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On the contents

this topic is a world in itself & there’s lot’s to say

— we will cover selected aspects from the
foundations to contemporary research
... & while orthogonal to previous talks



Outline

Motivation: Challenges & Game Changers

Power Converter Modeling & Control Specifications

Device-Level: Control of Converter-Interfaced Generation
- (yid- sorh'n:ﬁ - t,\’OsS-ﬁorh:-D

System-Level: Ancillary Services in Low-Inertia Grids



We will use the board

be prepared to take notes
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= Motivation: Challenges & Game Changers
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Replacing the system foundation

fuel & synchronous machines

— not sustainable

+ central & dispatchable generation
+ large rotational inertia as buffer

+ self-synchronize through the grid
+ resilient voltage /frequency control

— slow actuation & control

renewables & power electronics

+ sustainable

— distributed & variable generation
— almost no energy storage

= no inherent self-synchronization
— fragile voltage/frequency control

+ fast/flexible/ modular control

3/103



What do we see here ?




West Berlin re-connecting to Europe

Source: Energie-Museum Berlin

December 7, 1994

ucTe *10 sec

500. 600. 780. 800.

before re-connection: islanded operation based on batteries & boiler

afterwards connected to European grid & synchronous generation
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Power-electronics-dominated power systems
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Power-electronics-dominated power systems
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energy storage
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» relevant observation: system enabled by ubiquitous actuation, pervasive
sensing, & digitalization, i.e., control, rather than clever physical design

» aggressive integration of technology — system issues: oscillations, lack
of inertia (— RoCoF limits) & reactive power (— SE Australia outages), ...
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Issues are by now broadly recognized

= |ow-inertia issues were not really
on the radar (outside few places, e.g.,
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m |ow-inertia issues were not really m since 2015: EU MIGRATE project &
on the radar (outside few places, e.g., successors (OSMOSE, POSYTYF, ...)
Ireland or Oz) until ten years ago

# elering

— led to outages & comical situations ...

= domany  @Temner A
Biblis A generator stabilizes the grid as a o HEm T
synchronous condenser A..... SIEMENS Englond (UK)

Scotland (UK) M
USING DECOMMISSIONED NUCLEAR POWER PLANT pstd H oo ’
AS SYSTEM SERVICE PROVIDERS [ remer

REPORT 2017:348

Energiforsk

new challenges: low-inertia stability, grid-
forming control, & fast frequency support

[ [
— industry willing to explore green-field m across the pond: m'f'

approach & join forces with academia consortium
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Exciting research bridging communities

power
electronics

power
systems

control systems
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Exciting research bridging communities

power
electronics

power
systems

control systems

theory <+ practice | device <+ system | proof <+ experiment
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Conclusion: re-visit models/analysis/control

plenty of surveys from the power electronics / power systems / control communities

Foundations and Challenges of Low-Inertia Systems Anmal Review of Control Robosics, and

Autonomons Systems

(Invited Paper)

Federico Milano Florian Drler and Gabriela Hug ~ David J. Hill* and Gregor Verbic . . »
University College Dublin, Ireland ETH Zirich, Switzerland University of Sydney, Australia Tao Liu,'* Yue Song,"" Lipeng Zhu,
email: federicomilano@ued.ie emails: dorfler@ethz.ch, * also University of Hong Kong and David J. Hill
shug@ethz.ch emails: dhill @ecehkuhk, e Hong Kone

Pttt

e Human Unisriy, Changsh,Chin

gregor verbic@sydney.edu.au

The later sections contain many suggestions for further

ki Engincerig s Tecomenaicsns, Uiy of New S W,
work, which can be summarized as follows: o New control methodologies, e.g. new controller to X St e
mitigate the high rate of change of frequency in low
«  New models are needed which balance the need to inertia systems;
clude key features without burdening the model
(whether for analytical or computational work) with ~® A power converter is a fully actuated, modular, and Power systems without fuel
uneven and excessive detail; very fast control system, which are nearly antipodal
harctristies o those of a synchronous mackine. Josh A. Taylor**, Sairaj V. Dhople !, Duncan S. Cal]away
. \h.w stability theory which properly reflects the new hus, one should critically reflect the control of a | ecrict and Computes Einerin Uty of Tt Toronio G
dev time-scales associated with CIG, new e L synchronous machine; and et en ot g, Uy g
loads and use of storage: T vty of o Bl 8 5470 150

The lack of inertia in a power system does not need to
(and cannot) be fixed by simply “adding inertia back”
in the systems.

Further computational work to achieve sensitivity
guidelines including data-based approaches;

Annual Review of Control, Robotics, and
Autonomous Systems

Fundamentals of power systems modelling in the presence of converter-
interfaced generation

Mario Paolone™", Trevor Gaunt”, Xavier Guillaud®, Marco Liserre’, Sakis Meliopoulos®, Florian Dérfler’ and Dnmm.c(;mli—'
Antonello Monti', Thierry Van Cutsem?, Vijay Vittal", Costas Vournas' bors ETH Zuic

Deartment of il nd

poeEngocing, Uty of Wi

Power system stability in the transition to a low carbon'

grid: A techno-economic perspective on challenges and On the Inertia of Future More-Electronics
opportunities Power Systems

Lasantha Meegahapola' © | Pierluigi Mancarel | Jingyang Fang®, Student Member, IEEE, Hongchang Li®, Member, IEEE,
Rodrigo Moreno®*” Yi Tang®, Senior Member; IEEE, and Frede Blaabjerg®, Fellow, IEEE
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A unique opportunity for systems & control

WITH GREAT POWER
COMES GREAT
RESPONSIBILITY...
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Focus of today’s tutorial

modeling, control specifications, & game changers
m focus: fast time scales & old versus new
m power system/converter control specifications & limitations

decentralized control of power converters
m hijerarchical control architectures & grid-forming versus grid-following
m grid-forming: VSM, droop, matching, & VOC + over-current protection

effect of local controls in large-scale systems
m ancillary service perspective & performance metrics
m allocation of inertia/damping & dynamic virtual power plants

11/103



Outline

= Power Converter Modeling & Control Specifications



modeling



If you want a detailed reference on
power electronics dc/ac conversion

Voltage-Sourced Converters
in Power Systems

Modeling, Control, and Applications

Amirnaser Yazdani
Reza Iravani

WWILEY
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Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

abstract dc-to-ac power conversion

o
Inverter
@

dc source

Inverter

1

PV cell voltage
05

ot
o 15 20

5 10
Time (ms)

objective: transfer power to the grid

. "
""""""""

10 15 20
Time (ms)

A\/

0 5 10 15 20

Time (ms)

13/103



Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

2-level inverter with idealized switches objective: transfer power to the grid
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Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

2-level inverter with idealized switches objective: transfer power to the grid

Viny — Vgrid ) N
—
N

o S,
control objective: ™,
track reference i* . e

0 5 10 15 20
Time (ms)

dc source Inverter Power grid (ac)

The switches are operated dually:

= S;onand S, off: v, = Vy/2

=> the current increases proportional
to the voltage difference: By

d ., 0 5 10 15 20
L 7i(t) = viny(t) — vgria(t) Time (ms)
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Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

2-level inverter with idealized switches objective: transfer power to the grid

.....

Viny ~ Vgrid g v \\
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p e
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dc source Inverter

The switches are operated dually:
= S;onand S, off: v, = Vy/2

=> the current increases

20
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Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

2-level inverter with idealized switches objective: transfer power to the grid

control objective:
track reference i*

5 10 15 20
Time (ms)

Power grid (ac)

dc source Inverter

The switches are operated dually:

= S;onand S, off: v, = Vy/2

=> the current increases

10 15 20

= S, offand S, on: v;,, =- V4 /2 0 5
Time (ms)

=> the current decreases
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Power electronics dc/ac conversion basics

adapted from slides by Tobias Geyer (ABB & ETH Zurich)

inverter with semi-conductor switches objective: transfer power to the grid

control objective:
track reference i*

5 10 15 20
Time (ms)

Power grid (ac)

dc source Inverter

The switches are operated dually:

= S,onand S, off: v, = V2

=> the current increases

= S, offand S, on: v, = - V4 /2

Time (ms)

=> the current decreases
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Remarks on power electronics conversion

m there are many strategies for pulse-width modulation:
from threshold rules to MPC (see Tobias Geyer’s book [1ink])
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Remarks on power electronics conversion

m there are many strategies for pulse-width modulation:
from threshold rules to MPC (see Tobias Geyer’s book [1ink])

® 0N average viny = vj, — role of L-filter is to remove switching harmonics
— can be further mitigated with LC-filter or even LCL filter

m switched system at kHz switching frequency — nearly smooth waveform

m topologies are varied: from 2-level converters to modular multilevel
converters (MMC) with thousands of switches (impressive .gifs online)

m “on average” & “nearly smooth” can be made mathematically
precise by averaging theory (see board for details)
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Average-switch modeling of converters

(covered on the board)
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Modeling review: signal space in 3-phase

three-phase AC

(@) zo(t+T)
|:$b(t):| = |::Eb(t + T)
zc(t) zc(t+T)

periodic with 0 average
L [T ai(t)ydt =0
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Modeling review: signal space in 3-phase

three-phase AC balanced (nearly true)
(@) zo(t+T) sin(d(t))
[mb(t):| = {zb(t +T) = A(t) [sin(s(t) — 2;?)}
T (t) zc(t+1T) sin(8(t) + &)
periodic with 0 average so that

7 Jo @i(t)dt =0 Za(t) + z0(t) + 2o () =0
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Modeling review: signal space in 3-phase

three-phase AC balanced (nearly true) synchronous (desired)
(@) zo(t+T) sin(d(t)) sin(do + wot)
zp(t) | = |zp(t+T) = A(t) |sin(d(t) — 2§r):| = A |sin(do + wot — 23“):|
T () ze(t+T) sin(8(t) + &) sin(8o + wot + 2F)
periodic with 0 average so that const. freq & amp
ar
7 Jo zi(t)dt =0 2o () + zp(t) + 2 (t)=0 = const. in rot. frame

assumption : balanced = 2d-coordinates x(t) = [z (t) z5(t)] or z(t) = A(t) - )

current/voltage — power: activep =v'i and reactive g =v" [ {']i =10 xi
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Transforms of 3-phase balanced signals

Labe

Ta sin(9)
|:xb:| = |:sin(6— 2;):|
Tc sin(6 + 2%)

— orthogonalto [1 1 1]
Za(t) + zu(t) + z(t) =0
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Transforms of 3-phase balanced signals

Labe

ERE
xp | = [sin(é — =&
ml; sin(é + %)

— orthogonalto [1 1 1]
Za(t) + zp(t) + z(t)=0
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Transforms of 3-phase balanced signals

— orthonormal Clarke transform: z,p. — Zasy
|:37a:| [ ?ln((s)%)] removing the balanced subspace [1 1 1]
xp | = [sin(d — =F
Zc sin(é—&—%") 1 _% _%
_Jall @ B
— orthogonalto [1 1 1] Tapy =14/3 - ? 12
za(t) + o (1) + 2c(t) =0 Vi V2 V2

TapBy = :T(yﬁ", Labe

To sin(d)
Hﬂﬁ =3 {Ls@}
Ty 0

— -, often discarded & zap

(s T
shown as phasor ¢/(°~2)
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— orthogonalto [1 1 1]
Za(t) + zp(t) + z(t)=0

Tapy = Taﬁ’y Labe
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Transforms of 3-phase balanced signals

Labe

Za sin(9)
|:xb:| = |:sin(6— 23):|
Zc sin(8 + 27)

— orthogonalto [1 1 1]
Za(t) + zu(t) + z(t) =0

TapBy = Irf’* Labe

[z - ya o]

— -, often discarded & zap

(s T
shown as phasor ¢/(°~2)

Tdqo = I/q(] Tapry

sin(6 + §)
\/7 —cos€+6

— typlcal choice 6 = —

orthonormal Clarke transform: z.pc — Tagy
removing the balanced subspace [1 1 1]

1T -1 _1
i 5
3
Tagr=4/2| 0 5 —%
I 1
V2 V2 V2

orthonormal Park transform: z.g, — Z4q0
into rotating frame with angle 0

cos(#) —sin(8) | O
Tago =1/2 | sin(d) cos(d) |0
0 0 |1
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Transforms of 3-phase balanced signals

Labe

Ta sin(9)
|:xb:| = |:sin(5— 23):|
Zc sin(8 + 27)

— orthogonalto [1 1 1]
Za(t) + zu(t) + z(t) =0

TapBy = Ixi" Labe

[z - ya o]

— -, often discarded & zap

(5 T
shown as phasor ¢/(°~2)

Ldqo = Ilq(] Tapry

sin(6 + §)
\/7 —cos@+6

— typlcal choice 6 = —

orthonormal Clarke transform: z.pc — Tagy
removing the balanced subspace [1 1 1]

1T -1 _1
N
3
Tagr=4/2| 0 5 —%
1 1 L
i V2 V2

orthonormal Park transform: z.g, — Z4q0
into rotating frame with angle 0

cos(#) —sin(8) | O
Taqo0 = \/g sin(d) cos(@) |0
0 0 |1

Zdq0 = Taqo - Tap~y Tabe With overall transform

cos(0) cos(0+ %) cos (0 — 2F)
2| sin(0) sin 0+ 27") sin (6 — 27”)
V2 V2 V2
3 3 5
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it's tedious but useful to work through
these calculations once in your lifetime



afvy — dq0 & rotation matrix trlcks
(covered on the board) .)
/ e
cos(f) —sin( ]

® sign convention R(0) = [Sm( 0)  cos(6)

-1
- ) = tos © i Sia O _ _
Reor = Jwe =91 - REo)” = Re)

m key identity: R(0) - R(6) = R(0 + 9)
RE)- R(-8) - R(p-09) = T /

V=)
S

= analog of imaginary unit: J = R(r/2) = {(1) ol}

l_— 5: Q-(“—/l

e s e
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m derivative rule

% R(Om) = c% Qi@(&) = 9 e-‘g(” = n J-R(e«)

= L \dot \iofn = L

" appllcatlon to circuits
e P - R+ V-V,
+ O—QJUUL—D—-J +

Lrowsforn  From er) o of7 ordmaks s coust. XM/“' W
T= REbot e, V= Rty

) 1) = L4 plwd):
ie - g1t L o
CLREd) §1 T L)W RENT . REwh) (R

="(?+:SwL)I + V-V ¥y -v)
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Modeling: voltage source converter

1. primary energy supply ig from
upstream DC boost converter or
storage (neglected)

2. DC charge dynamics with voltage
vge & capacitance Cyc

3. power electronics modulation
. T.
iz =—m iy and v, = muy,

with averaged & normalized duty
cycle ratios m € [—5, 5] X [_57 5]

4. AC filter dynamics with current i
(sometimes also LC or LCL filter)

5. connection to grid with voltage v,

Vdc
Cdc
dvd . o
Cac dtc = —GycVdc + idc + mTlf
di
Lng = —Ryif + vy — My
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comparison to synchronous machine



Modeling: synchronous machine

M iTl _L_ 7 i

dw

M= = —Dw + T + Lmiy [ 5201 T4,

Ls

dt
dis
dt

cos 0

= —Rsis +vg — Lmir [ 50w

cos 6

1. primary energy supply 7., from

turbine converting thermal to
mechanical energy (neglected)

. mechanical (0, w) swing dynamics of

rotor (flywheel) with inertia M

. electro-mechanical energy

conversion through rotating magnetic
field with inductance matrix

Ls 0 Lmcosf
Lo = 0 Ls Lmsin6
Lmcos® Lmsinf Ly

(neglected i, rotor current dynamics)

. i, stator flux dynamics (sometimes

including additional damper windings)

5. connection to grid with voltage v,
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Energy-based modeling & insights

(covered on the board)

dv ) .
(ouoerter : Cac—g,” = ~ Gt + e + M iy
d iy ,
Ly—= = —Rsif + vy — muge
dt xd
LoV S

2 2
emtracb: E S % Ve Co{(_ + ﬂ?; L,Qfg

i e (2] [ 11

d|§$lvo}
GC /dde  pocser Suffc(’_\

+ .\O\t.. VAQ + iP.VO
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do

EJE =W

dw 3 — sin T.
Mg = =Dw+ T + Lmir [ 35 ] s

dis

Ls—= = —Rsis + vg — Lmir [ 5200 |w

cos 0

dt
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Comparison: storage & conversion mechanisms

7:dc

M iy Lo i
w ¢ m
g i QO H
m vdc__ 1f '_NV\_. 'Ug]?
il T | 0
) @ ! !
= w

i

dw ] dv, X
ME = —Dw + Tm + Lmir [_Czlsngg]—r’l:s Cyc d:C = —Gly4cVdc + fgc + mTZf

dis _ . . —sin @ dif 3
Lsgf—Rszs—&-vg—Lmzr[ s b ]w Lfg:—szf—&-vg—mvdc
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Comparison: storage & conversion mechanisms

Ly 7:alc

M Ly i
w 9 m
Tm( ,Uvg ‘ v @ @ . Lf
L dc__ 'I.fI_NV\_.,UgT
== Cdc ) 0 1 :
0 @
= w

=
dw — g —sin67 7T, d'Udc _ 2 T.q
ME—*DW+Tm+Lm’LT[ omO s Cdc p = —GdeVde + ldc + ™M i
ds i R de X
LST; :—RsZs+Ug—Ler [ Csinee]w Lfditf :—szf+vg—mvdc
controllable controllable
energy energy " " energy AC power
S
supply storage conversion | =7~ system
Tm, (Slow) M (large) Ly (physical) resilient
Vs. VvS. VS. VvS.
igc (fast) Cyc (small) m (control) fragile
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Comparison: storage & conversion mechanisms

SO, 4,

Gycvde + fde + mT'if

Ryip + vy — muge

physical & robust
Vs.
controlled & agile

M i T, i Udc
w v, |
Tm ( 9 Vde
i T
T Cdc
do
2 —w
dt
dw o T, dug
ME = —Dw + T + Lmir [ C(S)‘snge] 1s Cqc dtc = —
ds X R di
LSCTS:—RSZS—Fvg—me[ CS;HGG]“’ LfT{:_
controllable controllable
energy energy " " energy q AC power
supply storage conversion | =7~ system
Tm, (Slow) M (large) Ly (physical) resilient
VS. VS. VS.
igc (fast) Cyc (small) m (control) fragile

energy conversion
& (kinetic) storage
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Comparison: storage & conversion mechanisms

ir 7:alc

M Ly i
w 9 m
Tm ( 1)3 % v qﬁi}) qﬁi}) . l;f
L dc__ b —VN—s v,
== (7dc ) 0 1
0 @
= w

i
dw ] . dv . .
M7 = —Dw+ 7 + Lmir [=E20] s, Gl d‘t’° = —GoVge + ige + M if
dis _ : ;[ —sin6 diy .
Lsgf—Rszs—l-vg—Lmzr[ s b ]w Lfgf—szf—&-vg—mvdc
controllable controllable physical & robust
energy > AC power VS
energy storage ENergy sl gystem ' .
supply conversion | 7~ controlled & agile
Tm (Slow) M (large) Ly (physical) resilient energy conversion
vs. vs. VS. VS. & (kinetic) storage
igc (fast) Cyc (small) m (control) fragile

anti-podal characteristics = do not use a converter to emulate a machine
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Preview: pitfalls of naive inertia emulation

(nalve) baseline Solution . Improvement of Transient Response
) in Microgrids Using Virtual Inertia
inverter + storage + control

Implementing Virtual Inertia in DFIG-Based
Wind Power Generation

fmbes, 1EEE, snd

e Pt Moghadd s, 1EE, nd i 1Ssaany, Setor Menber IEE

Virtual synchronous generators: A survey and new perspectives. Dynamic Frequency Control Support: a Virtual

— emu|ate V"'tual |nert|a Hassan Beurani>**, Toshifumi Ise". Yushi Miura® Inertia Provided by Distributed Energy Storage
to Isolated Power Systems

omber, EEE, and Giles Mlange

Inertia Emulation Control Strategy for [~ Grid Tied Converter with Virtual Kinetic
VSC-HVDC Transmissi Storage

M van Wesenbeccld SV, ds s, S

b, IEEE, . Varss ad K. Vissher
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Preview: pitfalls of naive inertia emulation

(naive) baseline solution:
inverter + storage + control
— emulate virtual inertia

...can & has been done but
recall antipodal characteristics

Improvement of Transient Response
in Microgrids Using Virtual Inertia

fmbes, 1EEE, snd

Implementing Virtual Inertia in DFIG-Based

Wind Power Generation

i Moghadda Membes JEE, and Ehsh . El-Soadany,Senir Menber IEE

Virtual synchronous generators: A survey and new perspectives

Hassan Bevrani*, Toshifumi Ise”, Yushi Miura®

Dynamic Frequency Control Support: a Virtual
Inertia Provided by Distributed Energy Storage
to Isolated Power Systems

Inertia Emulation Control Strategy for
VSC-HVDC Transmissi

Grid Tied Converter with Virtual Kinet
Storage

M van Wesenbeccld SV, ds s, S

omber IEEE, and Gilles Mlarange

b, IEEE, . Varss ad K. Vissher
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Preview: pitfalls of naive inertia emulation

(naive) baseline solution:

Improvement of Transient Response

in Mlcmgnd: Using Virtual Inertia

inverter + storage + control

s M, IEE, S . Membes
T i b IFEE

s EEE, nd

Implementing Virtual Inertia in DFIG-Based
Wmd Power Generation

i b 1 Sua

Member, 5

Virtual synchronous generators: A survey and new perspectives

— emulate virtual inertia

Toshifum Ise”, Yushi Miura®

Dynamlc Frequency (,omro] Support: a Virtual
Inertia Provided by Distributed Energy Storage
to Isolated Power Systems

.can & has been done but

Inertia Emulation Control Strategy for

i Dile, Monber, EEE, Bruno Fron

Grid Tied Converter with Virtual Kinetic

Senior Mener, IEEE,and GillesMlarange

Storage
recall antipodal characteristics S Vet 01 S et 58 o v
controllable = _| controllable
energy > energy energy > AC power
storage |e ’ =~ system
supply conversion 7
slow vs. fast large vs. small physics vs. control  resilient vs. fragile
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Preview: pitfalls of naive inertia emulation

(naive) baseline solution:
inverter + storage + control
— emulate virtual inertia

..can & has been done but

Improvement of Transient Response
in Microgrids Using Virtual Inertia

Niish So Member EEE, snd

o b 655,

Implementing Virtual Inertia in DFIG-Based

Wmd Power Generation

il B E-Suadany, Senior Membur, EE

Virtual munmuum

erators: A survey and new perspectives|

Dynamlc Frequency (,omro] Support: a Vmual
Inertia Provided by Distributed Energy Storage
to Isolated Power Systems

VSC-HVDC Transmission Systems

Inertia Emulation Control Strategy for

i Dle Momber, EEE, Brono Franis, Sen

Gnd Tied Converter wnh Virtual Kmun

» Mener, IEEE, and Gille

Storage
reca” antipodal Characterisﬁcs e
controllable = _| controllable
energy T Shery energy | s AC power
storage |< ! ——1 system
supply conversion 7

slow vs. fast

telecom analogy (E. Mallada)

large vs. small

R

4 4 4

Controler [y 127

Controller

physics vs. control

resilient vs. fragile
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Preview: pitfalls of naive inertia emulation

(naive) baseline solution:
inverter + storage + control
— emulate virtual inertia

.can & has been done but

Improvement of Transient Response
in Mlcmgnd: Using Virtual Inertia

o M IEE

s o Member EEE, snd
ok i IFEE

Implementing Virtual Inertia in DFIG-Based
Wmd Power Generation

i b 1 Sua

Member, 5

Virtual synchronous generators: A survey and new perspectives

Toshifum Ise”, Yushi Miura®

Dynamlc Frequency (,omro] Support: a Virtual
Inertia Provided by Distributed Energy Storage
to Isolated Power Systems

Inertia Emulation Control Strategy for

i Deile, Merher I, Bruno Frangos, Srior

Grid Tied Converter with Virtual Kinetic

Meber, IEEE, and Giles Malrange

Storage
recall antipodal characteristics 0 Wt S St 15V s i
controllable _ _| controllable
energy > energy " " energy > AC power
storage |« ! WN/ system
supply conversion 7
slow vs. fast large vs. small physics vs. control  resilient vs. fragile

telecom analogy (E. Mallada)

+ 4 4

Controller | vab e ver

Controller
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Preview: pitfalls of naive inertia

emulation

(naive) baseline solution:

Improvement of Transient Response

in Mlcmgnd: Using Virtual Inertia
Mo IEEE, 04

e e 165

Implementing Virtual Inertia in DFIG-Based

Wmd Power Generation

il B E-Suadany, Senior Membur, EE

inverter + storage + control
— emulate virtual inertia

Virtual synchronous generators: A survey and new perspectives

Dynamlc Frequency (,omro] Support: a Vmual
Inertia Provided by Distributed Energy Storage
to Isolated Power Syﬁlems

T control Sy o [ s e e i i
..can & haS been done but “Vrslé-H‘C‘];)E‘T’r‘m::i;‘s’inn g;:[gg“sor Gnd Tled Comc;sz;\:‘/’l:h \uruul Kmum
recall antipodal characteristics e s U1 oot P S e
controllable _ _| controllable
energy > energy " " energy > AC power
storage |« ! WN/ system
supply conversion 7
slow vs. fast large vs. small physics vs. control  resilient vs. fragile

telecom analogy (E.Mallada) ] | | == —
m works (under business- 499 i

Controller | vab e ver

as-usual operation)

m there are better solutions
(espec. for contingencies)

Controller
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Modeling review:

the network

interconnecting lines via II-models & ODEs
i Rr Lt iy _
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Modeling review: the network

interconnecting lines via II-models & ODEs

Rr Lt g,

adifomen /0; e Leplctac

» conventional assump[én: quasi-steady state algebraic model
i1 : % : 20 : v1
= | —Yk1 - 22;1 Ykj 0 T Ykn

in : : : Un

nodal injections Laplacian matrix with 3, ; =1/ complex impedance ~nodal potentials

29/103



Modeling review: the network

interconnecting lines via II-models & ODEs
i Rr Lr i

+-Lc G UJ-C G,
T T

v

» conventional assumption: quasi-steady state algebraic model

1 : o : oG : v1
= | —Yk1 - 22;1 Ykj 0 T Ykn
in 0 0 : Un,
nodal injections Laplacian matrix with 3, ; =1/ complex impedance ~nodal potentials
salient feature: local measurement . _
> - . in = Y ks (ve—vy)
reveals synchronizing coupling N J

local variable global synchronization
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Modeling review: the network

interconnecting lines via II-models & ODEs
i Rr Lt iy _

» conventional assumption: quasi-steady state algebraic model

i1 : % : o : v1
==Yk 0 Xi1Ukj  —Ukn
in : . 0 Un
nodal injections Laplacian matrix with 3, ; =1/ complex impedance ~nodal potentials
> salient feature: Io?a.l measurgment o — Z»ykﬁ (v — v5)
reveals synchronizing coupling N J
local variable global synchronization

» but quasi-steady-state assumption is flawed in low-inertia systems
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Time-scale separation issues — old & new

power systerm T G

operational time |
scales

‘ Primary Frequency Control ‘

Inertial Response

Secondary Frequency Control ‘

5s 30s 15 min 75 min T
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Time-scale separation issues — old & new

power systerm T G

operational time |
scales

Secondary Frequency Control ‘

‘ Primary Frequency Control ‘
f
58 30s 15 min 2!” 75 min T
— =
Ve I 1
. . signal processing voltage dynami
fast time scales: | || [oole £l
1 distribution  transfnission |
converter/generator

Fibre optic network

===

controls & physics

APC & RPC

< lms 1ms 10ms 100 ms 1s 10s T
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Time-scale separation issues — old & new
| o s |

power syster T

operational time |
scales

Secondary Frequency Control ‘

‘ Primary Frequency Control ‘

Inertial Response

5s 30s 15 min 75 min T

faSt tlme SCaIeS ‘signal processing‘ ‘voltage dynamics ‘

! distribution transmission
converter/generator

controls & phvsics | [Fowork ne dymmmic]
Py [AVR & Pss | [ Governor

[APC & RPC]

Fibre optic network

Swing dynam.

8¢ — |
VSCp —— PWM ‘Ha.rmouics‘ i ‘SRF inner control
! g s
; VSC PWM i current loop  voltage loop APC & RPC
— separated aside ;

from line dynamics <lms Lms 10ms 100ms Is 105 T
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Time-scale separation issues — old & new

IBR Frequency Response

power system

operational time
scales

‘ Secondary Frequency Control

‘ Primary Frequency Control ‘

Inertial Response

5s 15 min

‘signal process'mg‘ ‘voltage dynamics ‘

fast time scales:

75 min T

frequency dynamics

t / t ! distribution transmission
nverter ner r :
converier/ge e_a 0 | — | [ 3‘1\'etwnrk line dynamics
controls & physics 3 Tu
SG — : AVR & PSS W: Governor
3 ‘ ‘ J ‘ dynam
VSCr P | [Harmonics] | [SRF fnner control [APC & RPC]
3 e
; vsC, ——  [pwm M i current loop  voltage loop m APC & RPC
— separated aside . ! - 3 -
. . } | i i i
from line dynamics <lms Lms 10ms 100ms Is 105 T

— to avoid issues, model the line dynamics or slow down converter controls !
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control specifications & architecture



Control specifications

= nominal synchronous operation:
— constant DC states: w = 04c = 0
— synchronous AC states at wref :
0 = Wref, j—tis = [_Bref wée'] Tsy - --
— set-points: ||vg|| = vref,
P2ijv, = P,

Qéi}r[??)l}vg = Qref
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Control specifications

= nominal synchronous operation:

1 interfaced generation

[ % j primary control

! control of fconverter tertiary control | — constant DC states: w = 4. = 0

— synchronous AC states at wref :

'_ d. _ 0 Wref .
0 = wref, dils = [_Wref (r)e i| sy« -

— set-points: ||vg|| = ref,

1 ; ; . éé il =
R 15 mi 75 min P=ipvg = P,
inertial response secondary tontrol A T 10 -1 —
Q—"'f[lo]'ug—Qref
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1 interfaced generation

[ % j primary control

! control of fconverter tertiary control | — constant DC states: w = 4. = 0

— synchronous AC states at wref :
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0 = wref, dils = [_Wref (r)e i| sy« -

— set-points: ||vg|| = ref,

1 ; ; . éé il =
R 15 mi 75 min P=ipvg = P,
inertial response secondary tontrol A T 10 -1 —
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m transient disturbance rejection & stabilization:
passively via physics (inertia) & actively via control
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Control specifications

= nominal synchronous operation:
! control of fconverter tertiary control | — constant DC states: w = 4. = 0

1 interfaced generation

; [ % i primary control

— synchronous AC states at wref :

3 d - _ 0 Wref .
0 = wref, dils = [_Wref (r)e i| sy« -

— set-points: ||vg|| = ref,

1 : L . éé il =
/ 55 30s 15 mi 75 min P=ipvg = P,
inertial response secondary tontrol A T 10 -1 —
Q=15 [§ ' vg = Qret

m transient disturbance rejection & stabilization:
passively via physics (inertia) & actively via control -

m perturbed synchronous operation at w # wret & power:

deviations with specified sensitivities 0 P/dw (similar for v)
— decentralized droop/primary control P — Pt o w — wyef
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Control specifications

i control of \converter
1 interfaced generation

; [ % i primary control

tertiary control

= nominal synchronous operation:
— constant DC states: w = 0gc = 0

— synchronous AC states at wref :

A . 0 .
0 = wref, (%1,5 = [_wmf “{)ef] Tsy ...
— set-points: ||Jvg|| = Vret
/ : : ‘ LTy, =
/ 5s 30s 15 mi 75 min P=i5vg = Pet,
ifiertial d trol A T 10 -1 _
Inertial response secondary tontrol Q £ lf [1 o ]Ug — Qref
m transient disturbance rejection & stabilization:
passively via physics (inertia) & actively via control o
m perturbed synchronous operation at w # wret & power:
deviations with specified sensitivities 0 P/dw (similar for v) —
— decentralized droop/primary control P — Pt o w — wyef
m secondary control: regulation of w — wret (Similar for v) similar as in
conventional

m tertiary control: (re)scheduling of set-points

power systems
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Cartoon of power electronics control

actuation of DC source/boost

cascaded PI error | comparison
voltage/current | < to reference
tracking control| Signal model

-

(.

DC voltage converter measurement

control

modulation processing

~

f DC voltage ¢ PWM  AC current & ‘voltage
A )

\Y

:4;1}{1}{5 A

M
I LA

f 403 40

DC/AC power inverter
J

1. acquiring & processing
of AC measurements

2. synthesis of references

(voltage/current/power)

“how would a synchronous
generator respond now ?”

3. cascaded PI controllers

to track reference error

assumption: no state
constraints encountered

4. actuation viamodulation
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Cartoon of power electronics control

actuation of DC source/boost

cascaded PI
voltage/current | <
tracking control| signal

error

model

-

(.

DC voltage
control

converter
modulation

comparison
to reference

measurement
processing

~

ADCvoltage  §PWM A current &
0

\Y

4d} 3 s

f 403 40

Y
voltage
~

DC/AC power inverter
J

1. acquiring & processing

of AC measurements

. synthesis of references

(voltage/current/power)

“how would a synchronous
generator respond now ?”

. cascaded PI controllers

to track reference error

assumption: no state
constraints encountered

. actuation via modulation

. energy balancing via

dc voltage P-control
assumption: unlimited
power & instantaneous
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Cartoon of power electronics control

j 1. irin r in
cascaded Pl error [ comparison acquiring & processing
voltage/current | < to reference of AC measurements
tracking control| signal model

2. synthesis of references
(voltage/current/power)

~
DC voltage converter measurement
control modulation processing “how would a synchronous

generator respond now ?”

(.

f DC voltage ¢ PWM  AC current & ‘voltage
A )

v 3. cascaded PI controllers
4 ] ] to track reference error
L A assumption: no state

) e TP VNN constraints encountered
10F 4CF 4
4. actuation viamodulation

DC/AC power inverter
J

-

actuation of DC source/boost

5. energy balancing via
6. plus implementation tricks: saturation dc voltage P-control
via virtual impedance, low-pass filter for assumption: unlimited
dissipation, limiters, dead zones, logic, ... power & instantaneous
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Hierarchical control architecture

(covered on the board)

2dc Tsw

. : ‘i
vjc %%142—’\/\(;\,_ W_L: #G\&;%I
Y\_o"j UE” Y_ﬂ "] 'l:miij' 15 Ti’

g-‘_Li = (—RIL t .(Sw'.)i t Yy -~ v
ngv < \- G[z & (03\\/ + .\"(3,:,(

(DV\\“K 0‘9&2:-"\'0:: v SLouOo( '{'F&c(k [/\ Q‘jeﬂv\a V"_Ij

Coscaded PT toukel. @ ufrdt\no( Hat e ou M
vV ovia @

® ol 1 fo it \"%U'(“LL
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Example: Inner/Outer Control Loops

idc lsw

I”
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Example: Inner/Outer Control Loops

'ref
— voltage PI k—()¢— reference
A

idc isw 1\
+ i ;
U
Vdc ‘I <
_ + + -

Vg

I”
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Example: Inner/Outer Control Loops

ref]
current PI voltage PI k—( ¢ reference
A

idc isw v 1\
+ i ;
U
Vdc ‘I <
_ + + -

Vg

I”
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Example: Inner/Outer Control Loops

ey fogker Puster Oy

,re bref]
current PI voltage PI k—( ¢ reference
A

g WJ@H
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Outline

= Device-Level: Control of Converter-Interfaced Generation



Device-level challenges with inverter-based sources

- @—[ﬁlters}—#/—l

solar panel grid
—
wind farms high-voltage solar farms
DC systems

Tk

energy storage

w A (0 @

® primary source: constrained in active/ m assuring time-scale separation &
reactive power, energy, bandwidth, ... avoiding resonances + oscillations

m interlinking converters: master vs. slave = ...

m fragile grid-connection (over-currents)
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Device-level challenges with inverter-based sources

- @—[ﬁlters}—///—l

solar panel grid
—
wind farms high-voltage solar farms
DC systems

ks

energy storage

Ew R Cra

® primary source: constrained in active/ m assuring time-scale separation &
reactive power, energy, bandwidth, ... avoiding resonances + oscillations

m interlinking converters: master vs. slave = ...

m fragile grid-connection (over-currents) m signal causality: following vs. forming
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Grid-forming vs. following converter control

converter-type

grid-following

grid-forming

(loose but very
common definition)

current-controlled &
frequency-following

voltage-controlled &
frequency-forming

Pref_ O[ .3 ’_* Wréf,
g | 4
Qref, 3 Uréf»
signal causality (@, [lv[l) — (P, Q) (P, Q) — (w, vl
dynamic reachability needs a stiff grid

blackstart & islanded operation

disturbance sensitivity

filters only low frequencies

smoothens high frequencies

(DripLSow\}ma = distawee 4o c«s‘l?ﬁ Usfl?jc soure”
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grid-following

grid-forming

converter-type

(loose but very
common definition)

current-controlled &
frequency-following

Pref
>

voltage-controlled &
frequency-forming

Wréf,
8 8
Qref, 3 Uréf» 3
signal causality (@, [lv[l) — (P, Q) (P, Q) — (w, vl
dynamic reachability

needs a stiff grid

blackstart & islanded operation

disturbance sensitivity

filters only low frequencies

smoothens high frequencies

— stiff voltage sources are obviously perfectly grid-forming
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Grid-forming vs. following converter control

grid-following

grid-forming

converter-type

(loose but very
common definition)

current-controlled &
frequency-following

Pref
>

voltage-controlled &
frequency-forming

Wréf,
8 8
Qref, 3 Uréf» 3
signal causality (@, [lv[l) — (P, Q) (P, Q) — (w, vl
dynamic reachability

needs a stiff grid

blackstart & islanded operation

disturbance sensitivity

filters only low frequencies

smoothens high frequencies

— stiff voltage sources are obviously perfectly grid-forming, but do not
react to imbalances — for many reasons feedback control is preferable
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Remark: definitions are debated

m put 20 experts in a room ... — no universal definition & many hybrid concepts

m agreement on fact: power systems need XXX% of grid-forming sources
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Remark: definitions are debated

put 20 experts in a room ... — no universal definition & many hybrid concepts

agreement on fact: power systems need XXX% of grid-forming sources

many services can be provided both in grid-forming / -following mode

previous definitions are compromise found in MIGRATE project, but we also
came up with frequency-domain characterizations “sensitivity to grid frequency”

consortium

UNIFI Specifications for Grid-Forming
Inverter-Based Resources
Version 2

Characterization of the Grid-forming function of a
ed on its external frequency

thing capal

ie, Denis Guillaume, P|

ctricité (Research and De
La Défense

illaume.denis / thibault.prq

H ~-Control of Grid-Connected

Bode Diagram

—— following
— forming

180

;

104

2
0

10?2 104

Frequer um

Objectives and Decentralized Stability Lertlhcates

Linbin Huang, Huanhai Xin, and Florian Dorfler
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Fact: need XXX % grid-forming converters

figure taken from: “Grid-Following Inverters and Synchronous Condensers” by NREL

Grid Forming Grid Following Power

100% Grid Forming 75% Grid Forming 25% Grid Forming 0% Grid Forming
0% Grid Following 25% Grid Following 75% Grid Following 100% Grid Following
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Grid-forming control “typically” enters as

reference behavior in control architecture

T

Uref| grid—

. |
current PI voltage PI &—()¢— forming
4

reference

g
I
(S
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What if the refer%cs is droo behavior’?
(covered on the board) W

(5'4

o : i wmeJom s Qoss?esg
v,gm? v,,bﬂ

® QUUB (paveder o be wodkled %j
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What if the reference is droop behavior ?

(covered on the board)

i ¥Jwrente  coorokicle: A8 = B.- 6,
Aé 2 \)){ - ‘ln&sﬂ'\ (64'" e?.) - ,l/l 'E,,{
B w'lg + K B9 10.-8.) -k, E:ﬂ

= = tongt. Sin (88) t wwh
50

o “aluosh D(?ol;ae(’b b f;r-\ K//L>

“ A8

~ 0, G d 92 S‘tjuc\«ro\,ﬁm

43/103



Conventional reference behaviors

virtual synchronous machine

M iy Ly iy
w
7 (

m reference = machine (order 3,...,12)

— most commonly accepted solution in
industry (¢ backward compatibility ?)
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Conventional reference behaviors

virtual synchronous machine droop / power-synchronization

p—p*

M iy Lo iy
Tf@u } EEEE m direct control of frequency & voltage

via (p,w) & (g, [|v||) droop

m reference = machine (order 3,...,12) w—w" o p—p

d _ * *
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loops for MIMO nonlinear system
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Conventional reference behaviors

virtual synchronous machine

M i T, iy
[}
7 (

m reference = machine (order 3,...,12)

— most commonly accepted solution in
industry (¢ backward compatibility ?)

— poor fit: converter # flywheel

— good small-signal but poor post-fault
performance (reference not realizable)

— over-parametrized & ignores limits

— emulate only “useful” dynamics

droop / power-synchronization

p—p*
m direct control of frequency & voltage
via (p,w) & (g, ||v]|) droop
w—w" x p—p°

g llvll = —er(lloll = v*) = c2(g — ")

— decoupling # true in transients
— good small-signal but poor large
signal (narrow region of attraction)

— main reason: two linear SISO
loops for MIMO nonlinear system

— need “nonlinear & MIMO” droop
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Initial conditions for further reading

debated topic “put the new system in the old shoes ?” — make up your own mind

Virtual synchronous generators: A survey and new perspectives

Hassan Bevrani > Toshifumi e, Yushi Miura®

Comprehensive assessment of virtual
synchronous machine based voltage source
converter controllers

Hasn A s, oo 1Sttt

Asssct: Tha sl o o o i

BT Ap———
islanded microgrids ®

.

Synchronverters: Inverters That Mimic
Synchronious Generato

Control System Tuning and Stability Analysis of

Virtual Synchronous Machines

Jon e Sl Ol . Fos

Condiions orsabilty of droop-controlld nverter-based ®
ogrds

G

Controtr [ T

Controller

Grid-Forming Converters: Control Approaches,
Grid-Synchronization, and Future Trends—A
Review
ROBERTO ROSSO ' (tudent Member, IEEE), XIONGFEI WANG  * (enior Member, IEEE),

AR

{CO LISERRE ©* (Fellow IEEE) XIAONAN LU* (Wember, EEE),
AND SOENKE ENGELKEN? (senior Member,IEEE)
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Modern reference behaviors: VOC family

—_
" Lo g(v)
nonlinear & open limit cycle 4 v >
oscillator as reference model T
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Modern reference behaviors: VOC family

LC foule
nonlinear & open limit cycle —_
oscillator as reference model T
‘QOHPMW r!U&
m early works on Virtual Oscillator Control (VOC) A 5&5:&22 (v d} 460‘1&
[Johnson, Dhople, Krein, "1¢
2
— almost global synchronization & local droop "~
+ K
= /
m in practice proven to be robust mechanism =0
with performance superior to droop & others S
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— problem: cannot be controlled(?) to meet
specifications on amplitude & power injections
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Modern reference behaviors: VOC family

—_
Lo g(v)
nonlinear & open limit cycle 4 v >
oscillator as reference model

m early works on Virtual Oscillator Control (VOC)

4
2
— almost global synchronization & local droop "~
= ;
= /
m in practice proven to be robust mechanism =0
with performance superior to droop & others S
-2
— problem: cannot be controlled(?) to meet
specifications on amplitude & power injections
= -2 0 4
— dispatchable virtual oscillator control Voltage, v

ino, GroB3, Bro

¢, Gross, Colo
46/103



Synchronization of virtual oscillators

(covered on the board)

LC fok = Quenr osciPBbor conucched to o 8&30

+ t J L 4
3 = v = Y, El 1
v, TC®L <%ﬁd s Vs Le Y ¢ $ ,3,;[
= o
E C = '*}q ) \4(-,-) ~ gh(%f.{)

- ?gm{

Coupl §00 LC Hawhs with o resishor Wik i = 2 e
(Ii}a h’\ﬂ:—cvq —4KV—V‘L) y

= -4 - -
v LC Ve E( (V‘L '/")
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improvement of original ad hoc
virtual oscillator control (VOC)
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simplified multi-converter system model

(measurable) » converter = terminal voltage v, € R?
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MOdel & COntrO| ObJeCt|VeS (assumptions easy to generalize)

bo,k simplified multi-converter system model

(measurable) » converter = terminal voltage v, € R?

» line dynamics = steady-state II-model with
line admittance ||Yjx|| = 1/4/7%; + witi,

(controllable)

. . £
» homogeneous lines with xk = —T’_’; constant
i

desired steady-state behavior
» nominal synchronous frequency

4 e =123k

» voltage amplitude (uniform for simplicity)
okl = v VX (

» active & reactive power inje};y{)n
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MOdel & COntrO| ObJeCt|VeS (assumptions easy to generalize)

Lo,k

(measurable)

(controllable)

desired steady-state behavior

» nominal synchronous frequency

4 e =123k

» voltage amplitude (uniform for simplicity)
llog |l = v*

» active & reactive power injection

T [0 -1

T . * . *
Vi ok =Pk > Uk |1 o ]’Mk = 4k

cos( ) — sin(

& relative angles: Vf] = [sm( ) cos( ))}VK

simplified multi-converter system model
» converter = terminal voltage v, € R?

» line dynamics = steady-state II-model with
line admittance ||Yjx|| = 1/4/7%; + witi,

. . £
» homogeneous lines with xk = —T’_’; constant
i
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Colorful idea: closed-loop target dynamics
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Colorful idea: closed-loop target dynamics

d 0 —w *2 2
Soe =10 5] o+ ol - o) o
rotation at w amplitude regulation to - .
| = RO
n cos( ) — sin( ) .
I Gp° Zw]’k <Uj - [sin( ) cos(07,) ]vk) \,L
F=1

synchronization to desired relative angles
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Decentralized implementation of dynamics

ZjUij(7}}‘—R( Yur)

need to know w;, v, vy and
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Decentralized implementation of dynamics

Do wik(i—ROJor) = 3 win(v; —ok) + 30 wi(I—R(0]:))vn

need to know w;, v, vy and global “Laplacian” feedback local feedback: Ky, (07 ) vy,
—_ ~
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Decentralized implementation of dynamics

Zj’u}jk(ﬂj—R( Yur) Z wik(v; —vk) + Z wik(I—R(0;,))vk

need to know w;, v, vy and global “Laplacian” feedback local feedback: Ky, (07 ) vy,

insight I: non-local measurements from communication via physics

i(l:/a‘ = Z y]k J)j — Uk
~—~

local feedback distributed feedback with w1, = yp; = ||yl R(k)™!
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Decentralized implementation of dynamics

ijjk(”i_R( Juk) = ijg'k(vf—vk) = ijjk(I_R( ) vk

need to know w;, v, vy and global “Laplacian” feedback local feedback: Ky, (07 ) vy,

insight I: non-local measurements from communication via physics

i(l:/a‘ = Z y]k J)j — Vk
~—~

local feedback distributed feedback with w1, = yp; = ||yl R(k)™!

insight II: angle set-points & line-parameters from power flow equations

oL 22 5k (1—cos( ))—W(lf]k sin(67,.)
T twgls,

* ) Z woljk (1—cos( )+ sin( )

2 202
Tjk+w0ejk
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Decentralized implementation of dynamics

ijjk(”i_R( Juk) = ijg'k(vf—vk) = ijjk(I_R( ) vk

need to know w;, v, vy and global “Laplacian” feedback local feedback: Ky, (07 ) vy,

insight I: non-local measurements from communication via physics

i(l:/a‘ = Z y]k J)j — Vk
~—~

local feedback distributed feedback with w1, = yp; = ||yl R(k)™!

insight II: angle set-points & line-parameters from power flow equations

* 2 Z jk(l—cos( ) —woljg sin( )
Pr= 2 2,2
Tjk*‘*’()@'k 1 .
. _ 4% Dk
e 2y, “otik(meoR(Ol ) by sin(]y) = Kp(0") = —5R(x ){ X
Ak = Z T 1272 z —Pk
ik TWo 5k ——
global parameters local parameters
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Properties of virtual oscillator control

1. desired target dynamics can be realized via fully decentralized control

d
avk = 2 l')w} Vg +C1 - ([‘(2 - ||7*'k‘||2) V. + C2 - R(K/) (,1’ [:152 Z%] UV — io,l\">

N e’
rotation at wq local amplitude regulation synchronization through physics
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0 —w %2 2 S 5
— v = o +er - (077 = ||ug Vi co-R(R)[ = Vk — To.k
Zo= [0 ¢ lveter (0 — ol ve + e2 ()(,[m; b= oy
N——
rotation at wq local amplitude regulation

synchronization through physics

2. connection to droop control revealed in polar coordinates (for inductive grid)

d b .
P = w(1+61(&— P )
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Properties of virtual oscillator control

1. desired target dynamics can be realized via fully decentralized control

0 —w %2 2 S 5
— Ul — N |V t+c1 (v T — ||k Vk co-R(KR)| == Vk — %o,k
Zo= [0 ¢ lveter (0 — ol ve + e2 ()(,[m; b= oy
N——
rotation at wq local amplitude regulation

synchronization through physics

2. connection to droop control revealed in polar coordinates (for inductive grid)

d Dk Pk
— = witec [ == -
dt o+e (/“2 |

|2) ol wo + ¢z (pi. —pr)  (p—w droop)
v ||~
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Properties of virtual oscillator control

1. desired target dynamics can be realized via fully decentralized control

Pk 9k

d o 5 = .
avk = 2 l')w}q”‘kt G (Z‘ 2 - ”7*‘}\'”2) Vi + c2- R(K/) (,1’ |: Qk* I’;] Vi — l(),/«‘)

N e’
rotation at wq local amplitude regulation

synchronization through physics

2. connection to droop control revealed in polar coordinates (for inductive grid)

d Pk Pk «
- W Lld ~~  — D — w droo
dt vta (w? Tl ) oien o T2k —pi)  (p—wdroop)
4 vkl
dt
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Pk 9k

d o 5 = .
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N e’
rotation at wq local amplitude regulation

synchronization through physics
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d Dk Pk
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Properties of virtual oscillator control

1. desired target dynamics can be realized via fully decentralized control

Pk 9k

d » . hH .
0= o lveten - (v Pkl ve + c2- R (k) (,1 [ Ik, p’i] Uk — lo,lc>
———

rotation at wq local amplitude regulation synchronization through physics

2. connection to droop control revealed in polar coordinates (for inductive grid)

d P P .
= o - ~ + . — Dk — w droo
dt nra (/“2 [0sl2) om0 T Gt =) =Ry

d - .
@HWH ~ (g —qr)+ (v —

llvgll=1
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Properties of virtual oscillator control

1. desired target dynamics can be realized via fully decentralized control

Pk 9k

d o o = .
avk = L) l')w} Uk +Cl : (/‘ 2 - ||7)k‘H2) Vk I C2 - R(K/) (,1 |: Qk* I’;] Vi — l(),/«‘)
N——

rotation at wq local amplitude regulation synchronization through physics

2. connection to droop control revealed in polar coordinates (for inductive grid)

d Dr Dk X
— =  wo+ _— — I~ = - — Dk — w droo
dt 0 1 ( V2 |/Uk: |2 lonllm1 wo C2 (pk pl‘) (p w p)

d " 5
@HWH ~ (g —qr)+ (v —

llvgll=1

lvell) (¢ — [lv|| droop)

3. almost global asymptotic stability if

m power transfer “small” compared to network connectivity

= amplitude control “slower” than synchronization control CL ><,
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Experimental setup @ NREL

radial line
impedance
emulator

secondary

custom  impedance 3
inverters emulator
‘4

grid
simulator

resistive

load bank

()-8 o
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Experimental validation

Tek Prevu e — Tek prevu_L0ad Voltagm S
LoadVoItage(mOV/dW'\“ YRR W vl e Ao
D it g A ;\" [ / o
) = i A‘A‘A A‘ﬁ‘n'ﬂ"‘\ 1., L5 ol
Y w\/\mmm
"M fog (SAVciV)
AAA
ay/ ,\f’\/\f\\ \'\ AN f‘\/\,\ \ f\ \\/ J ‘\/\/\/\ \f\ VA
uq(SAMw)

C RTILAT e A— toipomis oy Jssas ) ': 2232?,” b e (|
black start of inverter #1 under 500 W load connecting inverter #2 while inverter #1 is
(making use of almost global stability) regulating the grid under 500 W load

Tek Prevu -_—-- TekPrevu Load Voltag: vy
A ) TIR T T Tl | ‘rur‘¢<w‘ff'w IO
' ARG AR RAARRRALARRRARARAL)
=
toad-Yoltage t100Vfdiv 001 (BATAIV) e 2 p
v /\/\MWN\ 11 power s";'ns AT o)
’ vt T M‘ ! H}
s B RSLI i ’\ .; ‘u‘amvr i
. NI A A NG LR LAY J \‘:‘\j“‘} "H“l‘l\ |
N AWAWEWAWATYA A IRV
‘\\%zﬁNmW VvV VoV VY oy (SATGIV) oy, a2]375W>500W
(@ 0h S G N ¥ (T @V Jarn Tocpoms iy ieas )
250 W to 750 W load transient with two change of setpoint: p* of inverter #2
inverters active updated from 250 W to 500 W
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Initial conditions for further reading

Global Phase and Magnitude Synchronization of
Coupled Oscillators With Application to the
Control of Grid-Forming Power Inverters
Marcallo Colomiing©, Dominkc Gro, Mambos EEE, Joa-Sdbaston Bouilon',

and Floran Dorfer , Member, IEEE
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The Effect of Transmission-Line Dynamics on
Grid-Forming Dispatchable Virtual
Oscillator Control

Domiric 1o, Member /EEE Mtcalo Gl °. Joa Sdbasien rllon
and Floran Dorfor , Momber,
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Initial conditions for further reading

Global Phase and Magnitude Synchronization of
Coupled Oscillators With Application to the
Control of Grid-Forming Power Inverters

The Effect of Transmission-Line Dynamics on
Grid-Forming Dispatchable Virtual
Oscillator Control

Dominic GroB ©, Member, IEEE, Marcelo Golombino ©, Joan-Sébastien Broullon
and Floran Dorfler , Member, IEEE

w & § are complex frequency & power
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Global Phase and Magnitude Synchronization of
Coupled Oscillators With Application to the
Control of Grid-Forming Power Inverters
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and Floran Dorfler . Member, IEEE
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The Effect of Transmission-Line Dynamics on
Grid-Forming Dispatchable Virtual
Oscillator Control
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Complex-Frequency Synchronization of
Converter-Based Power Systems

Xiiang He, Menber, IEEE, Verena Habcrle, Stdent Member, IEEE,
 Florian Défler, Senior Member, IEEE

Absiraci—In this paper, we study phasc-amplitude multvari-  Power systems increasingly utilize power converters due.
bl prver comple 10 th unprecedened development of renewable energy ine-
frequency perspecive. Complex presents the e oryion The loss of synchronism under grid disturbances

amdwmdewpnn-nﬂehymm e o e £nd daurbances has
and imaginary parts, respectively. This cmerging notlon s of

eration interruptions [5]. Such synchronization stability issues.
become increasingly challenging due o heterogencous net-
work characteristics and various converter control stralegics.
On the network side, P/0 and Q/V dynamics become tghtly
coupled, especally in distribution networks (with low X/R
mamics  1atos) 6], which are increasingly penetrated by distributed en-
ergy resources. The seasitivity of load consumption to voltage.
. variations also contributes 1o this coupling. On the converter-

— dVOC = complex droop:

@ & § are complex frequency & power

Quantitative Stability Conditions for Grid-Forming
Converters With Complex Droop Control

Xiugiang He ®, Member, IEEE, Linbin Huang ©, Member, IEEE, Irina Subotic:
Verena Hiberle ©, Graduate Student Member, IEEE, and Florian Dorfler ©, Senior Member, IEEE
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Duality & matching of synchronous machine

M ir L9 s

w 'Ug 9

Tm( 9
|

dé

L —w

dt

dw o —sin67 T, dvdc . T.
ME = —Duw + Ty + Linir [ cos ] s Cyc it =—GycVdc + idc + M if
L dis — —R.i + — Lmi —sin @ L d"’f Rsi
S? - s¥s T Vg mer [ cos @ ]UJ f? —BRpip £ @vdc

/

2
Mg [’4’2 )’M’l]

- ‘S“v[&)
= e | ()
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Duality & matching of synchronous machine

w 'UQT
Tm( ¢

do

= —w

dt
dw s T,
ME = —Dw + T + Lmir [ ngne‘g] 1s

ds . o —si

LST; = —Rsts +vg — Lmir [ Cz‘s“ge] w

1. modulation in polar coordinates:

cos §

M = Mampl [*Si“é} & 0 = Mireq

d—t: Mfreq - VJL
duyg, i ) ’
Cyc dtc =—Gycvde + ide + Mampl [ ciinzié} Tzf
di 3 — sin
Lf Tf = _Rf"/f +vg — Mampl [ C,(‘)S ‘E(S}Udc
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Duality & matching of synchronous machine

M iy Ly is
w
“E) 3

dé

= =

dt

dw s T,
ME = —Dw + T + Lmir [ ngne‘g] 1s

de . T _si

1. modulation in polar coordinates:

— —sind -

m = Mampl [ cos } & 0= Mireq
Wref
Vdc,ref

2. matching: myeq = nvge With n =

do
—=—7)l- v,
dt 7 Vdc
d’Ud . — & .
Cao—g,* =—GaoVao + e + Mampl [ 015’ ] i
di 9 — sir
Lth"“ - _szf + Vg — Mampl [ L';)S%(s}vdc
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Duality & matching of synchronous machine

= —w
dt
dw s T,

ME = —Dw + 7, + Lmir [ c;nee] 1s
ds . o P

Lo gy = ~Rets + vy = Lmiv [0 ]

1. modulation in polar coordinates:
M = Mampl [*Si”ﬂ & 6= Mireq

cos

2. matching: myeq = nvge With = e

Vdc,ref

— duality: Cy4; ~ M is equivalent inertia

)
—=n-v
dt 7 Vdc
d’Ud . — & .
Cao—g,* =—GaoVao + e + Mampl [ 015’ ] i
di g — sin
Lf djf = —Rf’Lf + Vg — Mampl [ C(‘)S 55}Udc

structural similarities :
m states: 0 = 9§, w = Nuge, ts = if
® control: Uampl = Lmir, tde/N = Tm

— equivalent inertia: M = Cy /7% &
energy imbalance signal w = vq.
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EXpenmentaI Val|dat|0n (concept often replicated)

4
€,
M,
—
in 0
cosf;
energy shaping (set-points) ‘ ‘ - energy shaping (set-points)
|
¥(a) L) Toma/div

200W/div

VPP AR A

24/div

¥(a) j

AR

).5A4/div L)
AR AR

50V/div!

A

isy 0 z!}a

10ms/div
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Details & initial conditions for further reading

O also applicable in a dual-port setup
The Electronic Realization of Synchronous (HVDC wind turbine hybnd gr|d ) ala
Machines: Model Matching, Angle Tracking, and ’ ’ v

Energy Shaping Techniques

Catalin Arghi © and Floian Dorfer

6 = ¢, - (dc imbalance) +

¢z - (ac imbalance)

b fmingconcol o poweronverersbsed n raching o () to map imbalances across dc/ac ports &
iy assure simultaneous dc & ac grid-forming

Dual-port grid-forming control of MMCs and its
applications to grids of grids

Dominic Gro, Member, IEEE, Enric Sinchez-Sin
Menmber, IEEE, and Oriol Gomis

mber, IEEE, Eduardo Prieto- Araujo, Senior
ellmunt, Fellow, 1EEE

Hybrid Angle Control and Almost Global Stability
of Non-synchronous Hybrid AC/DC Power Grids

Al Tayyebi and Florian Dérfer
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comparison of grid-forming controllers



High-level comparison

NS

p—p
droop control synchronous machine emulation

+ good performance near steady state + backward compatible in nominal case
— relies on decoupling & small attraction basin — not resilient under large disturbances

M Le

w
o E
re lde
T Cadc :”
Vde
virtual oscillator control matching control & duality

+ excellent large-signal behavior + local droop + simple & robust
— voc, droop, & vsm need strong dc source — slow ac performance
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Detailed comparison study @AIT

Sae s | @ all perform well nominally &
SM-VSM SM-dVOC . .
— — —max. DC current under minor disturbances

s = W’ relative resilience:

iy o matching > VOC > droop >
o virtual synchronous machine
%0.9«
s SM-droop SM-matching
0.94- SM-VSM SM-dVOC
092 05 1 15 2 2“:: 3 35 4

Frequency Stability of Synchronous Machines and
Grid-Forming Power Converters

Al Tayyebi, Dominic Grob, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dorfler, Member, IEEE

N SM-droop SM-VSM SM-matching [N SM-dVOC all-SMs
)
20 4
PRLIS 4
E‘ 10+ 4
g § |
@ 5
. ‘ ] ‘
33.5 35.5 36 36.5

[[Awiloe/1APi] [%

90 95 100
l1Awillo/|Api| %]
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Detailed comparison study @AIT

Sae s | @ all perform well nominally &
SM-VSM SM-dVOC 1 . .
— — —max. DC current under minor disturbances

e ————=—— ® relative resilience:

‘ ‘ matching > VOC > droop >
] virtual synchronous machine

004 oo amasis| | — it is @ very poor strategy for a
oS 1 15 a2 3 85 4 converter to emulate a flywheel
t[s]

Frequency Stability of Synchronous Machines and
Grid-Forming Power Converters

Al Tayyebi, Dominic Grob, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dorfler, Member, IEEE

SM-droop SM-VSM SM-matching [N SM-dVOC all-SMs

35.5 36 36.5

%

%0 % 100
[[Awiloo/1Api| [%]
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Detailed comparison study @AIT

7 y— = ;
SM-droop SM-matching
SM-VSM SM-dVOC
— — — .max. DC current
i ] l"'_" N H,— i i
5 2 25 3 35
t[s]
1.00 I ]
Z0.98
0.96 ,
oo SM-droop SM-matching
94F SM-VSM SM-AvoC | ]
0.02 | | : W .
0.5 1 15 2 25 3 35 1
t[s]

Frequency Stability of Synchronous Machines and
Grid-Forming Power Converters

Al Tayyebi, Dominic Grob, Member, IEEE, Adolfo Anta, Friederich Kupzog and Florian Dorfler, Member, IEEE

m all perform well nominally &
under minor disturbances

m relative resilience:

matching > VOC > droop >
virtual synchronous machine

— itis a very poor strategy for a
converter to emulate a flywheel

m promising hybrid control
directions: VOC + matching

SM-droop SM-VSM

SM-matching [N SM-dVOC

all-SMs

35.5

%

%0 % 100
[[Awiloo/1Api| [%]
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Deta”ed ComparISOI’l S (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Comparison of Virtual Oscillator and Droop Control
Controlled Islanded Three-Phase Microgrids i s, it R i S, S Dhle
Zoan $159, Membe IEGE. inchn L, Sden Membor, 1, Hekn . Nundin®, Senorember, 5, e S g Crr L
and Joha E. Fletcer S, Snior Mermber, IEEE i, <0 ol Mot NN
i i it ot o) S
Similarities between Virtual Oscillator Controlled Comparative Transient Stability Assessment of
and Droop Controlled Three-Phase Inverters Droop and Dispatchable Virtual Oscillator
Zhan Sk, Hendra I Nurtin, Joha E. Flecher,_Jiacheng Li Controlled Grid-Connected Inverters
Schot of Bl Engincring ad Teecommanicon, UNSW Sy, NSW: 202, Ausla
i M Yo, Stadent Member, IEEE, M A Aval, Sudens Mernbe; IEEE, W o, Studens Member IEEE
bl Hussin, Fellon, IEEE nd Sedjn Lukic,Senior Merber, 1EEE
Frequency Stability of Synchronous Machines and NTROL
Grid-Forming Power Converters AND CHALLENGES IN FUTURE GRIDS APPLICATION
A Ty, Do o, Mmbe, EEE, Adoo Ans, Fiederic Kupaosnd s Dot Member, IEEE — Flaim DORPLER e KUPZOG
AT and ETH Zarich - Ausia ETH Zinh-Swigernd  Ausian s o Tshnoogy At
Comparison of Droop Control and Virtual Oscillator
Control Realized by Andronov-Hopf Dynamics Transient response comparison of virtual
and droop
Mingh L, Vo Pt S Dople’, Bian Joason three-phase inverters under load changes
Mathias Melby Zhan Shir, diacheng L, Hondra . Nurin, John E. Fletcher!
Simulation-based study of novel control Sl SecinEngost:
strategies for inverters in low-inertia sys Comparison of virtual oscillator s
grid-forming and grid-following control and droop control in an Grid-Forming Converters control based on DC voltage
[ — inverter-based stand-alone microgrid T feedback
o s ong e i
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Deta”ed com parISOI’l (S) (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Control

Zhan shi

Comparison of Virtual Oscillator and Droop
Controlled Islanded Three-Phase Microgrids

Member, IEEE, iacheng Li . Siudens Member,IEEE, Hendra 1. Nurdin
and oo E. Fetcher . Senior Member, IEE)

Comparative Transient Stability Assessment of
Droop and Dispatchable Virtual Oscillator

Similarities between Virtual Oscillator Controlled
and Droop Controlled Three-Phase Inverters

Emait

John . Flecher,  Jiacheng Li

S, Hendra 1. Nurdin,
Schoolof Fletricl Engicerin and Teecommunicatons, UNSW Sydocy, NSW, 2052 Ausila

Frequency Stability of Synchronous Machines and

Al Toyeli, Dorinic Gro, Merber, IEE, Adolfo Ants, Friedrich Kupzog and Floian Do, Merbes, IEEE

Grid-Forming Power Converters

Comparison of Droop Control and Virtual Oscillator

Control Realized by Andronov-Hopf Dynamics

Controlled Grid-Connected Inverters
i Yo, Stdent Mermber, IEEE. M A Avl. Sudens Member, 1EEE, Vs Tu, Sudens Member EEE
b Husin, Fellow, IEE and Sedjn Lukic,Senior Merber, IEEE

AND CHALLENGES IN FUTURE GRIDS APPLICATION
foderich KUPZOG

i
Ausian Instrut of Technology — Ausiria

AGTAYYER! Florian DORFLER
AT ETH Zarich - At ETH Zinch - Swierand
Translent response comparison of virtual

and droop

three-phase inverters under load changes

Zhan Shi"*, Jiacheng Li, Hendra 1. Nurdin’, John E. Fletcher’

Mingh L, Victor Psba, S Dhopl’, Bria Johason

Mathias Melby

Simulation-based study of novel control
inverters in low-inertia sys
forming and grid-following

strategies
grid-

Author: Alesandso Civellaro

inverter-based stand-alone microgrid

Ematsnon shigunewads s

‘Grid-Forming Converters control based on DC voltage

Comparison of virtual oscillator
control and droop control in an —
i feedback

Yo oo Hi-Pong R, J i

> identical steady-state & similar small-signal behavior (after tuning)
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Deta”ed com parISOI’l (S) (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Comparison of Virtual Oscillator and Droop Control
Controlled Islanded Three-Phase Microgrids

Zhan SHi®, Member, IEEE, Jia

E, Hendra L. Nurdin®, Senior Member, IEEE,

Li
i Fecher.

jmber 1
Similarities between Virtual Oscillator Controlled Comparative Transient Stability Assessment of
and Droop Controlled Three-Phase Inverters Droop and Dispatchable Virtual Oscillator

Zhan i, Hendra 1 Noin,John E. Ftche, _Jicheng Li Controlled Grid-Connected Inverters
Scholof Bl Egiceng nd Telcommicons, UNSW Sydoy, NSW, 2052, Austta
e i Yo, Stadent Member, IEEE, M A Aval, Sudent Menber; IEEE, Hoo T, Studens Member IEEE
gbal Husain Fello, IEEE and Sxdjan Lukic, Senior Member, IEEE
Frequency Stability of Synchronous Machines and ITY, CONTROL
Grid-Forming Power Converters AND CHALLENGES IN FUTURE GRIDS APPLICATION
A Tayyeb, Daminic Grob. Mo, EEE, Adolfo At Frsdrch Kupaosnd Flsian Do, Merbe, IEEE Jre—— Flran DORELER
AT ETH Zarich - At ETH Zinch - Swierand
Comparison of Droop Control and Virtual Oscillator
Control Realized by Andronov-Hopf Dynamics Transient response 00':!’:"50" of virtual
and droop
three-phase inverters under load changes

Mathias Melby Zhan Sh =, iacheng L1, Hondra . Nurdi', John E. Flathor

Simulation-based study of novel control
strategies for inverters in low-inertia system: Comparison of virtual oscillator

and grid-following control and droop control in an
inverter-based stand-alone microgrid

Ematsnon shigunewads s

‘Grid-Forming Converters control based on DC voltage
feedback

Yo oo Hi-Pong R, J i

identical steady-state & similar small-signal behavior (after tuning)

virtual synchronous machine has poor transients (converter # flywheel)
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Deta”ed com parISOI’l (S) (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Control

Comparison of Virtual Oscillator and Droop
Controlled I>landed Three-Phase Mlurognds

I Honda | Norin

Zhan shi

Comparative Transient Stability Assessment of
Droop and Dispatchable Virtual Oscillator

Similarities between Virtual Oscillator Controlled
and Droop Controlled Three-Phase Inverters
Controlled Grid-Connected Inverters
A Aval, Sudens Menber; IEEE, Woo Tu, Studens Member IEEE
£

Znn Shi. Hendra 1. Nordin, John E. Fltcher, Jischeng Li
Schoolof Fletricl Engicerin and Teecommunicatons, UNSW Sydocy, NSW, 2052 Ausila
Hui Yo, Student Merber I
Jal Husain, Fellow; IEEE a0 Sedjan Lukic, Senior Member,IE

Emait
ITY, CONTROL

AND CHALLENGES IN FUTURE GRIDS APPLICATION

Frequency Stability of Synchronous Machines and
Grid-Forming Power Converters
Austia

JEEE, A

Florisn DORFLER i
ETH Zarch- Swiveland  Ausia st

Al TAYYEB
AIT and ETH Zarich - Aussia

Translent response comparison of virtual
and droop

three-phase inverters under load changes

Comparison of Droop Control and Virtual Oscillator
Control Realized by Andronov-Hopf Dynamics

Minghu L, Vico Pub. Saic Dhopl’, B Johmson
Mathias Melby Zhan Shit= Jiacheng L1, Hendra I Nurdin’, John E. Fetcher!
Simulation-based study of novel control ot o B G
strategies for inverters in low-i system:| | Comparison of virtual oscillator
grid-forming and grid-following control and droop control in an ‘Grid-Forming Converters control based on DC voltage
st inverter-based stand-alone microgrid feedback
Vosn G, Ha-Peng RerJic L

> identical steady-state & similar small-signal behavior (after tuning)
virtual synchronous machine has poor transients (converter # flywheel)

> i
» VOC has best large-signal behavior: stability, post-fault-response
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Deta”ed com parISOI’l (S) (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Comparison of Virtual Oscillator and Droop Control
Controlled Islanded Three-Phase Microgrids

Zhan SN, Menmbe, B, i IEEE, Hendra 1. Nurdin®, Senior Member, IEEE,

o . Ftcer. Scior b 1EEE

Similarities between Virtual Oscillator Controlled Comparative Transient Stability Assessment of

and Droop Controlled Three-Phase Inverters Droop and Dispatchable Virtual Oscillator
Zhan Shi, Hendra L Nurdin,  John E. Flecher, Jiachen Li Controlled Grid-Connected Inverters
Schot of Bl Engincring ad Teecommanicon, UNSW Sy, NSW: 202, Ausla
i M Yo, Stadent Member, IEEE, M A Aval, Sudens Mernbe; IEEE, W o, Studens Member IEEE
Sabal Hussin, Fellon, IEEE and Sdjan Lokc,Senior Member, IEEE
Frequency Stability of Synchronous Machines and ITY, CONTROL

Grid-Forming Power Converters AND CHALLENGES IN FUTURE GRIDS APPLICATION
b EEE, Adlfo A, Fredrch Kupao and Floian Do Menber, IEEE Ay oran DORFLER

A TAYYERI Fricderich KUPZOG
AIT and ETH Zarich - Aussia ETH Zarich- Switerland  Ausian It of

nology - Ausia

Al Tayeni, D

Comparison of Droop Control and Virtual Oscillator
Translent response comparison of virtual

Control Realized by Andronov-Hopf Dynamics
and droop
piat, B obowor’ three-phase inverters under load changes
Mathias Melby Zhan Shi'*, Jiacheng Li", Hendra |. Nurdin', John E. Fletcher®
Simulation-based study of novel control St St S
rtia system: Comparison of virtual oscillator
and grid-following control and droop control in an ‘Grid-Forming Converters control based on DC voltage
A inverter-based stand-alone microgrid feodback

Yo oo Hi-Pong R, J i

identical steady-state & similar small-signal behavior (after tuning)
virtual synchronous machine has poor transients (converter # flywheel)
VOC has best large-signal behavior: stability, post-fault-response,
matching control w ~ vy is most robust though with slow AC dynamics

vV v.Yyy
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Deta”ed com parISOI’l (S) (stopped collecting references at mid 2020)

Comparison of Virtual Oscillator and Droop Comparison of Virtual Oscillator and Droop Control
Controlled Islanded Three-Phase Microgrids Brian T

Zhan SHi®, Member, IEEE, Jia

it Sinhs, Saira D

o

Similarities between Virtual Oscillator Controlled Comparative Transient Stability Assessment of
and Droop Controlled Three-Phase Inverters Droop and Dispatchable Virtual Oscillator
Shi, Hendra L Nurdin, Jobn . Fleiher, Jicheog Li Controlled Grid-Connected Inverters

Zhn
Schoolof Fletricl Engicerin and Teecommunicatons, UNSW Sydocy, NSW, 2052 Ausila

Emait

Hui Yo, Stdent Member, IEEE, M A Awal. Student Member; IEEE, Hoo Tu, Sudent Member, IEEE,
bl Husin, Fellow, IEEE and Sedjan Lukic, Senor Member IEEE,

Frequency Stability of Synchronous Machines and P
Grid-Forming Power Converters AND CHALLENGES IN FUTURE GRIDS APPLICATION

Al Tyyeti, Domini G,

e, EEE, Adolfo A, Friodedch Kupzog and Floian Dovtr, Menber, IEEE PrET— Florisn DORFLER.
AIT and ETH Zarich - Aussia ETH Zarch - Swiveland  Ausia

Comparison of Droop Control and Virtual Oscillator

Control Realized by Andronov-Hopf Dynamics Transient response comparison of virtual
and droop
Minghul L, Vit P, Sui Dhople, Brian I three-phase inverters under load changes
Mathias Melby Zhan Shit= Jiacheng L1, Hendra I Nurdin’, John E. Fetcher!
Simulation-based study of novel control
strategics for inverters in low-inertia system: | | Comparison of virtual oscillator £ shn i

and grid-following control and droop control in an ‘Grid-Forming Converters control based on DC voltage
inverter-based stand-alone microgrid Toedback

Yo oo seLi

identical steady-state & similar small-signal behavior (after tuning)
virtual synchronous machine has poor transients (converter # flywheel)
VOC has best large-signal behavior: stability, post-fault-response,

matching control w ~ vy is most robust though with slow AC dynamics

vV vy VY

..comparison suggests multivariable control (e.g., VOC + matching)
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Abstract perspective on converter controls

@ droop control = 3 decoupled SISO loops

Ve
P, ref T @ 1W0
p - l £
0
O —12]
. ref _

____¢£_T__,
| 9
Ly

WI.I

EV
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Abstract perspective on converter controls

@ droop control = 3 decoupled SISO loops

Ve
W
P, T D l w,
p
P S
Orr D, E,
q

(2) virtual machine = droop + filters + ...

Vierer fpdc + i 1 "’
- S
W,
1 1 0
Pry _$7|2Hs+1/D,
P k,
We T 2Hs +p1/DP
Wu
EO
0. & \

lu

Wu
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Abstract perspective on converter controls

@ droop control = 3 decoupled SISO loops @ matching = unconventional coupling

Kiad _len_.
Vidc| .
Kpde + . L

Ve
W
P, T D l w,
p
P S
Oy D, E,
q

(2) virtual machine = droop + filters + ...

T i
Vum/j Kpdc + L:( 1 ’ iy
Vd(’ -
W,
1 1 0
Pry _$7|2Hs+1/D, i
P k,
Wy — T ST 1 /D,
w, 1 ,
O & E,
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Abstract perspective on converter controls

@ droop control = 3 decoupled SISO loops @ matching = unconventional coupling

L —»ilo—b
> .
kpac + : = i

u

Ve -
Wo
o SR
P, ? D, w,
p ]
P S
Oy D, E,
q —'T
(@) nonlinear & coupled preprocessing of
(2) virtual machine = droop + filters + ... control inputs: virtual oscillator control
v - i p] (el
deref I pde =g " q | = |q/|lv|*| ~ control loops +— u
vie w [lvll l[oll
0
P ! 1 w,
» R — _T or droop adapting to impedance angle ¢
W P
g7 2Hs + 1/D), . "
wu—f v s {ﬂ — [fg;{i’; Z(I)I; :j {2 ] ~ control loops — u
0w & E,
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Abstract perspective on converter controls

@ droop control = 3 decoupled SISO loops @ matching = unconventional coupling

Iy
kig, i X

£
W,

u

v,
Py

[=]

i
O {D,} E

u

Ve
P
. :
(2) virtual machine = droop + filters + ...

5
Va b

deref ‘pdc »
v’ 1 SSREEY

1 1w°
Py W

_4|12Hs+1/D,
P kp

s T 2Hs +1/D,
w,

u

v E,
O, i 1 ° E,

|3

4= ka/D,
v L

Veterey =%

(@) nonlinear & coupled preprocessing of
control inputs: virtual oscillator control

p o/|vl?
q (= Q/H”HZ — control loops — u
[lvll flv]]

or droop adapting to impedance angle ¢

{p} — [ cosp s 99} {p] — control loops — u
—sing cose| |q

= seek MIMO, dynamic, & nonlinear control
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Optimal multivariable grid-forming control

m inputs: modulation,

“ LE dc-power supply, &
S =Ks) | inner references

Ve Yl  m outputs: (nonlinear)

state tracking errors
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Optimal multivariable grid-forming control

m inputs: modulation,

“ LE dc-power supply, &
=K(s) | : inner references
P Yv1  w outputs: (nonlinear)

state tracking errors

— can include all other controls (e.g.,
droop or VOC) depending on I/O’s

» optimal/robust linear design via
Ho / Hoo & nonlinear implementation

» forming/following mode enforced
by small-signal Bode characterization

» linear stability under interconnection
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Optimal multivariable grid-forming control

Ve (pu)

u1 Y1

| =K(s) | :
Um Yp
—

® inputs: modulation,
dc-power supply, &
inner references

m outputs: (nonlinear)
state tracking errors

can include all other controls (e.g.,
droop or VOC) depending on I/O’s

. . . q S a
optimal/robust linear design via g v
Hs / Hoo & nonlinear implementation 0.995 : : : : )
. - Time (5)
forming/following mode enforced o
by small-signal Bode characterization -2
El
. s q ; S 1
linear stability under interconnection S
0
4 5 6 7 8 9
Time (s)
1.02 0.2
A _ droop control
1 N 3 0 )
fw v < virtual synchronous
S o2 machine emulation
0.98
5 6 7 8 9 4 5 6 7 8 9 optimal & multivariable
Time (s)

Time (s)
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Initial conditions for further reading

Generalized Multivariable Grid-Forming State Feedback Reshaping Control of Voltage
Control Design for Power Converters Source Converter

Meng Chen®, Member, IEEE, Dao Zhou®. Senior Member, IEEE. Ali Federico Cecati ®, Member, IEEE, Rongwu Zhu®, Member, IEEE, Sante Pugliese ©, Member, IEEE,
Bluado PricoAro SeriorMenber, IEEE, Fiorin Dire, Svir e 15E, arco Liseree @, Fellow, IEEE. and Xiongfei Wang ©, Senior Member, IEEE
and Fred jere” . Fellow, IEEE

Abstract—Admittance eshaping is  widly wse sratzy Auiliary stte variabe ofthe current control

e i g et s mpain i s of lo cle st inerion of caused by wcion with th de and ac olings Stae vectr.
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ost o et ool uf 5 -
T o 2 sl et of e - by put veetor.
orming comtarier rom e, view of mli e e invenrs oy  fnda mvm!w\ewzn\mzmen feodbacks. This phenomenon gets ven wors i the presence o 1= &7 Refernce input vector.
e of B o
g utput vector,
i (1 .
more inverter-inerfced gencrators (1Gs) are inegrated oce of the comerer o Inc
of the comentional muloop coniro, «N.m coupling marix

e tocdback,

oftine tgorit s deegaed t s uc ok voliae voag refrerce

ek, mling e reponed sl iy T e Coent ool e
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et i apere S of e curntoap i s,
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; gl gain ofhe curen ol
Londocied b e o P I uin o the de voluge contoller
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e o f e T I e pover e O

On Power Control of Grid-Forming Converters:
Modeling, Controllability, and Full-State
Feedback Design
Meng Chen, Menber,IEEE, Dao Zhou®, Senior Member, IEEE, Ali Tayyeb
Eduardo Prcto-Araio . Senior Member 1B, Floian Difler©. Sevior Member IEE,

Apstact-Thi arce itoduces 8 new gridorming .y e comere e reqeny and vologe ool and Frede Blaabjerg ©, Fellow, IEEE
black-start, and

Grid-Forming Hybrid Angle Control and Almost
Global Stability of the DC—AC Power Converter

Ali Tayyebi ©, Adolfo Anta ©, and Florian Dérfler
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Often research goes in circles until
we (hopefully) arrive at a bigger picture

SG rotor
simulation

r=0
vog 1,=0 , Yo ‘5* > "
/0C pr=q= 5= roop Tip
(averaged) dvoc (Q-fPV) VSM

average =0 |
ul\\«(‘rl‘ (‘;‘nlo VaV* V=V* k,=0 Cac

cycle p*=q*=0 7,=0 Yae >

voC Droop dual-port | m,=0 SG
g (P-f/Q-V) GFM matching

resistive grid

inductive grid

SG

2’1 matching physics
through feedback

Florian Dérfler' and Dominic Grof3?

Laboratory, ETF

1 Zurich,
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When you actually implement grid-forming
controls, you realize that you need ...

\/ performant inner control loops: highly tuned and/or MIMO versions

\/ low-pass filters: to avoid algebraic loops, filter measurements, and/or
control bandwidth of controls (e.g., to ensure time-scale separation)
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When you actually implement grid-forming
controls, you realize that you need ...

\/ performant inner control loops: highly tuned and/or MIMO versions

\/ low-pass filters: to avoid algebraic loops, filter measurements, and/or
control bandwidth of controls (e.g., to ensure time-scale separation)

X over-current protection (= limit the current in response to a grid-fault)
while remaining grid-forming (= synchronizing the angle dynamics)

— hackish solutions: virtual impedance, switch to following, anti-windup,
limiter + adaptive gain in current loop, ...=- can be tuned for any fault,
but not robust, not principled, poor transients, & case-by-case tuning

— over-educated solutions: MPC, projected dynamics, ...=- works,
limiting the current is easy, but how to remain (or encode) forming ?
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Limitations independent of implementation

(covered on the board)

m generic circuit with a current-saturated source n-/
I %
Current-saturated v o4 | | & EEquivalent grid
(mvgr}er) Q/ anm = (in steady state)
Ll — Llim \ J S J

"9‘”"0 Uaehhjﬁ

G e Ve v, =/
2t )
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Limitations independent of implementation

(covered on the board)

m generic circuit with a current-saturated source

Current-saturated v i | Loz ittt (550
(mvgr}er) Q T ' (in steady state)
Ll — Llim : i J

m circuit laws & vector diagram during normal operatio b . o
@ COL!"\ JMI

X L

e

li <1,

lim

lif <T

lim
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m circuit laws & vector diagram during current saturation |i| = I

Intersections
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Principled ways out of the dilemma

\i, Voltage-
—>| forming

control

l
> |v] Zg L \3’
' v
—»42}

Current-
forming
control

= ||

21

m facts during current saturation (independent of control architecture):
(1) the current magnitude is imposed, (2) the voltage magnitude follows the
circuit law (“voltage decline”), & @ the voltage angle can still be imposed
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Principled ways out of the dilemma

l
\i, Voltage- [~ ] Zeg L v | Current- [ ||
—| forming v forming i Yeq
control | | /4 control | | /4

m facts during current saturation (independent of control architecture):

(1) the current magnitude is imposed, (2) the voltage magnitude follows the
circuit law (“voltage decline”), & @ the voltage angle can still be imposed

— current magnitude || is thus “formed” & voltage-forming is impossible
m two principled remedies during saturation

X form current angle Z: ~ switch to grid-following (issues listed before)
\/ cross-forming control: keep on forming

-

voltage angle Zv (= remain synchronizing)
while current magnitude |i| = Ijm is imposed

Voltage-

forming

T

| l
Cross

forming
JA regulator
lim

Cross-forming control

e}
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Summary & cross-forming control specs

m generic cross-forming control architecture

; - ; Limiter
Voltage-forming K ; i PWM
reference Cross-forming Current modulation
control

7 ,| regulator voltage

= Equivalent circuit
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reference Cross-forming |~ L | Current | | |4 lation
control
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Summary & cross-forming control specs

m generic cross-forming control architecture
Limiter

; PWM
modulation

i Voltage-forming | *
reference Cross-forming | L . |Current
I ,| regulator control voltage
= Equivalent circuit

m norminal equivalent circuit presented to the grid:

2t =0—v

m current-saturated equivalent circuit presented to the grid: Im & Z0 are
imposed, reference voltage © with unknown scaling A\ & /i follow circuit law

! z i=lnli yl
0 Grid

A @ D ch

li| = Lim
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Possible cross-forming implementation
m equivalent circuit during nominal operation: z,i = o —v

m equivalent circuit during saturation |i| = Im: 2,4 = A0 — v with scaling A

Lyl
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Possible cross-forming implementation

m equivalent circuit during nominal operation:

m equivalent circuit during saturation |z| = [jn:

& ugvi = A0 — v with degree of saturation y =

L=0—-v
z,4 = A0 — v with scaling A

commanded current @
T =5 € [07 1]
limited current 3
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m equivalent circuit during nominal operation: z i =
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8
<

m equivalent circuit during saturation |z| = [jn:

[
[,

b — v with scaling A
A . . commanded current )
& pz,t = A0 — v with degree of saturation u = - =
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limited current Q [0,1]
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m equivalent circuit during nominal operation:

m equivalent circuit during saturation |z| = [jn:

=3 ugvi = A0 — v with degree of saturation y =

m feedback of v/; = circuit equation is satisfied with A = p: gvi = <

2,1

I
|
S

b — v with scaling A

commanded current @
— = = E [07 1]
limited current 3

. y)
52
I

— circuit characteristics preserved if both current i & voltage v are scaled by p:
the former due to saturation & the latter through feedback of v/
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Possible cross-forming implementation

m equivalent circuit during nominal operation: z,i = o —v

m equivalent circuit during saturation |z| = [jn:

& = Ao — v with scaling A

A . . commanded current )
& pz,t = A0 — v with degree of saturation u = =

7
= €][0,1
limited current Q [0,1]

m feedback of v/; = circuit equation is satisfied with A = p: gvi = <

. y)
52
I

— circuit characteristics preserved if both current i & voltage v are scaled by p:
the former due to saturation & the latter through feedback of v/

— angle forming is preserved: scaled internal voltage p© has same angle as ©

— ... more to be said but requires a separate course ...
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Experimental validations
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Details for further reading
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Synopsis & lessons learnt on device level

(1) converter + flywheel: very different actuation & energy storage
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Synopsis & lessons learnt on device level

(1) converter + flywheel: very different actuation & energy storage
(2) take dc voltage into account: robust imbalance signal akin to frequency
(3) multivariable design instead of decoupling: simple but results in huge gains

— based on optimization & account for grid-forming/following specifications

— motivates architecture-free definitions of grid connection requirements,
grid codes, & ancillary service specifications (talk to Verena in the audience)

@ hard problem: satisfy current constraints & remain grid-forming post-fault
— cross-forming control as a principled remedy

@ synchronization is only the beginning: what to do once sync’d ? services!
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Outline

= System-Level: Ancillary Services in Low-Inertia Grids



Hook curve & services in conventional system

source: W. Sattinger, Swissgrid
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Naive insight: we are loosing inertia

We loose our giant electromechanical low-pass filter: 0. w

d

;i% w

change of kinetic energy = instantaneous power balance

(t) = Pgeneration(t) - Pdemand (t)

generation
oA
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We loose our giant electromechanical low-pass filter: 0. w

1
M % w(t) = Pyeneration(t) — Paemand(t)

generation
oA

change of kinetic energy = instantaneous power balance
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Berlin post-fault curves: before & after
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Source: Energie-Museum Berlin
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Low-inertia issues close to home

ggshd

# frequency violations in Nordic grid
(source: ENTSO-E)
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Low-inertia issues close to home
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# frequency violations in Nordic grid same in Switzerland (source: Swissgrid)

(source: ENTSO-E)

=

=
=)
=)
=

RoCoF [Hz/s|
RoCoF [Hz/s|

|
=}
=)

|

=
o
=3

—0.2—0.15-0.1-0.05 0 0.05 0.1 0.15

—=0.2-0.15-0.1-0.05 0 0.05 0.1 0.15
Frequency deviation [Hz]

Frequency deviation [Hz]

aday in Ireland (source: F. Emiliano) a year in France (source: RTE)
79/103



Time-varying inertia depends on dispatch

“Impact of low rotational inertia on power system stability and operation” by Ulbig et al.

65

450 i .

Value of Aggregated Inertia Constant Hagg(t)

35 1 H

Aggregated Inertia Constant Hagg(t)
1

i T T i
325 33 3.35 3.4 3.45 35
Time [in 1/4-h steps] x10°

Temporal variation of the aggregated & normalized inertia constant
1

H = ;2" across Germany for the last quarter of 2013
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This may be true to first order ... but

m the physics of a low-inertia system are not any longer dominated
by the mechanical swing dynamics of synchronous machines

m not just loosing inertia but also tight control of frequency & voltage

m distributed generation will lead to different contingencies (more but smaller)
exception: largest contingency (loss of HVDC line) still present (even more ?)

m no more separation of (P,w) and (Q, ||v||) in dynamics & control

= many new phenomena: line dynamics matter, subsychronous oscillations, ...
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This may be true to first order ... but

m the physics of a low-inertia system are not any longer dominated
by the mechanical swing dynamics of synchronous machines

m not just loosing inertia but also tight control of frequency & voltage

m distributed generation will lead to different contingencies (more but smaller)
exception: largest contingency (loss of HVDC line) still present (even more ?)

m no more separation of (P,w) and (Q, ||v||) in dynamics & control

= many new phenomena: line dynamics matter, subsychronous oscillations, ...
— certainly more brittle behavior & for very low inertia levels anything may happen

— on the positive side: actuation is much faster!

nominal frequency

81/103



Second-order observations beyond naive insight

f A restoration time

Y
v

nominal frequency
Q =

secondary control

inter-area
nadir ~ M/T oscillations

\—> T M %w = Pmech — Pelec
ROCOF ~ 1/M

aggregated model:

T%pmech = —Pmech + Kw
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Second-order observations beyond naive insight

f A restoration time

nominal frequency
Q =

secondary control

inter-area
nadir ~ M/T oscillations

\—> T M %w = Pmech — Pelec
ROCOF ~ 1/M

aggregated model:

T%pmech = —Pmech + Kw

m first-order observation: less inertia A/ —- steeper RoCoF & lower nadir
m second-order observation: can trade off inertia 1/ with faster actuation 7'

= more profound observations: the above classic hook curves reflect the
physical behavior of a system dominated by synchronous machines

— new physical phenomena — new metrics & new ancillary services needed
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In the long run: free yourself from thinking
about power system stability / control as

in the conventional text book picture

f A restoration time

7

inertial

A
v

nominal frequency

secondary control

primary control
inter-area
frequency nadir oscillations

response

\ ROCOF (max rate of change of frequency)
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Fact: no more hook curves in low-inertia systems

source: confidential — but you can make your guesses
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Fast frequency response provided by converters

can be implemented in either grid-forming or following paradigm

disturbance inputs

————— > loads, transmission, batteries, PLL, ...
(e.g., loss of load/generation)

converter AC voltage

power system

synchronous machines, governors,

performance outputs

(e.g., generator frequencies)

power imbalance

fast-frequency response
(implemented as inertia + damping)

.
.
.
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Fast frequency response provided by converters

can be implemented in either grid-forming or following paradigm

disturbance inputs

————— > loads, transmission, batteries, PLL, ...
(e.g., loss of load/generation)

converter AC voltage

power system

synchronous machines, governors,

performance outputs

(e.g., generator frequencies)

power imbalance

fast-frequency response
(implemented as inertia + damping)

.
.
.

which metric(s) should we optimize when tuning controls ?
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metrics



Historic & revived (PMUs) metrics:
spectrum, nadir, RoCoF, & total inertia

Demystifying
Power System Oscillations

Graham Rogers*
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+
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Historic & revived (PMUs) metrics:
spectrum, nadir, RoCoF, & total inertia

Smart Frequency Control
for the Future GB Power System

Peter Wall Vandad Hamidi Douglas Wilson, Campbell Booth,
Negar Shams, Charlotte Grant Sedn Norris Qiteng Hong,
Vladimir Terzija National Grid Kyriaki Maleka Andrew Roscoe
‘Warwick, UK Alstom Grid - .
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Historic & revived (PMUs) metrics:
spectrum, nadir, RoCoF, & total inertia
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are these suitable metrics ?

let’s look at a case study



Futility of traditional metrics
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Futility of traditional metrics
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More useful metrics: system norms

m from step responses in a conventional power system to more modern (1980)
system norms quantifying the effect of shocks on variables of interest

disturbances: impulse performance outputs:

(fault), step (loss of _,m_, signal energy or peak
in time /frequency

generation), stochastic
signal (renewables) domain of output
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m example: as a result of fault choose best fast frequency response to minimize

/ {frequency deviation}* + {coherency: deviation from COI}* + {control effort}® d¢
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nominal frequency
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More useful metrics: system norms

m from step responses in a conventional power system to more modern (1980)
system norms quantifying the effect of shocks on variables of interest

disturbances: impulse performance outputs:

(fault), step (loss of _,m_, signal energy or peak
in time /frequency

generation), stochastic
signal (renewables) domain of output

m practical: efficiently computable, analysis & design, & captures relevant shocks

m example: as a result of fault choose best fast frequency response to minimize

/ {frequency deviation}* + {coherency: deviation from COI}* + {control effort}® d¢
0

nominal frequency
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fast frequency response
based on system norms



Case-study: South-East Australian Grid

The Sydncy Forning Herald

AAAAAAA v

State in the dark: South Australia's \é{
major power outage X

= Ehe New Pork Times Q
Australia Powers Up the

World’s Biggest Battery
— Courtesy of Elon Musk

grid topology simulation model
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Closed-loop with optimal fast frequency response

model & fast frequency response

= replaced some machines with converters
& (forming or following) fast frequency
response: virtual inertia + damping

frequency = power

1
Ms+ D
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Closed-loop with optimal fast frequency response

model & fast frequency response

= replaced some machines with converters
& (forming or following) fast frequency
response: virtual inertia + damping

frequency = power

1
M s+ D
m choose performance inputs/outputs &
optimize response on linearized model
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Closed-loop with optimal fast frequency response

wg [mHz]

e [Hz/s]

Pyi [MW]

50 |
T A ﬂ laas model & fast frequency response

—100

—150

Evas
V

= replaced some machines with converters
— Low-Inertia & (forming or following) fast frequency
— Grid-Following ) . B .
response: virtual inertia + damping

g —

?‘% 1‘(' 1‘2 1‘4 f 1
t[s] requency = m power

=)
)

0.2 ﬁ"\'\ - m choose performance inputs/outputs &
mev optimize response on linearized model
—ﬂ,Qf n U ﬁ i

~ = nonlinear closed-loop simulations:

L 200 MW disturbance at node 508
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Closed-loop with optimal fast frequency response

wg [mHz]

e [Hz/s]
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— Low-Inertia
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model & fast frequency response

= replaced some machines with converters
& (forming or following) fast frequency
response: virtual inertia + damping

frequency = m power

m choose performance inputs/outputs &
optimize response on linearized model

m nonlinear closed-loop simulations:
200 MW disturbance at node 508

observations

— system-level optimization makes
a difference (even at same inertia)

— forming beats following in nadir,
RoCoF, & peak power
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Optimal allocation of virtual inertia + damping

(a) Grid-Forming

50| i
I damping [MW s/rad]
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30 |- —
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(b) Grid-Following
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node

observations

= both control modes allocate virtual
inertia in (blackout & battery) area 5
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Optimal allocation of virtual inertia + damping

(a) Grid-Forming
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00 m grid-following : more reliance on
10|~ damping (due to PLL-delay in w)

0702 208 212 215 216 308 309 312 314 403 405 410 502 504 508 u grid-forming: results in a more
(b) Grid-Following uniform (thus robust) allocations
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Optimal allocation of virtual inertia + damping

(a) Grid-Forming

0
102 208 212 215 216 308 309 312 314 403

[ N
I damping [MW s/rad]

405 410 502 504 508

(b) Grid-Following

0
102 208 212 215 216 308 309 312 314 403 405 410 502 504 508
node

observations

= both control modes allocate virtual
inertia in (blackout & battery) area 5

m grid-following : more reliance on
damping (due to PLL-delay in w)

m grid-forming: results in a more
uniform (thus robust) allocations

conclusions
— total inertia/damping not crucial

— in comparison spatial allocation
& tuning make a big difference
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Optimal allocation of virtual inertia + damping

(a) Grid-Forming

5o |- EEMlinertia | observations

I damping [MW s/rad]
40 |- - = both control modes allocate virtual
s 4 inertia in (blackout & battery) area 5
00 m grid-following : more reliance on
10|~ damping (due to PLL-delay in w)

0702 208 212 215 216 308 309 312 314 403 405 410 502 504 508 u grid-forming: results in a more
(b) Grid-Following uniform (thus robust) allocations

conclusions
— total inertia/damping not crucial

— in comparison spatial allocation
& tuning make a big difference

— implications for pricing & markets

0
102 208 212 215 216 308 309 312 314 403 405 410 502 504 508
node
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Initial condition for further reading

Placement and Implementation of Grid-Forming and
Grid-Following Virtual Inertia and Fast
Frequency Response

Bala Kameshwar Poolla *?, Student Member, IEEE, Dominic GroB ““, Member, IEEE,
and Florian Dorfler, Member, IEEE
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Initial condition for further reading

Placement and Implementation of Grid-Forming and
Grid-Following Virtual Inertia and Fast
Frequency Response

Bala Kameshwar Poolla *?, Student Member, IEEE, Dominic GroB ““, Member, IEEE,
and Florian Dorfler, Member, IEEE

some of basic questions settled — lots of emergent literature on

m virtual inertia placement & implementation schemes

m integration limits: how much inertia? how many forming units? where?
m inertia pricing, markets, & security-constrained dispatch

m more general fast-frequency response services

... still a lot more questions than answers
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who should provide these services ?



Services from Dynamic Virtual Power Plant (DVPP)

S
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examples
> frequency containment with
non-minimum phase hydro &
batteries (for fast response)

» wind providing fast frequency
response & voltage support
augmented with storage

» hybrid power plants, e.g.,

PV + battery + supercap
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DVPP: coordinate heterogeneous set of DERs to
collectively provide dynamic ancillary services

= heterogenous collection of devices
— reliable provide services consistently across

S

all power & energy levels and all time scales
— none of the devices itself is able to do so

examples
: : . > frequency containment with
= dynamic ancillary services €a . .y
— fast response, e.g., inertia for brittle grid, non-minimum phase hydro &
robustly implementable on converter sources batteries (for fast response)

— specified as desired dynamic I/O response » wind providing fast frequency

response & voltage support
augmented with storage

» hybrid power plants, e.g.,
PV + battery + supercap
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Services from Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate heterogeneous set of DERs to
collectively provide dynamic ancillary services

m heterogenous collection of devices
— reliable provide services consistently across
all power & energy levels and all time scales
— none of the devices itself is able to do so

m dynamic ancillary services
— fast response, e.g., inertia for brittle grid,
robustly implementable on converter sources
— specified as desired dynamic I/O response

= coordination aspect
— decentralized control implementation
— real-time adaptation to variable DVPP
generation & ambient grid conditions

Q

&

examples
> frequency containment with
non-minimum phase hydro &
batteries (for fast response)

» wind providing fast frequency
response & voltage support
augmented with storage

» hybrid power plants, e.g.,

PV + battery + supercap
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Nordic case study

A\ Wind
@ Hydro
@ Thermal

NordLink
1400 MW
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NordLink

m FCR-D service
— desired behavior

power 3100 - (6.5s + 1)

frequency ~ (2s+1)(17s + 1)
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Nordic case study

= well-known issue:

A Wind actuation of hydro is
@© Hydro non-minimum phase
@ Thermal

— initial power surge
opposes control
— unsatisfactory response

NordLink

1400 MW

FCR-D service
— desired behavior

power 3100 - (6.5s + 1)
frequency — (2s+ 1)(17s + 1)
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Time [3]
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Nordic case study
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m discussed solution:
augment hydro with on-site

batteries for fast response
— works but not economic
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FCR-D service
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Nordic case study

A Wind
@® Hydro
@ Thermal

NordLink

1400 MW

FCR-D service
— desired behavior

= well-known issue:

actuation of hydro is

non-minimum phase

— initial power surge
opposes control

— unsatisfactory response

m discussed solution:

augment hydro with on-site
batteries for fast response
— works but not economic

better DVPP solution:
coordinate hydro & wind

to cover all time scales

power 3100 - (6.5s + 1)

frequency — (2s+1)(17s + 1)
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Enabler: dynamic & adaptive participation factors

m specify desired aggregate DVPP behavior Tyes(s), -
e.g., a desired fast frequency response p — f ) é\ >Ty(s)
Ty(s) 2
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m specify desired aggregate DVPP behavior Tyes(s), -
e.g., a desired fast frequency response p — f ) é\ >Ty(s)
m disaggregate Tges(s) into local desired behaviors for 1) N

each device taking dynamics constraints into account
& adapt disaggregation to varying ambient conditions

via dynamic & adaptive participation factors

Ti(s) = mi(8) Tyes(s)
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Enabler: dynamic & adaptive participation factors

Thes(s)

m specify desired aggregate DVPP behavior Tyes(s),
e.g., a desired fast frequency response p — f \ T Ty(s)

m disaggregate Tges(s) into local desired behaviors for

each device taking dynamics constraints into account
& adapt disaggregation to varying ambient conditions

via dynamic & adaptive participation factors

Ti(s) = mi(8) Tyes(s)

= decentralized model matching control to achieve T;(s)
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Enabler: dynamic & adaptive participation factors

m specify desired aggregate DVPP behavior Tye(s), =t
e.g., a desired fast frequency response p — f \ T MTs(s)

m disaggregate Tges(s) into local desired behaviors for 1)
each device taking dynamics constraints into account
& adapt disaggregation to varying ambient conditions
via dynamic & adaptive participation factors

Ti(s) = mz(S) Tdes(s)

= decentralized model matching control to achieve T;(s)

10' A 1)
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DVPP Control Design

(covered on the board)

. Oyt :d i, foa’ma...
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Starting points for further reading

Dynamic Virtual Power Plant Design for Fast
Frequency Reserves: Coordinating Hydro and Wind

Joakim Bjork®, Student Member, IEEE, Karl Henrik Johansson®, Fellow, IEEE, and
Florian Dorfler®, Senior Member, I

Abstract—To casure frequencs stabilty i foure Jow-iertia generation and other smallscale producers o paricipae in
reguenc rseves  requency conainment reserves (FCR) [4]

= Virual power lans (VPP). ageregatng together groups of

smallsale producers and consamers s proposed slution 10

5 allow smaller players with more variable producion o eier
"t the market withthe functionlity of  lrger conventio

power plant (1,151 61 The main objecives are t0 coordiate

ipach. maximizeth revenue, and o reduce the financial sk

o e ey e nd o ks

n 9]

e b proposed

PR

dynamic virwal power plar
ry services (15, Whie noe of the indiidul devi
may )b abl 1o provide FCR consisenty scross all power

Control Design of Dynamic Virtual Power Plants:
An Adaptive Divide-and-Conquer Approach

Verena Hiberle, Michael W. Fisher, Eduardo Prieto-Araujo and Florian Dorfler

s paper we presnt s novl contro approach  racking st pois. The ey 10 succes s hee
e il power plnis DVPFS) I pariar oup of device (comp
terogeneous distributed enérgy resorees Vipower avaiabil

DERS when ollciey provid deied dsmamik ancllary
services such as fast frequency and saltage control. Our control
approach relies

first, we disagar

srossall power und cr
ne of the individual devices
xamples of collections of heterogencous

s provision include
response dynamics com:
pensated by batteres on short time scales (8], synchronous
condensers. (with rotational energy) paired with. converter-

neration (9], or hybrid storage pai

citor providing regulation on_di
Tanges (101, Howeuer, the conmdination of sl thes collcctons
s ishly customized. and not (even conceptually) extendable

incive Mu..nm .lvvknnmmenwr
mstrate 0 our control
< Study basd on the TEEE nine-bus sysiemn,

DYNAMIC VIRTUAL POWER PLANT: A NEW CONCEPT FOR
GRID INTEGRATION OF RENEWABLE ENERGY SOURCES

Coordinated Control of Virtual Power Plants to Improve Power
System Short-Term Dynamics

Weilin Zhong ', Junru Chen *%, Muyang Liu *%, Mohammed Ahsan Adib Murad 3 and Federico Milano 1

Room 157, School o Hlectrical and Fectoni Engineeing, University College Dubln, Blfild,
D04 VIS Dublin,Inland; wiln hangucdconnecte
: Oramehi 50045, »

ruyang s cdcn (L)

Marinescu® Final version | 3 M.
Ecole Cental Namer 159

H. Schu
HTW-Berlin|G

number of DUT, as

Grid forming capability of power park modules

4. If the concept of a distributed virtual power plant (DVPP?) is accepted by a TSO, in
coordination with the relevant system operator, the location of the provision of the inertia
contribution may differ from the location of the PPM terminals.

"SILENT G, 73510 Gomngen,Cermany, maammed mursd@ucdconnectic

entso®@

15 bnergy Storage System (ESS). The objective is
thf overall poswer system. The robustness of the
arl analysis and a detaled modeling of stochastic
difce. The impact of communication delays of a
dfferent bandswidihs s also discussed and evalu-
0 B the WSCC -bus est systen with inlusion of

3. The active power change at the terminals of the PPM may be provided by all or a limited el inclusion of a variety of DERs.
s the performance criteria at the terminals of the PPM are met.
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Synopsis & lessons learnt on system level
@ initial literature was all about inertia ... but we should not extrapolate from
the old system: total inertia & conventional metrics might be misleading

@ system norms are more useful, practical, & sharper metrics for
both system analysis & optimal design of fast frequency response

@ spatial allocation & tuning of fast frequency response & forming vs.
following behavior matters more than total amount of inertia & damping

(4) dynamic virtual power plants to distribute ancillary services across
heterogeneous DERs collectively covering all power levels & time scales
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the old system: total inertia & conventional metrics might be misleading

@ system norms are more useful, practical, & sharper metrics for
both system analysis & optimal design of fast frequency response

@ spatial allocation & tuning of fast frequency response & forming vs.
following behavior matters more than total amount of inertia & damping

(4) dynamic virtual power plants to distribute ancillary services across
heterogeneous DERs collectively covering all power levels & time scales

(5) wide open: specification of future ancillary services, e.g., desired
input/output responses + share & location of grid-forming sources
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Preliminary ideas on future ancillary service specs

m decoupling issues with standard services separating (p, 0) & (g, ||v||) dynamics
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Preliminary ideas on future ancillary service specs

m decoupling issues with standard services separating (p, 0) & (g, ||v||) dynamics

— recall VOC error coordinates & define

normalized power

complex frequency ‘az = Zig(|lv|) + i%G‘

[Milano, 2022]

— VOC = complex droop:

— the right coordinates for analysis & control !?!

~ 2 : 2
§=p/llolI” + ig/llv]]

A

z
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)

v

v(t) R

m from static to dynamic ancillary service specifications, including, e.g., roll-off,
PD-action, interconnected stability certificates, forming/following specifications, ...
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m decoupling issues with standard services separating (p, 0) & (g, ||v||) dynamics

— recall VOC error coordinates & define

normalized power | 5 = p/||v||> + iq/|[v|?

complex frequency ‘d} = Zig(|lv|) + i%G‘
[Milano, 2022]

— VOC = complex droop:

— the right coordinates for analysis & control !?!

o(t) =w

1/‘H =

im(

dt o

)

v

v(t) R

m from static to dynamic ancillary service specifications, including, e.g., roll-off,
PD-action, interconnected stability certificates, forming/following specifications, ...

— ideally seek architecture-free & computationally tractable definitions, e.g.,

minimize cost(@,5) subjectto device & operational constraints
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Conclusions

m do not think only of “inertia” when designing converter controls,
analyzing power systems, or specifying ancillary services

m rather: adopt more system-theoretic & computational mind-set:
specify desired responses & use optimization + multivariable control

m grid-forming control is only part of the puzzle: what to do once sync’d?
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m do not think only of “inertia” when designing converter controls,
analyzing power systems, or specifying ancillary services

m rather: adopt more system-theoretic & computational mind-set:
specify desired responses & use optimization + multivariable control

m grid-forming control is only part of the puzzle: what to do once sync’d?
services! who provides them? where? how? disaggregate desired behavior?

m |ast: free yourself from textbook plots — tomorrow’s system will be different

f A restoration time

nominal frequency
Q =

secondary control

inter-area
nadir oscillations

\ ROCOF
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finally ...recall






