (sections with path length differences $< \lambda/2$)
- \blacktriangleright result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for a line of point sources of finite length: line source behavior is valid up to large distances

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction
- $\mathsf{dB}\operatorname{-scale}$

infinite line of coherent point sources

phase sensitive summation

- ▶ simplified calculation with help of Fresnel zones (sections with path length differences $< \lambda/2$)
- \blacktriangleright result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for a line of point sources of finite length: line source behavior is valid up to large distances

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmholtz equation

types of waves

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction
- dB-scale

infinite line of coherent point sources

phase sensitive summation

- simplified calculation with help of Fresnel zones (sections with path length differences < λ/2)
- \blacktriangleright result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for a line of point sources of finite length: line source behavior is valid up to large distances

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound

types of waves

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction
- dB-scale

infinite line of coherent point sources

phase sensitive summation

- simplified calculation with help of Fresnel zones (sections with path length differences < λ/2)
- \blacktriangleright result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for a line of point sources of finite length: line source behavior is valid up to large distances

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound

types of waves

- plane waves spherical waves cylindrical waves
- superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

infinite line of coherent point sources

phase sensitive summation

- simplified calculation with help of Fresnel zones (sections with path length differences < λ/2)
- \blacktriangleright result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for a line of point sources of finite length: line source behavior is valid up to large distances

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction
- $\mathsf{dB}\operatorname{-scale}$

reflection of sound waves at hard boundaries

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves
- diffraction
- dB-scale

reflection of sound waves

- any impedance discontinuity of the medium results in a partial reflection of an incident sound wave
 - specular reflection
 - occurs at plane, large and impedance-homogeneous surfaces
 - diffuse reflection
 - occurs at structured or impedance-inhomogeneous surfaces

scattering

occurs at small objects

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical waves cylindrical waves superposition of poir

reflection

specular reflection

- diffuse Reflexion
- Doppler effec sonic boom standing wave
- diffraction
- dB-scale

specular reflection

specular reflection

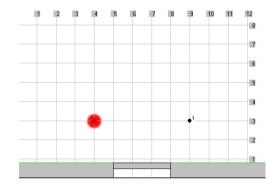
introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound


types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection

Doppler effect sonic boom standing waves diffraction dB-scale

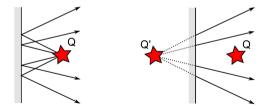
FDTD simulation: plane surface

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection

- diffuse Reflexion
- sonic boom standing wav
- diffraction
- dB-scale

specular reflection

- \blacktriangleright plane, rigid reflector \rightarrow specular reflection
- ▶ reflector \rightarrow boundary condition: $v_n = 0$
- solution: introduction of a mirror source:
 - reflected contribution seems to stem from the *mirror source*

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection

- diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction
- dB-scale

diffuse reflection

diffuse reflection

introduction

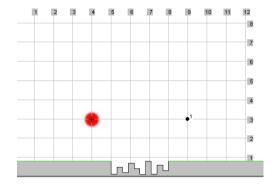
sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound

types of waves


plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection

diffuse Reflexion

Doppler effect sonic boom standing waves diffraction dB-scale

FDTD simulation: structured surface

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

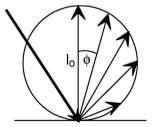
wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection


- diffuse Reflexion
- Doppler effect
- diffraction
- dB-scale

diffuse reflection

diffuse reflection:

directivity often idealized according to Lambert's law:

$$I_{
m refl.}(\phi) = I_0 \cos \phi$$

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equatio

types of wave

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction dB scale

Doppler effect

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction dB-scale

Doppler effect

Doppler effect:

- shift of signal frequency due to movement of source or receiver
 examples:
 - vehicles passing-by
 - simultaneous radiation of low and high frequencies by a loudspeaker membrane
 - Leslie cabinets of Hammond organs

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction dB-scale

Doppler effect

Doppler effect:

- shift of signal frequency due to movement of source or receiver
 examples:
 - vehicles passing-by
 - simultaneous radiation of low and high frequencies by a loudspeaker membrane
 - Leslie cabinets of Hammond organs

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction

Doppler effect

Doppler effect:

- shift of signal frequency due to movement of source or receiver
- examples:
 - vehicles passing-by
 - simultaneous radiation of low and high frequencies by a loudspeaker membrane
 - Leslie cabinets of Hammond organs

introduction

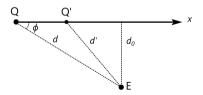
- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion


Doppler effect

sonic boom standing waves diffraction dB scale

Doppler effect

calculation of frequency shift:

- ► *Q*: source
 - moves with speed v_Q in x-direction
 - emits a tone of frequency f_0
- E: receiver
 - $\blacktriangleright\,$ at rest, in distance d under angle $\phi\,$
 - received frequency f?

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction dB-scale

Doppler effect

- Q emits a first maximum at time t = 0
 - arrival at the receiver at time t = d/c
- Q' emits a second maximum at $t = 1/f_0$
 - \blacktriangleright arrival at the receiver at $t=1/f_0+d'/c$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction

Doppler effect

time interval $\ensuremath{\mathcal{T}}$ between the two maxima at the receiver:

$$T = \left(rac{1}{f_0} + rac{d'}{c}
ight) - rac{d}{c}$$

frequency f at the receiver

$$f=rac{1}{T}=rac{1}{rac{1}{f_0}-rac{d-d'}{c}}$$

with d':

$$d'=\sqrt{d^2-2dv_Q\,T_0\cos\phi+v_Q^2\,T_0^2}$$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction dB scale

Doppler effect

for $\phi = 0$ the formula simplifies to:

$$d'=d-v_QT_0$$

and the frequency at the receiver becomes:

$$f = f_0 \frac{c}{c - v_Q}$$

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equatio

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom

standing waves diffraction

sonic boom

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect

sonic boom

standing waves diffraction

- \blacktriangleright sonic boom generated by sources with speed v>c
- examples:

sonic boom

- air planes
- projectiles
- high signal amplitudes due to wave front steepening

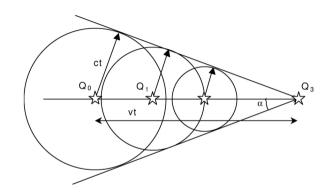
sonic boom: Mach's cone

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom

- standing waves diffraction
- dB-scale

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing waves
- diffraction
- $\mathsf{dB}\operatorname{-scale}$

standing waves

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- some boom
- standing waves
- dB-scale

standing waves

perfect standing waves occur in case of:

- superposition of plane waves traveling in opposite directions with
 - identical frequency
 - identical amplitude

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effec
- sonic boom
- standing waves
- diffraction
- dB-scale

standing waves wave $1 \rightarrow : \underline{p}_1(x, t) = \hat{p}e^{j(\omega t - kx)}$ wave $2 \leftarrow : \underline{p}_2(x, t) = \hat{p}e^{j(\omega t + kx)}$

$$\underline{\underline{p}}_{tot}(x,t) = \underline{\underline{p}}_1(x,t) + \underline{\underline{p}}_2(x,t)$$

$$= \hat{p}e^{j\omega t} \left(e^{-jkx} + e^{jkx}\right)$$

$$= \hat{p}e^{j\omega t} \left(\cos(-kx) + j\sin(-kx) + \cos(kx) + j\sin(kx)\right)$$

$$= \hat{p}e^{j\omega t} 2\cos(kx)$$

- no propagating wave
- harmonic oscillation with local cos(kx)-modulation
 - 🕨 maxima
 - minima

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

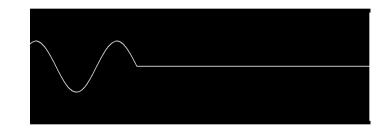
wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion


Doppler effect sonic boom standing waves

diffraction

dB-scale

standing waves

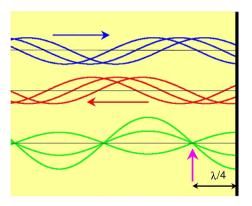
example: plane wave is reflected at a hard surface (sound pressure is shown):

movement of sound particles:

standing waves

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound


types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

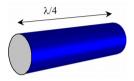
- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom
- standing waves
- diffraction
- dB-scale

standing wave in front of a rigid reflector sound pressure:

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves


plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- dB-scale

standing waves: $\lambda/4$ resonator

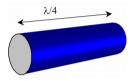
tube open on one side, closed at the other end:

- tube forces a pressure minimum at the open end
 creates a local sound field discontinuity
- equalization by strong pressure increase inside the tube

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation
- speed of sound Helmholtz equation

types of waves


plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- dB-scale

standing waves: $\lambda/4$ resonator

tube open on one side, closed at the other end:

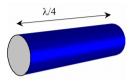
▶ tube forces a pressure minimum at the open end

- creates a local sound field discontinuity
 - equalization by strong pressure increase inside the tube

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound

types of waves


plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

standing waves: $\lambda/4$ resonator

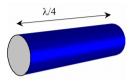
tube open on one side, closed at the other end:

- tube forces a pressure minimum at the open end
 creates a local sound field discontinuity
 - equalization by strong pressure increase inside the tube

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound

types of waves


plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves
- diffraction
- dB-scale

standing waves: $\lambda/4$ resonator

tube open on one side, closed at the other end:

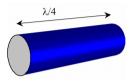
- tube forces a pressure minimum at the open end
- creates a local sound field discontinuity
- equalization by strong pressure increase inside the tube

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources


reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing waves diffraction

standing waves: $\lambda/4$ resonator

tube open on one side, closed at the other end:

- ► tube forces a pressure minimum at the open end
- creates a local sound field discontinuity
- equalization by strong pressure increase inside the tube

example: maximum sensitivity of the human ear between 3...4 kHz due to a $\frac{\lambda}{4}$ resonance of the ear canal (length 2.5 cm).

introduction

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equatio

types of wave

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing waves

diffraction

dB-scale

diffraction phenomena

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- diffraction
- dB-scale

sound waves are bent around corners (diffracted)

- sound reaches a receiver even in case of interrupted sight line
- diffraction process corresponds to low-pass filtering

diffraction phenomena

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

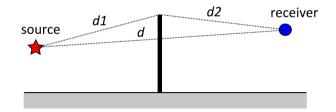
specular reflection diffuse Reflexion

Sonic boom

standing waves

diffraction

dB-scale


diffraction phenomena: Maekawa's formula attenuation A_H due to an obstacle:

$$A_H = 10 \log \left(3 + 20 rac{z}{\lambda/2}
ight)$$
 [dB]

where

 λ : wavelength

z: path length difference source - edge of the barrier - receiver and source - receiver $z = d_1 + d_2 - d$

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of wave

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- diffraction

dB-scale

dB-scale level quantities

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equation wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

dB-scale

dB-scale: level quantities

dB-scale:

$$\mathsf{level} = 10 \cdot \mathsf{log}\left(rac{\mathsf{powerX}}{\mathsf{powerY}}
ight) \quad [\mathsf{dB}]$$

acoustical quantities proportional to power:

- **>** sound pressure square p^2
- **>** sound particle velocity square v^2
- sound intensity I
- ► sound power W

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

dB-scale

dB-scale: level quantities

- comparison of quantities
- e.g. quantity X is 3 dB larger than quantity Y
 expression of a quantity in relation to a reference
 sound pressure level L_ρ = 10 · log (p/210⁻⁵Pa)²
 sound intensity level L_l = 10 · log (1/10⁻¹²W/m²)
 - Sound power level $L_W = 10 \cdot \log \left(\frac{10}{10}\right)$ for plane waves: $L_p \approx L_1$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

dB-scale

dB-scale: level quantities

- comparison of quantities
 - e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - > sound pressure level $L_p = 10 \cdot \log \left(\frac{\rho}{2 \cdot 10^{-5} \mathrm{F}} \right)$
 - **•** sound intensity level $L_I = 10 \cdot \log \left(\frac{I}{10^{-12} \text{W}} \right)$
 - ▶ sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12}W}\right)$ ▶ for plane waves: $L_p \approx L_l$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves diffraction

$\mathsf{dB}\operatorname{-scale}$

dB-scale: level quantities

- comparison of quantities
 - e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2 \cdot 10^{-5} \text{Pa}}\right)^2$
 - ▶ sound intensity level $L_I = 10 \cdot \log (1)$
 - ▶ sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12}W}\right)$
 - for plane waves: $L_p \approx L_I$

dB-scale

dB-scale: level quantities

- comparison of quantities
 - \triangleright e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2.10^{-5} \text{D}_2}\right)^2$
 - ▶ sound intensity level $L_I = 10 \cdot \log \left(\frac{I}{10^{-12} W/m^2} \right)$
 - ▶ sound power level $L_W = 10 \cdot \log \left(\frac{W}{10 12M}\right)$
 - \blacktriangleright for plane waves: $L_p \approx L_l$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

dB-scale

dB-scale: level quantities

- comparison of quantities
 - \blacktriangleright e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2 \cdot 10^{-5} \text{Pa}}\right)^2$
 - ▶ sound intensity level $L_I = 10 \cdot \log \left(\frac{l}{10^{-12} \text{W/m}^2}\right)$
 - sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12}W}\right)$
 - for plane waves: $L_p \approx L_I$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

dB-scale

dB-scale: level quantities

- comparison of quantities
 - \blacktriangleright e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - ► sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2 \cdot 10^{-5} \text{Pa}}\right)^2$
 - ▶ sound intensity level $L_I = 10 \cdot \log \left(\frac{l}{10^{-12} \text{W/m}^2}\right)$
 - ▶ sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12}W}\right)$ ▶ for plane waves: $L_0 \approx L_1$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poir sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

dB-scale

dB-scale: level quantities

- comparison of quantities
 - e.g. quantity X is 3 dB larger than quantity Y
- expression of a quantity in relation to a reference
 - ► sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2 \cdot 10^{-5} \text{Pa}}\right)^2$
 - ▶ sound intensity level $L_I = 10 \cdot \log \left(\frac{l}{10^{-12} \text{W/m}^2}\right)$
 - sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12}W}\right)$
 - for plane waves: $L_p \approx L_I$

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves
- diffraction
- dB-scale

dB-scale: level quantities

consequences of the dB-scale:

- multiplication of quantities corresponds to an addition in the dB-scale
 - example: amplification of the power by a factor of 2 corresponds to a level increase by +3 dB
- audible range is mapped onto the sound pressure level interval L_p: 0...120 dB
 - constant loudness variation corresponds to a constant dB step

dB-scale: level quantities

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves

dB-scale

subtlety of the dB-scale:

0dB, +1dB, 0dB, +3dB, 0dB, +6dB, 0dB, +10dB, 0dB

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

specular reflection diffuse Reflexion

sonic boom

standing waves

diffraction

dB-scale

subtlety of the dB-scale:

dB-scale: level quantities

level difference	perception
< 2 dB	not audible
24 dB	just audible
510 dB	clearly audible
> 10 dB	very convincing

dB-scale: level quantities

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

sonic boom standing waves

dB-scale

typical sound pressure level values:

sound source	sound pressure level
speech in 2 m	60 dB
road traffic in 10 m st	70 dB
air plane in 100 m	120 dB

* 1000 vehicles/h, 80 km/h

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect sonic boom standing wave

diffraction

dB-scale

dB-scale: level quantities

calculations with decibel quantities:

- caution: logarithmic quantity
- \blacktriangleright multiplication of underlying physical quantities \rightarrow addition of dB quantities
- \blacktriangleright summation of underlying physical quantities \rightarrow addition of the linear quantities

$$\blacktriangleright L_{W,tot} = 10 \log \left(10^{0.1 L_{W1}} + 10^{0.1 L_{W2}} \right)$$

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation

Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

Some Boom

standing waves

diffraction

 $\mathsf{dB}\operatorname{-scale}$

colouisticne with desided eventities, important values of the la

dB-scale: level quantities

calculations with decibel quantities: important values of the \log_{10} function:

а	$\log(a)$	$10\log(a)$	$10 \log(a^2)$
0.01	-2	-20	-40
0.1	-1	-10	-20
0.5	pprox -0.3	pprox -3	pprox -6
1	0	0	0
2	pprox 0.3	≈ 3	pprox 6
3	pprox 0.5	pprox 5	pprox 10
10	1	10	20
100	2	20	40
1000	3	30	60
10000	4	40	80

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing wave
- dB-scale

distance dependency of prototype waves in dB scale

sound pressure or intensity variation for a doubling of distance:

	plane wave	spherical wave	cylindrical wave
ΔL	0 dB	-6 dB	-3 dB

introductio

- sound wave phenomena special topics in acoustic history of acoustics
- basic quantities

basic equations

wave equation speed of sound

types of waves

plane waves spherical waves cylindrical waves superposition of poi sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing waves
- diffraction
- dB-scale

signal prototypes

pure tone: time course and spectrum

introduction

sound wave phenomena special topics in acoustic history of acoustics

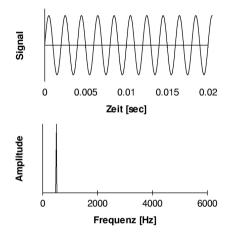
basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction

pure tone 440 Hz

complex tonal sound: time course and spectrum

introduction

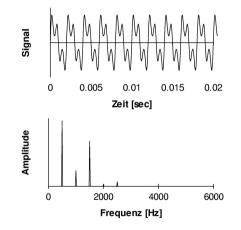
sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound

types of wave


plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction

complex tonal sound 440 Hz + 3. + 5. harmonic

white noise: time course and spectrum

introduction

sound wave phenomena special topics in acoustics history of acoustics

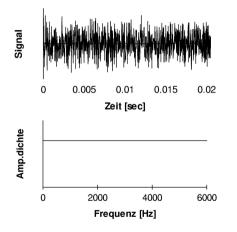
basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction

white noise

pink noise: time course and spectrum

introduction

sound wave phenomena special topics in acoustics history of acoustics

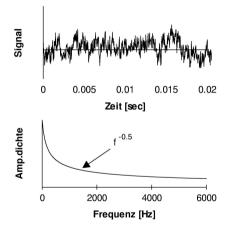
basic quantities

basic equations

wave equation speed of sound

types of wave

plane waves spherical waves cylindrical waves superposition of point sources


reflection

specular reflection diffuse Reflexion

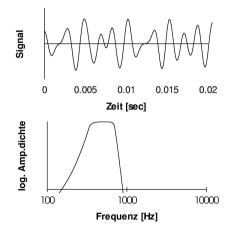
Doppler effect

sonic boom standing waves diffraction

pink noise

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities
- basic equations
- wave equation speed of sound


types of wave

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- sonic boom standing wav
- diffractior
- $\mathsf{dB}\operatorname{-scale}$

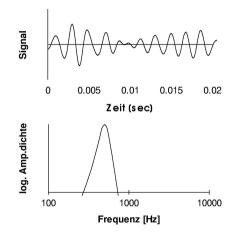
500 Hz octave band filtered noise: time course and spectrum

introduction

sound wave phenomena special topics in acoustics history of acoustics

basic quantities

- basic equations
- wave equation speed of sound
- Helmholtz equation


types of waves

plane waves spherical waves cylindrical waves superposition of poin sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect
- standing wave
- diffraction
- dB-scale

500 Hz third octave band filtered noise: time course and spectrum

sweeping third octave band noise

bang: time course and spectrum

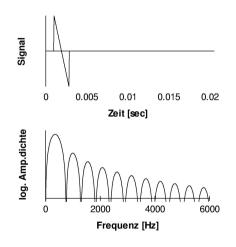
sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound

types of wave


plane waves spherical waves cylindrical waves superposition of poin sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing wave diffraction

tone burst: time course and spectrum

introduction

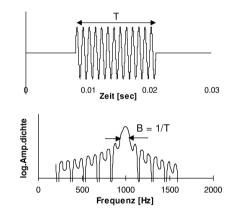
sound wave phenomena special topics in acoustics history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves


plane waves spherical waves cylindrical waves superposition of point sources

reflection

specular reflection diffuse Reflexion

Doppler effect

sonic boom standing waves diffraction

bursts 440 Hz: 1, 2, 4, 8, 16, 32, 64, 128, 256 cycles

sweep: time course

introduction

sound wave phenomena special topics in acoustic history of acoustics

basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom standing waves
- diffraction
- dB-scale

Tegs 0 0.02 0.04 0.06 0.08 Zeit [sec]

sinus sweep

introduction

- sound wave phenomena special topics in acoustics history of acoustics
- basic quantities

basic equations

wave equation speed of sound Helmholtz equation

types of waves

plane waves spherical waves cylindrical waves superposition of point sources

reflection

- specular reflection diffuse Reflexion
- Doppler effect sonic boom
- standing wav
- diffractio
- dB-scale

eth-acoustics-1