Control of Low-Inertia Power Systems: Naive & Foundational Approaches

(extended set of slides)

Florian Dörfler

Acknowledgements

B.K. Poolla C. Arghir

C. Arghir T. Jouini

ouini P. Lütolf

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWIES NAZIONAL SCHEME FOUNDATION

D. Groß

3/54

S. Bolognani

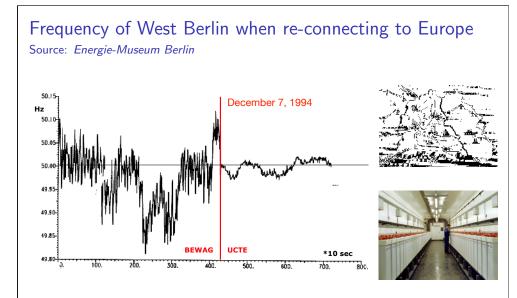
S. Curi

HORIZ N 2020

M. Colombino

2/54

What do we see here?



before re-connection: islanded operation based on batteries & single boiler **afterwards** connected to European grid based on synchronous generation

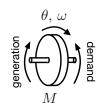
Essentially, the pre/post West Berlin curves date back to...

Fact: all of AC power systems built around synchronous machines!

At the heart of it is the generator swing equation:

$$M \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t)$$

change of kinetic energy = instantaneous power balance



5 / 54

7 / 54

Operation centered around bulk synchronous generation Frimary Control Primary Control Secondary Control Oscillation/Control 49.99 49.91 49.91 49.91 49.91 49.91 49.91 49.91 49.91 49.92 49.91 Frequency Mettlen, Switzerland

Renewable/distributed/non-rotational generation on the rise

synchronous generator

new workhorse

scaling

new primary sources

location & distributed implementation

focus today on **non-rotational** generation

The foundation of today's power system

Source: W. Sattinger, Swissgrid

Synchronous machines with rotational inertia

$$M\frac{d}{dt}\omega \approx P_{\text{generation}} - P_{\text{demand}}$$

Today's grid operation heavily relies on

- 1 robust stabilization of frequency and voltage by generator controls
- 2 self-synchronization of machines through the grid
- **3** kinetic energy $\frac{1}{2}M\omega^2$ as **safeguard** against disturbances

We are replacing this solid foundation with . . .

Tomorrow's clean and sustainable power system

Non-synchronous generation connected via power electronics

As of today, power electronic converters

- lack robust control for voltage and frequency
- 4 do not inherently synchronize through the grid
- provide almost no energy storage

What could possibly go wrong?

9/54

Black System Event in South Australia (Sep 2016)

The Sydney Morning Merald

NATIONAL

State in the dark: South Australia's major power outage

south Australia
South Australia blackout: entire state left without power after storms

Key events¹

- 1 intermittent voltage disturbances due to line faults
- 2 loss of synchronism between SA and remainder of the grid
- 3 SA islanded: frequency collapse in a quarter of a second

"Nine of the 13 wind farms online did not ride through the six voltage disturbances experienced during the event."

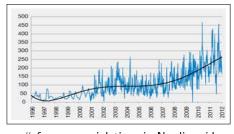
¹AEMO: Update Report - Black System Event in South Australia on 28 September 2016

10 / 54

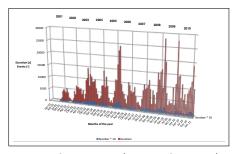
Low inertia issues have been broadly recognized

by TSOs, device manufacturers, academia, funding agencies, etc.

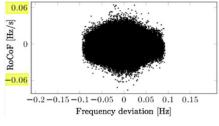
Low-inertia issues close to home



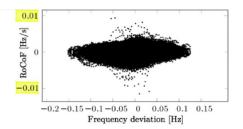
frequency violations in Nordic grid (source: ENTSO-E)



same in Switzerland (source: Swissgrid)



a day in Ireland (source: F. Emiliano)



a year in France (source: RTE)

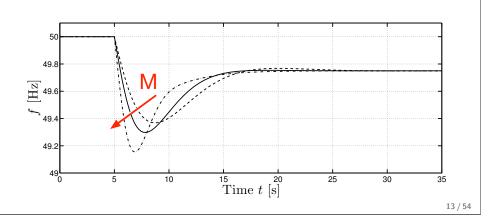
Obvious insight: loss of inertia & frequency stability

We loose our giant electromechanical low-pass filter:

$$\mathbf{M} \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t)$$

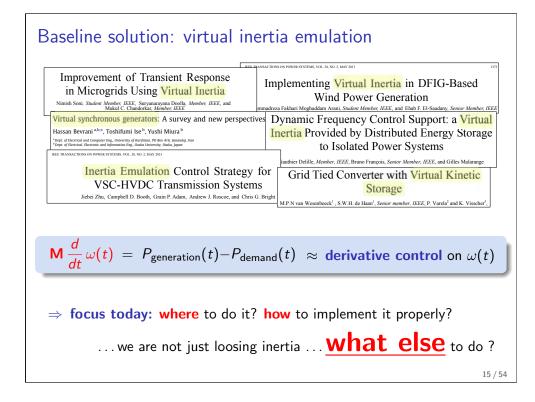
 θ, ω defination

change of kinetic energy = instantaneous power balance



Berlin curves before and after re-connecting to Europe Source: Energie-Museum Berlin 50,0 Hz 49,8 loss of 1200 MW Berlin re-connected to Europe 149,6 49,4 49,0 Islanded Berlin grid loss of 146 MW

obvious insights lead to obvious (naive) answers



Outline

Introduction

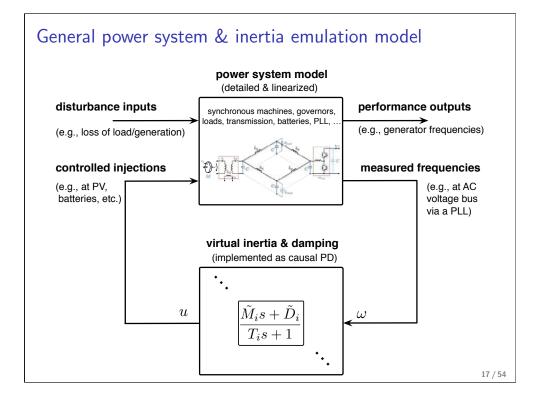
System Level: Optimal Placement of Virtual Inertia network, disturbances, & performance metrics matter

Device Level: Proper Virtual Inertia Emulation Strategy maybe we should not think about frequency and inertia

A Foundational Control Approach restart from scratch for low-inertia systems

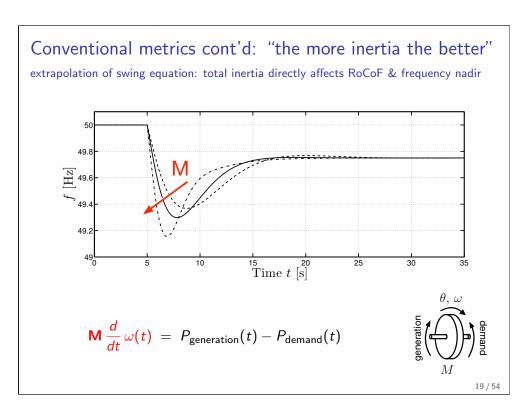
Conclusions

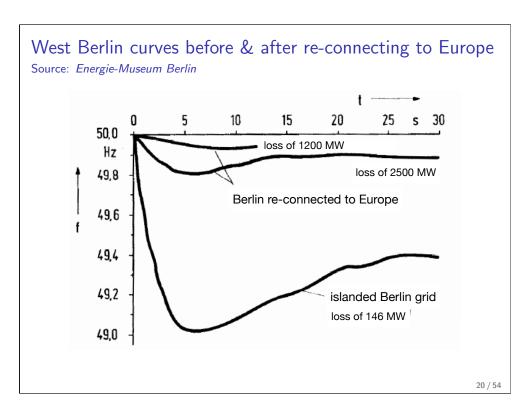
optimal placement of virtual inertia



which metric(s) should our controller optimize?

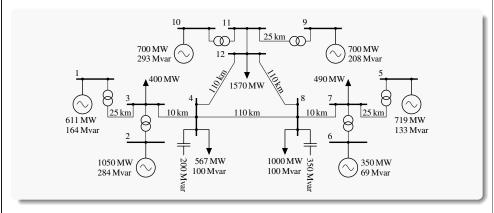
Conventional metrics disturbance inputs: performance outputs: • step (loss of load/generation) overshoot (peak signals after fault) • RoCoF (rate of change of frequency) • impulse (line open-/closing) • noise (renewables & loads) • spectrum (damping ratio cones) re-evaluate scenario? hardly tractable for optimization & control design ROCOF (max rate of change of frequency) metrics & faults justified only in a post-fault response in a low-inertia system? system dominated by machines metrics any useful?



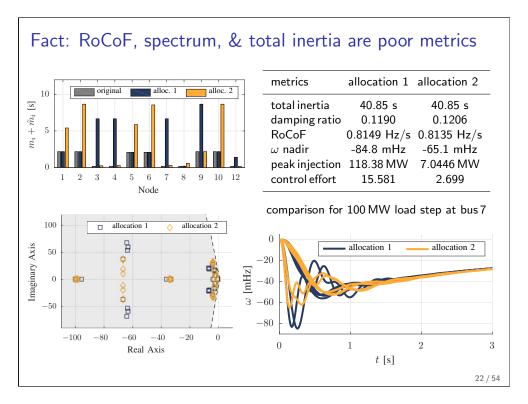


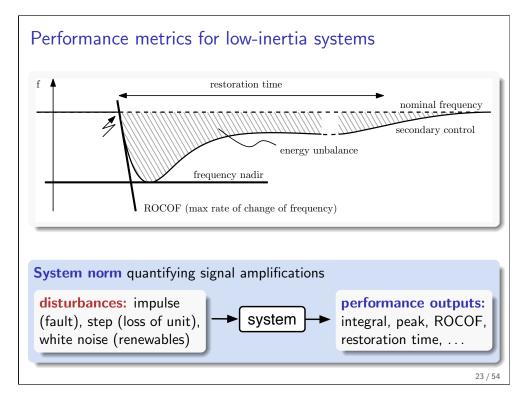
are these suitable metrics? let's look at some simulations

Running example: modified Kundur three-area case study



- added third area to standard case
- PLLs at all buses for inertia emulation (overall device response time ∼100ms)
- transformer reactance 0.15 p.u, line impedance (0.0001+0.001i) p.u./km
- original inertia 40s: removed of rotational 28s which can be re-allocated as virtual inertia
- added governors & droop control at all generators





Integral-quadratic coherency performance metric

$$\int_0^\infty x(t)^T Q x(t) dt$$

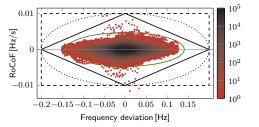
 \mathcal{H}_2 system norm interpretation: $\eta \longrightarrow system \longrightarrow \mathcal{I}$

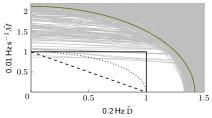
- **1** performance output: $y = Q^{1/2}x$
- 2 impulsive η (faults) \longrightarrow output energy $\int_0^\infty \mathbf{y}(t)^\mathsf{T} \mathbf{y}(t) dt$
- **3** white noise η (renewables) \longrightarrow output variance $\lim_{t \to \infty} \mathbb{E}\left(\mathbf{y}(t)^\mathsf{T} \mathbf{y}(t)\right)$

24 / 54

Constraints on control inputs

- **1** energy constraint: $\int_0^\infty u^T R u \, dt$ directly captured in \mathcal{H}_2 framework
- **2** power constraint: $u_i = \tilde{M}_i \dot{\omega}_i + \tilde{D}_i \omega_i$ must satisfy $||u_i(t)||_{\ell_{\infty}} \leq \overline{u_i}$





European frequency data (source: RTE)

corresponding bounds on gains

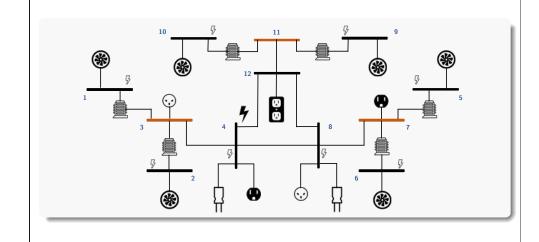
- $\Rightarrow \|(\omega_i(t),\dot{\omega}_i(t))\|_p$, $\|(ilde{D}_i, ilde{M}_i)\|_q$ bounded $(rac{1}{p}+rac{1}{q}=1) \Rightarrow \|u_i(t)\|_{\ell_\infty}$ bounded
- **3 budget constraint** for finitely many devices: $\sum_{i} \overline{u_i} = const.$

25 / 54

(sub)optimize performance and see what we learn

Modified Kundur case study: 3 areas & 12 buses

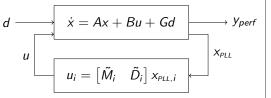
added governors (droop) at generators & PLLs to obtain frequency for inertia emulation



Test case

• inertia emulation control via PLL & batteries:

$$u_i = \begin{bmatrix} \tilde{M}_i & \tilde{D}_i \end{bmatrix} x_{\scriptscriptstyle PLL,i}$$



• dynamics: swing equation, droop via governor & turbine, and PLL

$$\begin{bmatrix} \dot{\delta} \\ \dot{\omega} \\ \dot{x}_{gov} \\ \dot{x}_{PLL} \end{bmatrix} = \underbrace{\begin{bmatrix} A_{sw} & B_{sw} K_{gov} & \mathbb{O} \\ B_{gov} & A_{gov} & \mathbb{O} \\ B_{PLL} & \mathbb{O} & A_{PLL} \end{bmatrix}}_{=A} x + \underbrace{\begin{bmatrix} B_{sw} \\ \mathbb{O} \\ \mathbb{O} \end{bmatrix}}_{=B} u + \underbrace{\begin{bmatrix} B_{sw} \\ \mathbb{O} \\ \mathbb{O} \end{bmatrix}}_{=G} d$$

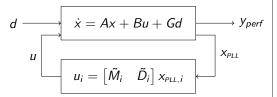
 cost penalizes frequencies, droop control, & inertia emulation effort:

$$\underbrace{\begin{bmatrix} \omega \\ u_{gov} \\ u \end{bmatrix}}_{y_{perf}} = \underbrace{\begin{bmatrix} 0 & I & 0 & 0 \\ 0 & 0 & K_{gov} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{=Q^{1/2}} x + \underbrace{\begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix}}_{=R^{1/2}} u$$

27 / 54

Algorithmic approach to desperate & non-convex problem

 structured state-feedback with constraints on gains



• **computation** \mathcal{H}_2 norm, gradient, & projections:

• observability and controllability Gramians via Lyapunov equations

$$(A - BK)^{\top}P + P(A - BK) + Q + K^{\top}RK = 0$$
$$(A - BK)L + L(A - BK)^{\top} + GG^{\top} = 0$$

- **2** \mathcal{H}_2 norm $J = \text{Trace}(G^{\top}PG)$ and gradient $\nabla_K J = 2(RK B^{\top}P)L$
- **3** projection on structural & ∞ -norm constraint: $\Pi_{\tilde{M},\tilde{D}}[\nabla_K J]$
- $\Rightarrow \tilde{M}$ and \tilde{D} can be optimized by first-order methods, IPM, SQP, etc.

28 / 54

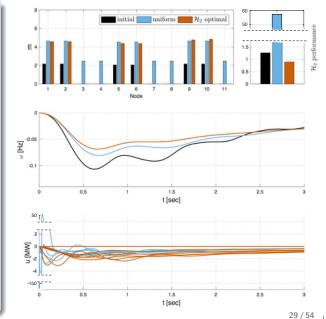
Results & insights for the three-area case study

Optimal allocation:

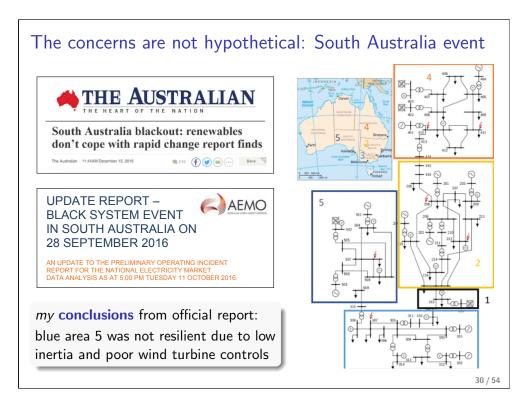
- location of inertia & damping matters
- outperforms heuristic uniform allocation
- need penalty on droop control effort
- power constraint results in $\tilde{D} \approx 2\tilde{M}$

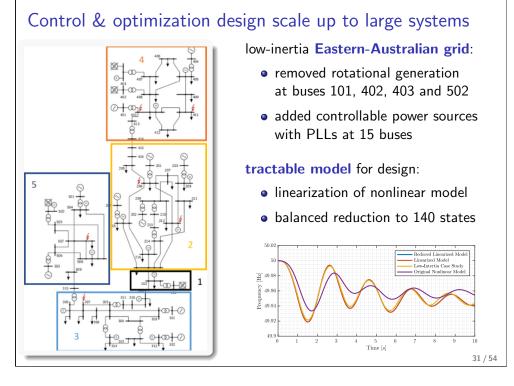
Fault at bus #4:

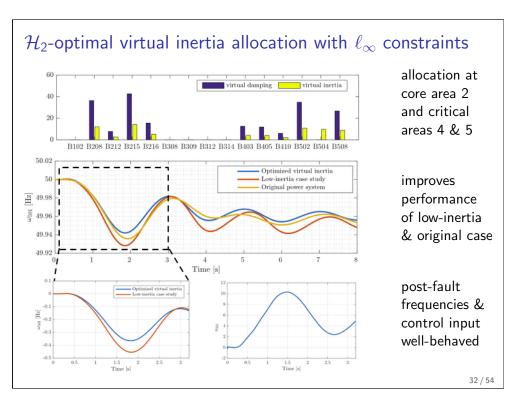
- strong reduction of frequency deviation
- much less control effort than heuristic



can we make this control design strategy useful?







placement & metrics matter! can we get analytic insights?

Inertia placement in swing equations

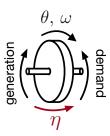
• simplified network swing equation model:

$$m_i \ddot{\theta}_i + d_i \dot{\theta}_i = p_{gen,i} - p_{dem,i}$$

generator swing equations

$$p_{dem,i} \approx \sum_{j} b_{ij} (\theta_i - \theta_j)$$

linearized DC power flow



- likelihood of disturbance at #i: $\eta_i \ge 0$ (available from TSO data)
- \mathcal{H}_2 performance **metric**: $\int_0^\infty \sum_{i,j} a_{ij} (\theta_i \theta_j)^2 + \sum_i s_i \dot{\theta}_i^2 dt$
- decision variable is inertia: $m_i \in [\underline{m_i}, \overline{m_i}]$ (additional nonlinearity: enters as m_i^{-1} in constraints & objective) $_{33/54}$

Closed-form results for cost of primary control

recall: primary control $d_i \dot{\theta}_i$ effort was crucial

$$\int_0^\infty \dot{\theta}(t)^\mathsf{T} D \,\dot{\theta}(t) \,dt$$

(computations show that insights roughly generalize to other costs)

allocation: the primary control effort \mathcal{H}_2 optimization reads equivalently as

minimize
$$\sum_{i} \frac{\eta_i}{m_i}$$

subject to
$$\sum_i m_i \leq m_{\text{bdg}}$$

$$m_i \leq m_i \leq \overline{m_i}$$

key take-away is disturbance matching:

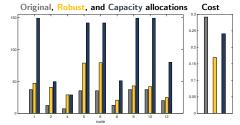
- optimal allocation $m_i^{\star} \propto \sqrt{\eta_i}$ or $m_i^{\star} = \min\{m_{\text{bdg}}, \overline{m_i}\}$
- ⇒ disturbance profile known from historic data, but rare events are crucial
- ightharpoonup suggests robust min_m max_n allocation to prepare for worst case
- \Rightarrow valley-filling solution: $\eta_i^{\star}/m_i^{\star} = const.$ (up to constraints)

34 / 54

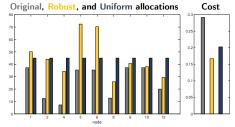
Robust min-max allocation for three-area case study

Scenario: fault (impulse) can occur at any single node

- disturbance set $\eta \in \{e_1 \cup \cdots \cup e_{12}\}$
- ⇒ min/max over convex hull
- ► inertia capacity constraints
- robust inertia allocation outperforms heuristic max-capacity allocation
- results become intuitive: valley-filling property
- ▶ same for uniform allocation



allocation subject to capacity constraints



allocation subject to the budget constraint

Outline

Introduction

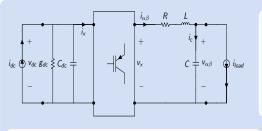
System Level: Optimal Placement of Virtual Inertia network, disturbances, & performance metrics matter

Device Level: Proper Virtual Inertia Emulation Strategy maybe we should not think about frequency and inertia

A Foundational Control Approach restart from scratch for low-inertia systems

Conclusions

Averaged power converter model



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$Li_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

modulation:
$$v_{x} = \frac{1}{2} m v_{dc}$$
, $i_{x} = \frac{1}{2} m^{\top} i_{\alpha\beta}$

control/dist. inputs: (i_{dc}, i_{load})

synchronous generator: mechanical + stator flux

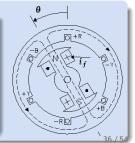
+ AC cap

$$\dot{\theta} = \omega$$

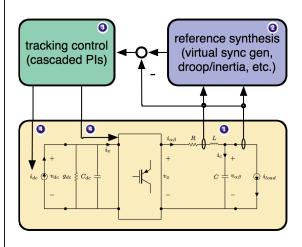
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\mathsf{T}} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$L_s i_{\alpha\beta} = -R i_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$



Standard power electronics control would continue by



- acquiring & processing of AC measurements
- 2 synthesis of references (voltage/current/power)
- **1** track error signals at converter terminals
- actuation via modulation (inner loop) and/or via DC source (outer loop)

I guess you can see the problems building up ...

37 / 54

Challenges in power converter implementations

Real Time Simulation of a Power System with VSG Hardware in the Loop

- **1** delays in measurement acquisition, signal processing, & actuation
- 2 accuracy in AC measurements (averaging over multiple cycles)
- constraints on currents. voltages, power, etc.
- certificates on stability, robustness, & performance

entso **Frequency Stability Evaluation** Criteria for the Synchronous Zone

of Continental Europe

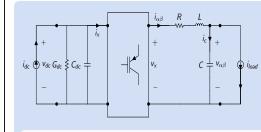
- Requirements and impacting factors -

RG-CE System Protection & Dynamics Sub Group

added to the inverter to provide "synthetic inertia". This can also be seen as a short term frequency support. On the other hand, these sources might be quite restricted with respect to the available capacity and possible activation time. The inverters have a very low

let's do something smarter . . .

See the similarities & the differences?



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$
 $C_{dc}\dot{v}_{dc} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$
 $C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$

modulation:
$$v_x = \frac{1}{2} m v_{dc}$$
, $i_x = \frac{1}{2} m^{\top} i_{\alpha\beta}$

passive: $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$

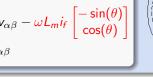
synchronous generator: mechanical + stator flux + AC cap

$$\theta = \omega$$

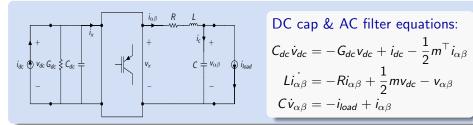
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\top} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$L_{s}i_{\alpha\beta}^{\cdot} = -Ri_{\alpha\beta} - v_{\alpha\beta} - \omega L_{m}i_{f}\begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

 $C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$



Model matching (\neq emulation) as inner control loop



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$Li_{\alpha\beta}^{\cdot} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

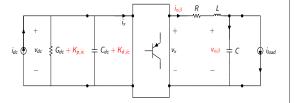
$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

matching control:
$$\dot{\theta} = K_m \cdot v_{dc}$$
, $m = \hat{m} \cdot \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$ with K_m , $\hat{m} > 0$

- \Rightarrow equivalent inertia $M=\frac{C_{dc}}{K_m^2}$, droop/dissipation $D=\frac{G_{dc}}{K_m^2}$, torque $au_m = rac{i_{dc}}{K_m}$, field current $i_f = rac{\hat{m}}{K_m L_m}$, & imbalance signal $\omega = K_m \cdot v_{dc}$
- ⇒ pros: uses physical storage, uses DC measurements, & remains passive

Further properties of machine matching control

- base for outer loops
- $\Rightarrow i_{dc} = PD(v_{dc})$ gives virtual inertia & damping

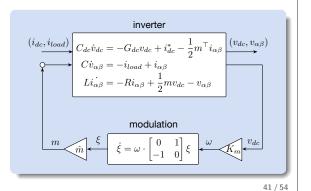


- droop slopes & nose curves. & further outer loops $\hat{m}(\|v_{\alpha\beta}\|)$
- reformulation of

$$m = \hat{m} \cdot \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

as adaptive **oscillator**:

$$\dot{m} = K_m \, v_{dc} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} m$$

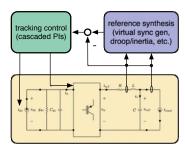


Summary: bottlenecks to inertia emulation

power system model on grid level:

$$M\frac{d}{dt}\omega = P_{\text{generation}} - P_{\text{demand}}$$

inertia emulation on device level:



- I/O mismatch: none of the converter inputs or outputs are present in the swing-equation, e.g., frequency is not a state in the converter
- inertia emulation à la PD problematic both in theory & practice
- \Rightarrow maybe matching control $\dot{m} = K_m v_{dc} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} m$ was quite clever?

Outline

Introduction

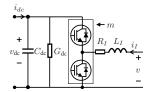
System Level: Optimal Placement of Virtual Inertia network, disturbances, & performance metrics matter

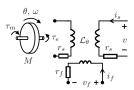
Device Level: Proper Virtual Inertia Emulation Strategy maybe we should not think about frequency and inertia

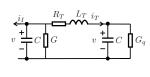
A Foundational Control Approach restart from scratch for low-inertia systems

Conclusions

Low-inertia power system model from first principles







- balanced three-phase system
 - (α, β) coordinates
- synchronous machines
 - first principle, 5th order
- ► DC/AC inverters
 - averaged-switched
- ▶ nonlinear loads G(||v||)

- voltage bus charge dynamics
- dynamic transmission lines: Π-model

Port-Hamiltonian model

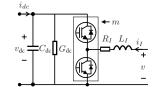
$$\dot{x} = \left(J(x, u) - R(x)\right) \nabla H(x) + g(x)u$$

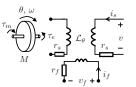
nonlinear & large, but insightful

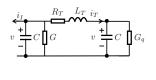
43 / 54

45 / 54

Desired steady-state locus & control specifications

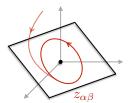






steady-state specifications for nonlinear system:

- synchronous frequency
- constant amplitude
- three-phase balanced



AC quantities v, i_s, i_l, i_T :

$$\dot{z}_{\alpha\beta} = \omega_0 \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} z_{\alpha\beta}$$

rotor angles: $\dot{\theta} = \omega_0$

DC quantities v_{dc}, v_f, ω : $\dot{z} = 0$

desired dynamics: $\dot{x} = f_{des}(x, \omega_0)$

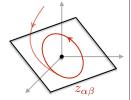
controls i_{dc}, m, τ_m, i_f to be found

44 / 54

Proving the obvious (?)

 steady-state locus: physics & desired closed-loop vector field coincide (point-wise in time) on set

$$\mathcal{S} := \{(x, u, \omega_0) : f_{\mathsf{phys}}(x, u) = f_{\mathsf{des}}(x, \omega_0)\}$$



- control-invariance: steady-state operation $(x, u, \omega_0) \in \mathcal{S}$ for all time if and only if
 - **1 synchronous frequency** ω_0 is constant
 - 2 **network** satisfies power flow equations with impedances $R + \omega_0 JL$
 - **3** at each **generator**: constant torque τ_m & excitation i_f
 - **1** at each **inverter**: constant DC current i_{dc} & inverter duty cycle with constant amplitude & synchronous frequency: $\dot{m} = \omega_0 \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} m$
 - \Rightarrow internal models & feedforward input-to-steady-state map

Reduction to a tractable model for synthesis

• internal oscillator model for inverter duty cycle with inputs ω_m , \hat{m}

$$\dot{\theta}_I = \omega_m, \quad m = \hat{m} \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

- model reduction steps
 - **1 rotating coordinate frame** with synchronous frequency ω_0
 - \Rightarrow time scales of AC quantities scaled by $1/\omega_0$
 - **2** DC/AC time-scale separation via singular perturbation $(\epsilon \to 0)$

slow DC variables: $x_r = (\theta, \omega, i_f, \theta_I, v_{dc}),$ $\dot{x}_r = f_z(x_r, z_{\alpha,\beta}, u)$

fast AC variables: $z_{\alpha,\beta} = (i_s, i_l, v, i_T),$ $\epsilon \dot{z}_{\alpha,\beta} = f_{\alpha,\beta}(x_r, z_{\alpha,\beta}, u)$

 \odot reformulation via **relative angles** δ with respect to synchronous motion

Insights from reduced model: $v_{dc} \propto$ power imbalance

• nonlinear reduced order model in rotating frame:

$$\begin{split} \dot{\theta} &= \omega \\ M\dot{\omega} &= -D\omega + \tau_m - \tau_e(x_r, u) \\ L_f \dot{i}_f &= -R_f i_f + v_f - v_{EMF}(x_r, u) \\ \dot{\theta}_I &= \omega_m \\ C_{dc} \dot{v}_{dc} &= -G_{dc} v_{dc} + i_{dc} - i_{sw}(x_r, u) \end{split}$$

- interconnection via τ_e , i_{sw} , v_{EMF}
- analogies: suggest matching control: $\omega_m \sim v_{dc}$

generator	inverter	interpretation
$rac{1}{2}M\omega^2$	$\frac{1}{2}C_{dc}v_{dc}^2$	energy stored in device
$ au_{m m}$	i _{dc}	energy supply
$ au_{m{e}}$	i _{sw}	energy flow to grid
ω	V _{dc}	power imbalance

47 / 54

Completing the control design

Thus far:

- desired steady-state locus requires internal oscillator model
- 2 converter/generator analogies suggest model matching control

Remaining steps:

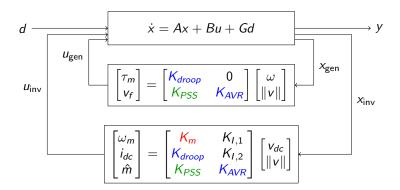
o robustness & stability under interconnection requires local feedback passification with respect to an incremental energy function

$$H_{\text{des}}(x) = \frac{1}{2}\omega^{T}M\omega + \frac{1}{2}(i_{f} - i_{f}^{*})^{T}L_{f}(i_{f} - i_{f}^{*}) + \frac{1}{2}(v_{dc} - v_{dc}^{*})^{T}C_{dc}(v_{dc} - v_{dc}^{*})^{T} + \dots$$

- \Rightarrow associated passifying control is a scaled AC droop & DC droop
- performance requires design of structured & optimal MIMO control

48 / 54

Decentralized MIMO control architecture



- states $x = (\delta, \omega, i_f, v_{dc}, ||v||)$ & output $y = (\omega, v_{dc}, ||v||)$
- ullet included measurement devices for AC voltage magnitude $\|v\|$
- H2-optimal tuning of decentralized MIMO converter controller

Illustrative conceptual example

test case:

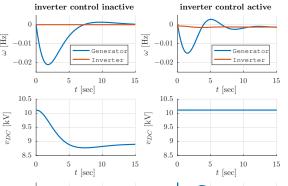
- generator & inverter
- impedance load
- 10% load increase at t=0

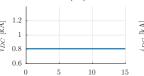
no inverter control:

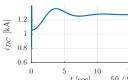
- ω_m and i_{dc} constant
- power imbalance: $\omega_{\it G}$, $v_{\it dc}$
- governor stabilizes ω_G

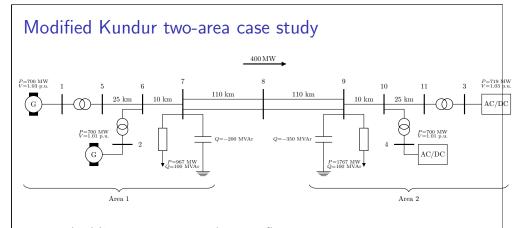
controlled inverter:

- reduced peak in ω_G
- v_{dc} stabilized via i_{dc}
- ω_m and ω_G synchronize

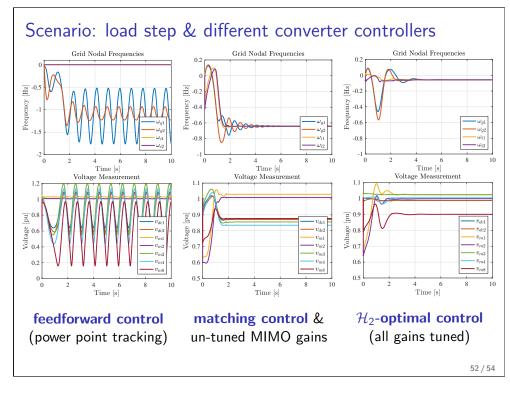


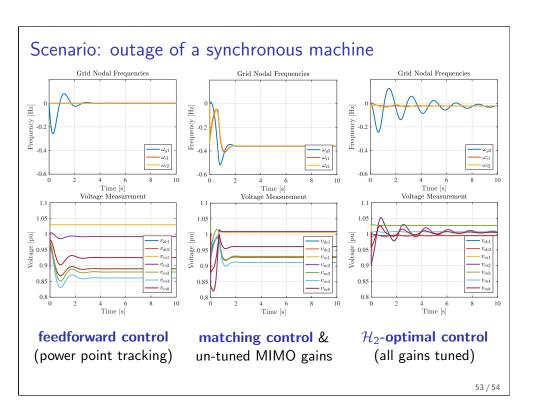






- standard line parameters and power flows
- synchronous machines with droop control and voltage regulator
- two synchronous machines replaced by DC/AC inverters
- all dirt effects modeled: saturation, nonlinearities, etc.
- simulation scenarios: load step $(\times 2)$ & outage of synchronous machine







Conclusions on virtual inertia emulation

Where to do it?

- \bullet \mathcal{H}_2 -optimal (non-convex) allocation
- 2 numerical approach via gradient computation
- 3 closed-form results for cost of primary control

How to do it?

- down-sides of naive inertia emulation
- 2 machine matching reveals power imbalance in DC voltage

What else to do?

- first-principle low-inertia system model
- nonlinear steady-state control specifications
- g reduction to tractable model for synthesis
- f 4 first promising controller synthesis: internal model + matching + passifying + ${\cal H}_2$ performance loops

No power without control!

