introductio

airborne sour insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acoustics I: building acoustics

> Kurt Heutschi 2022-12-12

introduction

- airborne sour insulation
- single walls
- double walls
- standard soun pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

introduction

introduction

- airborne soun insulation
- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

introduction

- ▶ building acoustics → noise abatement in buildings (suppression of noise from neighbors)
- annoying sound is usually transmitted by vibrations of the building structure and then radiated by walls or ceilings
- excitation of these vibrations:
 - > airborne sound sources such as e.g. voices, loudspeakers
 - \blacktriangleright structure borne sound \rightarrow vibration sources such as e.g. footsteps

introduction

- airborne soun insulation
- single walls
- double walls
- standard soun pressure level difference
- impact sound insulation
- SIA 183
- construction hints
- movie Cremer Fröbe
- back

introduction

- ▶ property of a structure to suppress airborne sound transmission → airborne sound insulation
- ▶ property of a structure to suppress structure borne sound transmission → impact sound insulation

introductio

airborne sound insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

airborne sound insulation

airborne sound insulation

experiment:

introduction

airborne sound insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

structure under investigation D Д sender room receiver room

introduction

airborne sound insulation

single walls

- double walls
- standard sound pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

airborne sound insulation

sound insulation index R (independent of the test object area):

$${\sf R} = 10 \log \left(rac{P_1}{P_2}
ight)$$
 [dB]

where

- P_1 : incident sound power on the sender side
- P_2 : sound power that is radiated by the rear side of the structure

introduction

airborne sound insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer / Fröbe

back

airborne sound insulation

▶ measurement of *R*:

$$P_1 = \frac{\frac{p_1^2}{\rho c}}{4}S$$

0

 p_1 : diffuse field sound pressure in sender room S: area of the structure under consideration

$$P_2 = \frac{\frac{p_2^2}{\rho c}}{4} A_2$$

 p_2 : diffuse field sound pressure in receiver room A_2 : total absorption of receiver room = $0.16V_2/T_2$

introduction

airborne sound insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

airborne sound insulation

from above follows:

$$R = 10 \log \frac{p_1^2}{p_2^2} + 10 \log \frac{S}{A_2}$$

and finally:

with:

$$R = L_1 - L_2 + 10 \log \left(\frac{S}{A_2}\right) \qquad [dB]$$

 L_1 : average sound pressure level in the sender room (in third octaves) L_2 : average sound pressure level in the receiver room (in third octaves)

introduction

airborne sound insulation

- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation
- SIA 183
- construction hints
- movie Cremer Fröbe
- back

airborne sound insulation

- \blacktriangleright sound insulation index R is frequency dependent
- rated sound insulation index R_w: single value obtained by weighting of the frequency response with a reference curve

introduction

airborne soun insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

sound insulation of single walls

introduction

airborne sound insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

sound insulation of single walls

▶ for plates, *R* depends on:

- ▶ area specific mass *m*″
 - thickness
 - density
- modulus of elasticity
- frequency

introduction

airborne sound insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

sound insulation of single walls

typical frequency dependency of R:

 $\begin{array}{ll} \operatorname{domain} \mathsf{A} \ \mbox{mass law:} \ R = 20 \log(f \cdot m'') - 47 \ \ \mbox{[dB]} \\ \operatorname{domain} \mathsf{B} \ \mbox{coincidence collapse } \mathsf{f}(\phi) \text{:} \\ \lambda_{\text{bending:wave:plate}} = \lambda_{\text{projection:air:borne:sound:wave}} \\ \operatorname{domain} \mathsf{C} \ \mbox{above coincidence, increase about } 25 \ \mbox{dB/decade} \end{array}$

introduction

airborne soun insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

sound insulation of double walls

introduction

- airborne soun insulation
- single walls

double walls

- standard sound pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

sound insulation of double walls

construction:

- wall 1 + spacing (usually air) + wall 2
- assumption of piston movement of walls: mass + spring + mass
- \blacktriangleright \rightarrow resonance leads to a collapse of sound insulation
- ▶ above resonance massive increase of sound insulation with frequency

introduction

airborne sour insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

standard sound pressure level difference

introduction

- airborne soun insulation
- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

standard sound pressure level difference

- disturbance due to to a noisy neighbor depends on
 - sound insulation index R of the structural elements
 - common area F of the structural elements
 - reverberation of the receiver room
- \blacktriangleright \rightarrow standard sound pressure level difference D_{nT}

introduction

airborne soun insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer , Fröbe

back

standard sound pressure level difference

it can be found (standard reverberation time 0.5 s):

$$D_{nT} = R + 10 \log\left(rac{V}{F}
ight) - 4.9$$

with:

- V: room volume of the receiver room $[m^3]$
- F: common area
 - ▶ rated sound insulation index $R_w \rightarrow$ rated standard sound pressure level difference $D_{nT,w}$

introduction

airborne sour insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

impact sound insulation

introduction

- airborne sour insulation
- single walls
- double walls
- standard sound pressure level difference

impact sound insulation

- SIA 181
- construction hints
- movie Cremer Fröbe
- back

impact sound insulation

- \blacktriangleright excitation by hammers \rightarrow standardized tapping machine
 - hammers of specified weight
 - specified falling height
 - specified excitation frequency

introduction

- airborne sour insulation
- single walls
- double walls
- standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer , Fröbe

back

impact sound insulation

- measurement of average sound pressure level L_i in third octaves in the receiver room
- calculation of standard impact sound level L_n in third octaves: total absorption of 10 m² in the receiver room is assumed

$$L_n = L_i - 10 \log \left(\frac{10 T_i}{0.163 V}\right)$$

where:

- V: volume of the receiver room $[m^3]$
- T_i : reverberation time in the receiver room in third octaves
 - transformation into single value $L_{n,w}$ analogous to sound insulation index by using a reference curve.

introduction

airborne sour insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

Swiss standard SIA 181

introduction

- airborne sour insulation
- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation

SIA 181

- construction hints
- movie Cremer Fröbe
- back

SIA 181: Noise protection in buildings

- SIA 181: defines building acoustical requirements according to state of the art in building technology
- noise protection defined for two classes:
 - minimal requirements
 - have to be fulfilled always
 - increased requirements
 - have to be applied for single family houses that are built together
 - may be applied in other situations with agreement by contract

introduction

- airborne soun insulation
- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation

SIA 181

- construction hints
- movie Cremer Fröbe
- back

SIA 181: Noise protection in buildings

- requirements defined as limiting values for
 - sound pressure level differences for
 - exterior airborne sound
 - interior airborne sound
 - impact sound

introduction

- airborne soun insulation
- single walls
- double walls
- standard soun pressure level difference
- impact sound insulation

SIA 181

- construction hints
- movie Cremer Fröbe
- back

SIA 181: Noise protection in buildings

- two-dimensional scheme of limiting values:
 - first dimension: intensity of the source
 - second dimension: degree of sensitivity of the inhabitants for a certain usage of the room

- introduction
- airborne soun insulation
- single walls
- double walls
- standard soun pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer Fröbe
- back

construction hints for good building acoustical conditions

introduction

airborne sound insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 183

construction hints

movie Cremer Fröbe

back

construction hints for good building acoustical conditions

arrangement of rooms:

- suitable arrangement of rooms may help to avoid noise problems
- good strategy: no rooms with different usage next to each other (horizontally and vertically)

introduction

airborne sound insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 18

construction hints

movie Cremer , Fröbe

back

construction hints for good building acoustical conditions

doors and windows:

- typical maximal sound insulation of doors and windows: 35 to 40 dB
- usually significantly weaker than walls
- ▶ for increased requirements special constructions have to be used

introduction

airborne soun insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 18:

construction hints

movie Cremer , Fröbe

back

construction hints for good building acoustical conditions

leakage:

- already small openings (cracks) reduce sound insulation between adjacent rooms drastically
- ▶ typical leakage elements: lead-throughs for cables or ventilation ducts

introduction

airborne soun insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 18:

construction hints

movie Cremer , Fröbe

back

construction hints for good building acoustical conditions

floating floors:

- \blacktriangleright bad idea to put walls directly on concrete floor \rightarrow high structure borne sound transmission
- remedy: floating floors:
 - put layer of low stiffness on the concrete floor
 - floating top cover without contact to walls

introduction

airborne sour insulation

single walls

double walls

standard soun pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer / Fröbe

back

movie Cremer / Fröbe

introduction

- airborne soun insulation
- single walls
- double walls
- standard sound pressure level difference
- impact sound insulation
- SIA 181
- construction hints
- movie Cremer / Fröbe
- back

movie Cremer / Fröbe

Lehrfilm Cremer Fröbe - Teil 1 Lehrfilm Cremer Fröbe - Teil 2

introduction

airborne sour insulation

single walls

double walls

standard sound pressure level difference

impact sound insulation

SIA 181

construction hints

movie Cremer Fröbe

back

eth-acoustics-1