#### introductio

absorption

characterizatio

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

### ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# Acoustics I: absorption-reflection-transmission

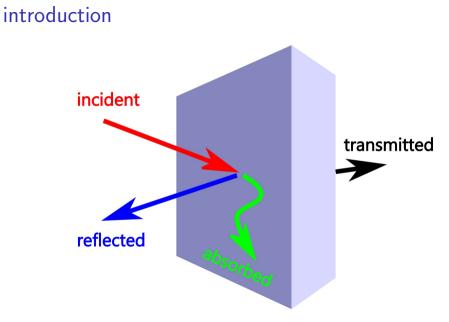
Kurt Heutschi 2022-12-12

#### introduction

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back


# introduction

#### introduction

#### absorption

- characterizati
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back



#### introductio

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

# absorption

#### introductio

#### absorption

#### characterization

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# characterization of absorption and reflection

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### characterization of absorption and reflection

 $\blacktriangleright$  absorption property  $\rightarrow$  absorption coefficient (real, 0 <  $\alpha$  < 1 )

 $\alpha = \frac{\text{absorbed energy}}{\text{incident energy}}$ 

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedanc
- typical absorption coefficients
- covers
- back

### characterization of absorption and reflection

▶ reflection property  $\rightarrow$  reflection factor (complex, 0 < |R| < 1)

 $R = \frac{\text{sound pressure reflected wave}}{\text{sound pressure incident wave}}$ 

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### characterization of absorption and reflection

### $\blacktriangleright$ relation between $\alpha$ and R

 $\alpha = 1 - \left| R \right|^2$ 

#### introductio

#### absorption

characterization

#### absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# absorber types

#### introductio

absorption

characterization

#### absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# porous absorbers

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### porous absorbers

materials:

- glass fibers
- organic fibers (e.g. wood)
- open foams

absorption mechanism:

- sound particle velocity corresponds to oscillating air in the pores  $\rightarrow$  friction losses
- optimal placement:
  - at location where sound particle velocity is high

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### porous absorbers

materials:

- glass fibers
- organic fibers (e.g. wood)
- open foams
- absorption mechanism:
  - sound particle velocity corresponds to oscillating air in the pores
  - $\blacktriangleright$   $\rightarrow$  friction losses
- optimal placement:
  - at location where sound particle velocity is high

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### porous absorbers

- materials:
  - glass fibers
  - organic fibers (e.g. wood)
  - open foams
- absorption mechanism:
  - sound particle velocity corresponds to oscillating air in the pores
  - $\blacktriangleright$   $\rightarrow$  friction losses
- optimal placement:
  - at location where sound particle velocity is high

#### introductio

absorption

characterization

#### absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# resonance absorber: type Helmholtz

#### introductio

#### absorption

characterization

#### absorber types

- measurement methods
- typical absorption coefficients
- covers

#### back

### resonance absorber: type Helmholtz

- configuration:
  - damped spring-mass system
    - spring = enclosed air volume
    - mass = oscillating air column
    - damping = lossy element
- absorption mechanism:
- ▶ maximal absorption due to high velocity friction losses at resonance resonance frequency  $f_{res}$  for stiffness *s* and mass *m*:

$$f_{\rm res} = \frac{\sqrt{\frac{s}{m}}}{2\pi}$$

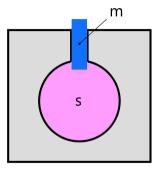
#### introduction

absorption

characterization

#### absorber types

measurement methods


absorption and impedance

typical absorption coefficients

covers

back

### resonance absorber: type Helmholtz



 $\blacktriangleright$  mass m = ?

▶ stiffness of the spring *s* = ?

#### introduction

absorption

characterization

#### absorber types

measurement methods

typical absorption coefficients

covers

back

### resonance absorber: type Helmholtz

#### mass m:

- mass of the oscillating air column:
  - mass of cylinder of length l + end correction  $l_{corr}$
  - $I_{\rm corr} \approx 0.8R$  (radius of cylinder)
  - ▶ with S: cross sectional area of cylinder follows:

$$m = 
ho_0 (I + I_{
m corr}) S$$

#### introductior

#### absorption

#### characterization

#### absorber types

measurement methods

absorption and impedanc

sypical absorption coefficients

covers

#### back

### resonance absorber: type Helmholtz

### stiffness *s* of the spring:

- piston acting on air volume
- virtual experiment
  - air cavity of volume V
  - $\blacktriangleright$  piston of area S
  - external force F makes piston to sink in by  $\Delta I$

#### introduction

#### absorption

characterization

#### absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

#### back

### resonance absorber: type Helmholtz

force  ${\it F}$  leads to a pressure change  $\Delta {\it P}$  with

$$\Delta P = \frac{F}{S}$$

### penetration depth $\Delta I$ corresponds to $\Delta V$ with

$$\Delta V = -\Delta I \cdot S$$

#### introductio

absorption

characterization

#### absorber types

measurement methods

absorption and impeda

coefficients

covers

back

### resonance absorber: type Helmholtz

adiabatic state change (linearized):

$$\frac{\Delta P}{P_0} = -\kappa \frac{\Delta V}{V}$$

$$\frac{F}{\Delta I} = \kappa \frac{P_0 S^2}{V}$$

with

inserted:

$$c=\sqrt{\kapparac{P_0}{
ho_0}}$$

follows

$$\frac{F}{\Delta I} = s = c^2 \rho_0 \frac{S^2}{V}$$

#### introductio

#### absorption

characterization

#### absorber types

- measurement methods
- typical absorption coefficients
- covers

#### back

### resonance absorber: type Helmholtz

### resonance frequency:

$$f_{\mathsf{res}} = rac{c}{2\pi} \sqrt{rac{S}{V(l+l_{\mathsf{corr}})}}$$

- for practical applications: installation of porous damping in the resonator neck (max. velocity)
  - energy loss
  - Iowering of the resonator quality factor
  - extension of absorbing effect over a wider frequency range

introductio

absorption

characterization

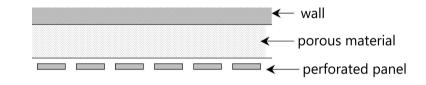
#### absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers


back

# resonance absorber: panels with holes or slits (Helmholtz)

### panel with holes

#### absorber types

### perforated panel in front of an air cavity (with damping material)



- spring-mass resonator with:
  - spring: air cavity
  - mass: mass of the oscillating air columns in the holes (end correction!)
  - damping: porous absorber in the cavity

#### introductio

absorption

characterization

#### absorber types

measurement methods

absorption and impedance

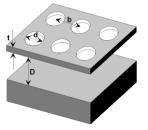
typical absorption coefficients

covers

back

# resonance absorber: micro-perforated absorber (Helmholtz)

#### introductio


- absorption
- characterization

#### absorber types

- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### micro-perforated absorber

panel with very small holes in front of an air cavity

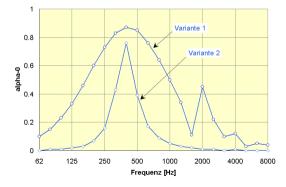


- spring-mass resonator where:
  - spring: air cavity
  - mass: mass of the oscillating air columns (end correction!)
  - damping: friction losses in the tiny holes
- analytical description available

#### introductio

#### absorption

characterization


#### absorber types

- measurement methods
- typical absorption
- covers

#### back

### micro-perforated absorber

|                  | variant 1 | variant 2 |
|------------------|-----------|-----------|
| plate thickness  | 3 mm      | 3 mm      |
| holes diameter   | 0.4 mm    | 2 mm      |
| holes spacing    | 2 mm      | 15 mm     |
| distance to wall | 100 mm    | 50 mm     |



#### introduction

- absorption
- characterizatio

#### absorber types

- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### micro-perforated absorber

transparent solutions are possible!



introductio

absorption

characterizatio

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

#### introductio

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedanc
- coefficients
- covers
- back

### resonance absorber: membrane absorber

- configuration:
  - damped spring-mass system
    - spring = enclosed air
    - mass = vibrating plate or membrane
    - damping = porous material and plate
- absorption mechanism:

• maximal absorption at resonance due to losses in the plate and in air resonance frequency  $f_{res}$  for stiffness s'' per unit area and mass m'' per unit area:

$$f_{
m res} = rac{\sqrt{rac{s''}{m''}}}{2\pi}$$

#### introductio

#### absorption

characterization

#### absorber types

measurement methods

typical absorption coefficients

covers

#### back

### resonance absorber: membrane absorber

stiffness s'' of air cavity per unit area:

$$s'' = \frac{\rho_0 c^2}{I_w}$$

### with

 $l_w$ : distance to wall (thickness of air cavity) and consequently:

$$f_{
m res} = rac{c\sqrt{rac{
ho_0}{m'' I_w}}}{2\pi}$$

#### introduction

- absorption
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### resonance absorber: membrane absorber

### ► field of application: low frequency absorbtion

- design rules:
  - plate area  $> 0.4 \text{ m}^2$
  - plate dimensions > 0.5 m
  - air cavity has to be filled with porous materia
- ▶ typical absorption  $\alpha \approx$  0.6 over 1...2 octaves
- sandwich combinations with porous absorber possible
- optimal placement:
  - where sound pressure is maximal

#### introduction

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- coefficients
- covers
- back

- field of application: low frequency absorbtion
- design rules:
  - $\blacktriangleright$  plate area > 0.4 m<sup>2</sup>
  - plate dimensions > 0.5 m
  - air cavity has to be filled with porous material
- ▶ typical absorption  $\alpha \approx 0.6$  over 1...2 octaves
- sandwich combinations with porous absorber possible
- optimal placement:
  - where sound pressure is maximal

#### introduction

- absorption
- characterization
- absorber types
- measurement methods
- typical absorption
- covers
- back

- field of application: low frequency absorbtion
- design rules:
  - $\blacktriangleright$  plate area > 0.4 m<sup>2</sup>
  - plate dimensions > 0.5 m
  - air cavity has to be filled with porous material
- ▶ typical absorption  $\alpha \approx$  0.6 over 1...2 octaves
- sandwich combinations with porous absorber possible
- optimal placement:
  - where sound pressure is maximal

#### introduction

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- coefficients
- covers
- back

- field of application: low frequency absorbtion
- design rules:
  - $\blacktriangleright$  plate area > 0.4 m<sup>2</sup>
  - plate dimensions > 0.5 m
  - air cavity has to be filled with porous material
- ▶ typical absorption  $\alpha \approx$  0.6 over 1...2 octaves
- sandwich combinations with porous absorber possible
- optimal placement:
  - where sound pressure is maximal

#### introduction

- absorption
- characterization
- absorber types
- measurement methods
- typical absorption
- covers
- back

- field of application: low frequency absorbtion
- design rules:
  - $\blacktriangleright$  plate area > 0.4 m<sup>2</sup>
  - plate dimensions > 0.5 m
  - air cavity has to be filled with porous material
- ▶ typical absorption  $\alpha \approx$  0.6 over 1...2 octaves
- sandwich combinations with porous absorber possible
- optimal placement:
  - where sound pressure is maximal

#### introductio

#### absorption

characterization

#### absorber types

measurement methods

absorption and impedance

typical absorptic coefficients

covers

back





#### introductio

#### absorption

characterization

absorber type

#### measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# measurement methods

#### introductior

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

## measurement of absorption

- methods:
  - Kundt's tube
  - Impedance tube
  - Reverberation chamber
  - Impulse response in situ

#### introduction

#### absorption

characterization

absorber types

#### measurement methods

absorption and impedance

typical absorption coefficients

covers

#### back

### measurement of absorption

### properties of the methods

|                       | sound field | incidence | phase | frequency     |
|-----------------------|-------------|-----------|-------|---------------|
| Kundt's tube          | plane       | normal    | (no)  | discrete      |
| Impedance tube        | plane       | normal    | yes   | spectrum      |
| Reverberation chamber | diffuse     | diffuse   | no    | third octaves |
| Impulse response      | spherical   | arbitrary | yes   | spectrum      |

#### introductio

#### absorption

characterizatio

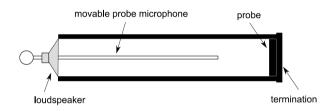
absorber type

#### measurement methods

absorption and impedance

typical absorption coefficients

covers


back

# Kundt's tube

Kundt's tube

#### introductio

- absorption
- characterization
- absorber type
- measurement methods
- absorption and impedance
- typical absorptic coefficients
- covers
- back



- tube diameter  $\ll \lambda$  (typ. 10 cm or 2 cm)
- incident and reflected sinusoidal plane wave form an interference pattern (standing wave)
- $\blacktriangleright$  based on ratio  $\frac{p_{\max}}{p_{\min}}$ , absorption coefficient  $\alpha$  can be calculated

#### introductio

absorption

characterization

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

## Kundt's tube

 $p_e$ : sound pressure amplitude of incident wave  $p_r$ : sound pressure amplitude of reflected wave

$$\frac{p_r}{p_e} = \sqrt{1-\alpha}$$

sound pressure maxima: constructive interference:

$$p_{\max} = p_e + p_r = p_e(1 + \sqrt{1 - lpha})$$

sound pressure minima: destructive interference:

$$p_{\min} = p_e - p_r = p_e(1 - \sqrt{1 - lpha})$$

#### introductio

absorption

characterization

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

### Kundt's tube

from:

 $n=rac{p_{\max}}{p_{\min}}$ 

### follows for the absorption coefficient:

$$\alpha = 1 - \left(\frac{n-1}{n+1}\right)^2$$

#### introductio

absorption

characterizatio

absorber type

measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# impedance tube

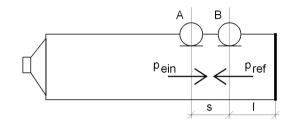
#### introductior

#### absorption

characterization

absorber type:

measurement methods


absorption and impedance

typical absorption coefficients

covers

back

### impedance tube



• tube diameter  $\ll \lambda$  (typ. 10 cm resp. 2 cm)

measurement of the transfer function between two fixed microphone positions

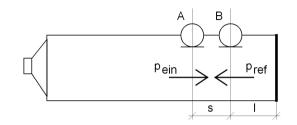
#### introduction

absorption

characterizatio

absorber type

measurement methods


absorption and impedance

typical absorption coefficients

covers

back

### impedance tube



with the arbitrary reference  $p_{ein}(A) = 1$  follows

$$H(f) = \frac{p(B)}{p(A)} = \frac{\mathrm{e}^{-\mathrm{j}ks} + R(f) \cdot \mathrm{e}^{-\mathrm{j}k(s+2l)}}{1 + R(f) \cdot \mathrm{e}^{-\mathrm{j}2k(s+l)}}$$

#### introduction

#### absorption

characterization

- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

## impedance tube

### solved for R:

$$R(f) = \frac{\mathrm{e}^{-\mathrm{j}ks} - H(f)}{H(f) - \mathrm{e}^{\mathrm{j}ks}} \mathrm{e}^{\mathrm{j}2k(l+s)}$$

- From R follows  $\alpha$  and impedance Z
- measurement details:
  - broadband excitation (white noise, frequency discrimination with help of FFT)
  - high quality microphones necessary, calibration with swapped microphones

#### introductio

absorption

characterizatio

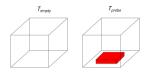
absorber type

#### measurement methods

absorption and impedance

typical absorption coefficients

covers


back

# reverberation chamber

#### introduction

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### reverberation chamber



- measurement of the reverberation time T without and with probe material (10...12 m<sup>2</sup>)
- $\blacktriangleright$  by usage of empirical relation between  $\alpha$  and T,  $\alpha$  can be determined
- reverberation time formula derived by Sabine (diffuse field assumption!):

$$T = rac{0.16V}{\sum(lpha_i \cdot S_i)}$$

#### introductior

#### absorption

- characterization
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

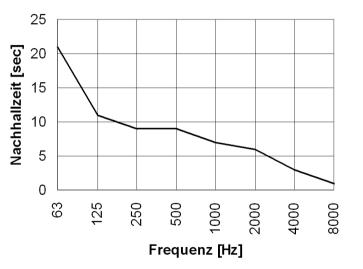
### reverberation chamber

- high accuracy for large differences with and without material probe
  - $\blacktriangleright$   $\rightarrow$  test chamber with minimal absorption (reverberation chamber)
- result:  $\alpha_s$  in third octaves or octaves
- investigation in diffuse sound field corresponds to averaging over all incidence directions
- $\alpha_S > 1$  is possible!
  - sound field with concentrated absorber violates diffuse field assumption
  - edge effects (diffraction along the border of the probe)

#### introductior

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

## reverberation chamber at Empa




#### introductio

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and imped
- coeffici
- back

## reverberation chamber Empa: Tempty



#### introduction

absorption

characterization

absorber type:

#### measurement methods

absorption and impedance

typical absorption coefficients

covers

back

# in situ impulse response measurement

#### introduction

#### absorption

- characterization
- absorber types

#### measurement methods

- absorption and impedance
- typical absorption coefficients
- covers

#### back

### in situ impulse response measurement

- ▶ in situ determination of absorption coefficients for:
  - already installed surfaces (e.g. room acoustical analysis of existing objects)
  - elements that can't be brought to the laboratory
  - investigation for specific angles of incident

#### introductio

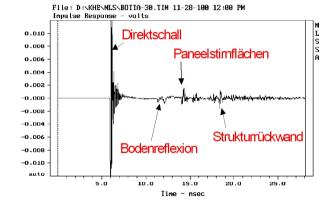
- absorption
- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

# in situ impulse response measurement

### example: transparent noise barrier




#### introductio

#### absorption

- characterizatio
- absorber type:
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### in situ impulse response measurement

### example: transparent noise barrier



#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

### in situ impulse response measurement

- points to consider:
  - ► size of the element under test has to be sufficiently large (critical at low frequencies → check with Fresnel zone)
  - measurement geometry should allow for a separation of different contributions (critical at low frequencies)
  - reflection contributions have to be compensated for additional geometrical divergence
  - increased measurement uncertainty for non-flat surfaces (normalisation!)

#### introductio

#### absorption

characterization

absorber types

measurement methods

absorption and impedance

typical absorptic coefficients

covers

back

# relation between absorption and impedance

#### introductio

#### absorption

characterizatio

absorber types

measurement methods

absorption and impedance

typical absorptio coefficients

covers

back

# normal incidence

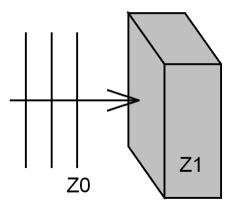
#### introduction

#### absorption

characterization

absorber types

#### absorption and impedance


typical absorption

covers

back

### absorption and impedance: normal incidence

situation: plane wave in medium with impedance  $Z_0$  is incident on a medium with surface impedance  $Z_1$ 



#### introduction

absorption

characterizatio

absorber types

absorption and impedance

typical absorption coefficients

covers

back

### absorption and impedance: normal incidence incident wave: $p_1$ , $v_1$ where

$$\frac{p_{\rm I}}{v_{\rm I}} = Z_0$$

reflected wave:  $p_{II}$ ,  $v_{II}$  where

$$\frac{p_{\rm II}}{v_{\rm II}} = Z_0$$

### superposition at the surface:

$$p = p_{\mathsf{I}} + p_{\mathsf{II}}$$
$$v = v_{\mathsf{I}} - v_{\mathsf{II}}$$

with:

$$\frac{p}{v} = Z_1$$

#### introductio

#### absorption

characterization

absorber types

measurement methods

absorption and impedance

typical absorption coefficients

covers

#### back

### absorption and impedance: normal incidence

from

$$p_{\mathsf{I}}+p_{\mathsf{II}}=Z_1\left(rac{p_{\mathsf{I}}}{Z_0}-rac{p_{\mathsf{II}}}{Z_0}
ight)$$

### follows:

$$\frac{p_{\rm H}}{p_{\rm I}} = R = \frac{Z_1 - Z_0}{Z_1 + Z_0}$$

▶ if 
$$Z_1 = Z_0 \rightarrow R = 0$$
,  $\alpha = 1$   
▶ if  $Z_1 \gg Z_0 \rightarrow R \rightarrow 1$ ,  $\alpha \rightarrow 0$ 

#### introduction

- absorption
- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers
- back

## absorption and impedance: normal incidence

- porous absorber in front of a rigid wall:
  - $\blacktriangleright$  hard termination increases resulting impedance  $\rightarrow$  reduction of the absorption
  - required thickness of the absorber  $> \lambda/4$
  - thin layers should be mounted with distance to the rigid surface

#### introductio

#### absorption

characterizatio

absorber types

#### measurement methods

#### absorption and impedance

typical absorptio coefficients

covers

back

# oblique incidence

#### introduction

#### absorption

- characterization
- absorber types

#### measurement methods

### absorption and impedance

- typical absorptic coefficients
- covers

#### back

## absorption and impedance: oblique incidence

### locally reacting absorber

- dominating propagation component perpendicular to the surface (often reasonable assumption due to refraction)
- impedance is independent of the incident angle
- laterally reacting absorber
  - relevant sound propagation component parallel to the surface

#### introduction

absorption

characterizatio

absorber types

absorption and impedance

typical absorption coefficients

covers

back

## absorption and impedance: oblique incidence

plane wave reflection for locally reacting absorber:

$$rac{
ho_{ extsf{ll}}}{
ho_{ extsf{l}}}=R=rac{Z_{1}-rac{Z_{0}}{\cos(\phi)}}{Z_{1}+rac{Z_{0}}{\cos(\phi)}}$$

### with

 $\phi:$  angle of sound incidence direction relative to the surface normal direction

$$R = 0 ?$$

$$R \to -1 ?$$

#### introduction

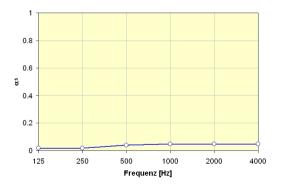
#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

# typical absorption coefficients

#### introduction


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

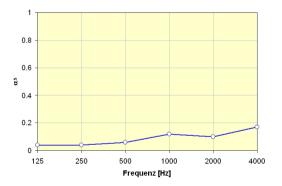
#### back

## typical absorption coefficients

stone floor



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

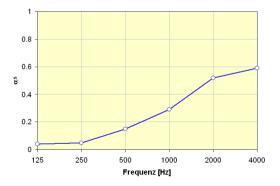
#### back

## typical absorption coefficients

parquet floor



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

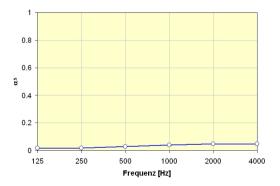
#### back

## typical absorption coefficients

### carpet, thickness 5 mm



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

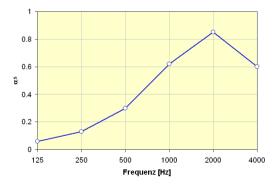
#### back

## typical absorption coefficients

### standard plaster



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

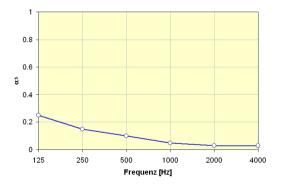
#### back

## typical absorption coefficients

acoustically optimized plaster, thickness 20 mm



#### introduction


#### absorption

- characterizatio
- absorber type:
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

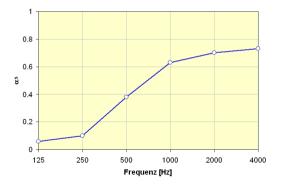
#### back

## typical absorption coefficients

window



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### typical absorption coefficients

### heavy curtain



#### introduction

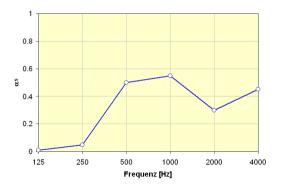
absorption

characterizatio

absorber type

measurement methods

absorption and impedance


typical absorption coefficients

covers

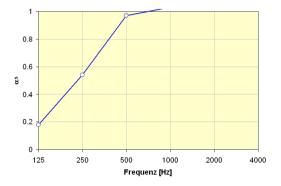
back

### typical absorption coefficients

egg carton



#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

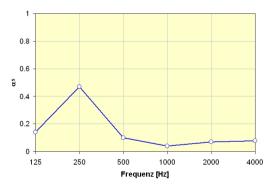
#### back

## typical absorption coefficients

glass fiber panel, thickness 50 mm



#### introductio


#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

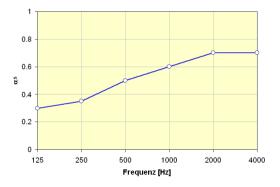
#### back

## typical absorption coefficients

▶ panel resonator, 4 mm wood, 120 mm air layer



#### introductio


#### absorption

- characterizatio
- absorber type:
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

## typical absorption coefficients

audience on upholstered chairs



#### introduction

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

# covers for porous absorbers

#### introductior

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

### covers for porous absorbers

- porous absorbers are usually covered for mechanical protection
  - plates with holes or slits
  - $\blacktriangleright$  requirement: no significant influence on absorption  $\rightarrow$  no relevant transmission loss

#### introduction

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients

#### covers

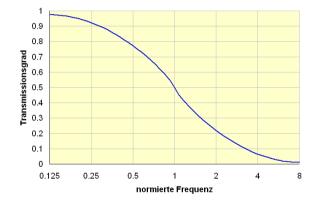
back

### covers for porous absorbers

### reason for transmission loss?

## covers for porous absorbers

#### introductio


#### absorption

- characterizatio
- absorber type
- measurement methods
- absorption and impedance
- typical absorption coefficients

#### covers

back

### frequency response of transmission of a plate with holes:



#### introduction

#### absorption

- characterizatio
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

back

### covers for porous absorbers

- parameters of the cover:
  - $\blacktriangleright$   $\epsilon:$  ratio of the area of the holes relative to the area of the panel in %
  - hole diameter r [mm]
  - panel thickness / [mm]
  - end correction  $2 \cdot \Delta I$  [mm]
  - effective panel thickness  $l^* = l + 2 \cdot \Delta l$  [mm]

• empirical formula to estimate the frequency  $f_{0.5}$  for 50% transmission:

$$f_{0.5} pprox 1500 rac{\epsilon}{l^*}$$

#### introductior

- absorption
- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### covers for porous absorbers

### design of covers:

- ▶ *f*<sub>0.5</sub> typically chosen "sufficiently high"
- $f_{0.5}$  at specific frequency for *mid frequency absorber*

#### introduction

#### absorption

- characterization
- absorber types
- measurement methods
- absorption and impedance
- typical absorption coefficients
- covers

#### back

### eth-acoustics-1