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Background: distributed control and optimization
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Project samples in power systems
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decentralized wide-area control

grid sensing
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Power distribution
network

plant

state x

power demands

power generation

FEED
BACK

input

disturbance

output

feedback online optimization (now)

τe,k(λk, θk) =
1

2
λ⊤

k (L−1
θ,k!

⊤ + !L−1
θ,k)λk. (4)

Moreover, the stator current is,k and excitation current

if,k are given by ik = (is,k, if,k) = L−1
θ,kλk ∈ R3.

Interconnection Graph of the Transmission Network:

The AC voltage buses are interconnected by a transmission
network. The topology of the transmission network is
described by the (oriented) incidence matrix E of its
associated graph (see e.g. Fiaz et al. (2013)). In the
remainder, we consider the following partition of the
incidence matrix E ∈ {−1, 1, 0}2nv×2nt :

E = E ⊗ I2 =

⎡
⎢⎣

Eq,1

...
Eq,nv

⎤
⎥⎦ = [ET,1 . . . ET,nt ] . (5)

AC Voltage Bus Dynamics:

The dynamics of the AC voltage bus connected to the
generator with index k ∈ Vg are given by

q̇k = −GkC−1
k qk − [I2 02×1]L−1

θ,kλk − Eq,kL−1
T λT , (6)

with bus capacitance Ck = I2ck, ck ∈ R>0, and bus con-
ductance Gk = I2gk, gk ∈ R>0. The flux of each transmis-
sion line k ∈ T is denoted by λT,k = (λT,α,k, λT,β,k) ∈ R2

and LT,k = I2lT,k, lT,k ∈ R>0 denotes its inductance. For
convenience of notation we define λT = (λT,1, . . . , λT,nt) ∈
R2nt and LT = diag(LT,1, . . . , LT,nt). The dynamics of the
AC voltage bus of an inverter with index k ∈ VI are given
by

q̇k = −GkC−1
k qk − L−1

I,kλI,k − Eq,kL−1
T λT . (7)

The dynamics of the load buses k ∈ Vl are given by

q̇k = −Gq,kC−1
k qk − Eq,kL−1

T λT . (8)

The conductance Gq,k = I2gk(∥qk∥) is used to model static
resistive and more general nonlinear loads and is defined
by a smooth function gk(s) : R≥0 → R>0.

Transmission Line Dynamics:

The dynamics of the transmission lines are given by

λ̇T,k = −RT,kL−1
T,kλT,k + E⊤

T,kC−1q, ∀k ∈ T (9)

where RT,k = I2rT,k, rT,k ∈ R>0, is the line resistance
of the k-th transmission line, C = diag(C1, . . . , Cnv ) is
the capacitance matrix of the voltage buses, and q =
(q1, . . . , qnv ) ∈ R2nv is the vector of voltage bus charges.

State Space Representation:

With the vectors θ = (θ1, . . . , θng ), p = (p1, . . . , png),

λ = (λ1, . . . , λng ), qI = (qI,1, . . . , qI,ni), and λI =
(λI,1, . . . , λI,ni), the states of the overall power sys-
tem model are given by x = (θ, p, λ, qI , λI , q, λT ) ∈
Rnx , nx = 5ng + 3ni + 2nv + 2nt. Using the vectors
τm = (τm,1, . . . , τm,ng ), vf = (vf,1, . . . , vf,ng ), idc =
(idc,1, . . . , idc,ni) and m = (m1, . . . , mni), the inputs are
given by u = (τm, vf , idc, m) ∈ Rnu , nu = 2ng + 3ni.

Furthermore, we define the rotor speeds ω = M−1p
and rotor field winding currents if = (if,1, . . . , if,ng).
Finally, we let τe(λ, θ) = (τe,1, . . . , τe,ng ), isw(λI , m) =
(isw,1, . . . , isw,ni), and vsw(qI , m) = (vsw,1, . . . , vsw,ni).
To simplify the notation we define the matrices If =
Ing

⊗ (0, 0, 1), as well as I⊤
g = [Is 03ng×2nl+2ni ], I⊤

I =

[02ni×2ng I2ni 02ni×2nl
], and Is = Ing

⊗ [I2 02×1]
⊤. The

entire power system dynamics described by equations (3)
to (9) can be compactly rewritten as ẋ = f(x, u) with

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M−1p
−DM−1p − τe(λ, θ) + τm

−RL−1
θ λ + I⊤

g C−1q + Ifvf

−GIC
−1
I qI + isw(λI , m) + idc

−RIL
−1
I λI + I⊤

I C−1q − vsw(qI , m)
−GqC

−1q − IgL−1
θ λ − IIL

−1
I λI − EL−1

T λT

−RT L−1
T λT + E⊤C−1q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where the matrices M , D, Gq, R, RT , GI , Lθ, LT , LI ,
C, and CI collect the corresponding matrices of the nodes
(e.g., M = diag(M1, . . . , Mng)).

We will predominantly work with the port-Hamiltonian
variables x = (θ, p, λ, λI , qI , q, λT ). For the sake of nota-
tional simplicity and engineering intuition we will some-
times also employ the associated co-energy variables y =
(τe, ω, i, iI , vI , v, iT ), where iI = L−1

I λI the vector of in-

verter output filter currents, vI = C−1
I qI is the vector of

DC voltages, ω = M−1p denotes the vector of rotational
frequencies, i = L−1

θ λ is the vector of stator and rotor
currents, v = C−1q is the vector of AC voltages, and
iT = L−1

T λT is the vector of transmission line currents.
This later set of variables is depicted in Figure 1.

2.3 Desired Steady-State Behavior

We formulate the following dynamics which describe op-
eration of the power system at a synchronous frequency
w ∈ R. The desired steady-state behavior (12) specifies
that DC signals are constant, and all AC signals are
synchronous, balanced, and have constant amplitude.

θ̇k = w, ∀k ∈ G, (11a)

vdc
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Fig. 1. Annotated diagrams of the main components of the power system: DC/AC inverter, synchronous machine, and
a transmission line connecting an inverter bus and a load bus.

3control in low-inertia systems (later)
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Distributed Control and Optimization in Smart Power Grids
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How are power systems operated?

transmission
grid

distribution
grid

Traditional
Power

Generation objective: deliver power from
generators to loads (typically
time-varying & uncertain)
supply chain without storage

physical constraints:
Kirchhoff’s and Ohm’s laws

operational constraints:
thermal and voltage limits, . . .

specifications:
running costs, reliability,
quality of service
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New challenges and opportunities

fluctuating renewable sources
– poor short-range prediction
– correlated uncertainty

distributed microgeneration
– conventional and renewable sources
– congestion (in urban grids)
– under-/over-voltage (in rural grids)

41GW
75%

Germany
17 August 2014 wind

solar
hydro

biomass

Distribution grid

solar

wind

hydro + biomass

Installed renewable generation
Germany 2013

24 GW

15 GW

Transmission grid

6 GW

single PV plant
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single residential
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New challenges and opportunities cont’d

Electricity
consumption

Buildings
40.9%

Industry
31.3%

Transportation
27.8%

Energy consumption
by sector
(2010)

73.9%

25.9%

Electric Vehicle
Fast charging

120KW
Tesla
supercharger

4KW
Domestic

consumer

electric mobility
– flexible demand
– large peak (power) and total (energy) demand
– spatio-temporal patterns

information and communication technology
– inexpensive reliable communication
– increasingly ubiquitous sensing

inverter-based generation
– fast actuation
– control flexibility
– stability concerns
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Recall: feedforward vs. feedback or optimization vs. control

Feedback actuate

observe

[Longchamp, 1995]

closed-loop , feedback control

Controller System
r +

u

y

−

open-loop , feedforward optimization

Controller System
r

u

y

feedback control can achieve
• no steady-state error:
r(t) = y(t) for t →∞

• stability: bounded output y
for bounded input r

• robustness: reduce influence
of uncertainties & disturbances

feedforward optimization can achieve
• transient & asymptotic optimality:
min

∫∞
0 y(t)2 + u(t)2 dt + ‖y(t →∞)‖

• operational constraints:
u(t) ∈ U and y(t) ∈ Y

• taking into account forecasts of
reference and disturbance signals
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Complementary: feedforward optimization & feedback control

Feedforward optimization

highly model based
computationally intensive
optimal decision
operational constraints
. . .

Feedback control p

model-free (robust) design
fast response
suboptimal operation
unconstrained operation
. . .

⇒ combine complementary operation methods with a time-scale separation

Optimization Controller System
r +

u

y

−

offline & feedforward
∣∣∣ real-time & feedback
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Power systems optimization and control architecture

short-term
planning

D-14 . . . D-2
(SC-OPF)

day-ahead
scheduling

D-1
(SC-OPF)

real-time
operation

low-level,
automatic
controllers
droop, AGC
AVR, PSS

Dynamic Power
System Model
ẋ = f(x, u, δ)

δ

u

x

Steady-state model
h(x, δ) = 0 (AC power flow)Optimization stage

generation
setpoints

state
estimation

prediction (load, generation, downtimes)

schedule

time-scale separation between
offline feedforward optimization: SC-OPF, planning, markets, . . .
real-time feedback control: droop, AGC, AVR, PSS, WAC, . . .

spatial separation: decentralized (PSS) to distributed (WAC) to centralized (OPF)

nested and hierarchical operation layers: primary, secondary, tertiary, . . .
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Classic example: balancing

optimization phase
economic dispatch based
on load prediction

real-time operation
economic re-dispatch,
area balancing services

local feedback control
frequency regulation at
the individual generators
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[Elcom/swissgrid, 2010]

50Hz 51Hz49
Hz

49.935 Hz

50 Hz

50.065 Hz

1200MW

Power plant output Balancing service

15min5min0.5min [swissgrid, 2010]
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Timely recent example: distribution grid congestion

congestion: operation of the grid close or above the physical and operational limits
→ due to simultaneous and uncoordinated distributed generation and demand
→ inefficient, blackouts, curtailment of renewables, bottleneck to electric mobility

traditional remedies: fit-and-forget design→ unsustainable grid reinforcement

control & optimization opportunities via ICT, microgeneration, demand response

13
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Ancillary services

• real-time balancing
• frequency control
• economic re-dispatch
• voltage regulation
• voltage collapse prevention
• line congestion relief
• reactive power compensation
• losses minimization

Recall new challenges:
increased variability & uncertainty
poor short-term prediction

Recall new opportunities:
fast, inverter-based actuation
ubiquitous sensing
reliable communication

Today: these services are partially automated, implemented independently, online
or offline, based on forecasts (or not), and operating on different time/spatial scales.

A central paradigm of “smart(er) grids” : real-time operation

Future power systems will require faster operation, based on online monitoring and
measurement, in order to meet operational specifications in real time.
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National & international redispatch

• unforeseen congestion
or voltage problems

• manually re-dispatched
on a 15-minute timescale

1 588

2010

5 030

2011

7 160

2012

7 965

2013

8 453

2014

15 811

2015

Redispatch actions in  the German 
transmission grid
in hours

[Bundesnetzagentur, Monitoringbericht 2016]

371.9
267.1

352.9
227.6

154.8

secondary frequency
control reserves

104.2
67.4

156.1
106.0

50.2

tertiary frequency
control reserves

27.0
68.3

33.0
26.7
32.6

reactive power

41.6
164.8

113.3
185.4

411.9

national & internat.
redispatch

111.8
82.3
85.2

103.4
110.9

primary frequency
control reserves

Cost of ancillary services of German TSOs
in mio. Euros

2011 2012 2013 2014 2015
[Bundesnetzagentur, Monitoringbericht 2016]
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Proposal: online optimization in closed loop

short-term
planning scheduling real-time

operations
low-level
controllers

dynamic
model

δ

steady-state modeloptimization stage

prediction (load, generation)

combining optimization & feedback control for real-time operation

robust (feedback strategy)
fast response

steady-state optimality
satisfaction of operational constraints

disclaimer: no predictive optimization (only for static systems)
focus today on real-time (no distributed) aspects

lots of related work: [Bolognani et. al,
2015], [Dall’Anese and Simmonetto,
2016], [Gan and Low, 2016], . . .

1

A Survey of Distributed Optimization and Control
Algorithms for Electric Power Systems

Daniel K. Molzahn,⇤ Member, IEEE, Florian Dörfler,† Member, IEEE, Henrik Sandberg,‡ Member, IEEE,
Steven H. Low,§ Fellow, IEEE, Sambuddha Chakrabarti,¶ Student Member, IEEE,

Ross Baldick,¶ Fellow, IEEE, and Javad Lavaei,⇤⇤ Member, IEEE

Abstract—Historically, centrally computed algorithms have
been the primary means of power system optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring optimization and control of power systems with many
controllable devices, distributed algorithms have been the subject
of significant research interest. This paper surveys the literature
of distributed algorithms with applications to optimization and
control of power systems. In particular, this paper reviews
distributed algorithms for offline solution of optimal power flow
(OPF) problems as well as online algorithms for real-time solution
of OPF, optimal frequency control, optimal voltage control, and
optimal wide-area control problems.

Index Terms—Distributed optimization, online optimization,
electric power systems

I. INTRODUCTION

CENTRALIZED computation has been the primary way
that optimization and control algorithms have been ap-

plied to electric power systems. Notably, independent system
operators (ISOs) seek a minimum cost generation dispatch
for large-scale transmission systems by solving an optimal
power flow (OPF) problem. (See [1]–[8] for related litera-
ture reviews.) Other control objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optimization and control problems are formulated
using network parameters, such as line impedances, system
topology, and flow limits; generator parameters, such as cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and control problems.

With increasing penetrations of distributed energy resources
(e.g., rooftop PV generation, battery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads

⇤: Argonne National Laboratory, Energy Systems Division, Lemont, IL,
USA, dmolzahn@anl.gov. Support from the U.S. Department of En-
ergy, Office of Electricity Delivery and Energy Reliability under contract
DE-AC02-06CH11357.†: Swiss Federal Institute of Technology (ETH), Automatic Control Labora-
tory, Zürich, Switzerland, dorfler@control.ee.ethz.ch‡: KTH Royal Institute of Technology, Department of Automatic Control,
Stockholm, Sweden, hsan@kth.se§: California Institute of Technology, Department of Electrical Engineering,
Pasadena, CA, USA, slow@caltech.edu¶: University of Texas at Austin, Department of Electrical and Computer En-
gineering, Austin, TX, USA, sambuddha.chakrabarti@gmail.com,
baldick@ece.utexas.edu. Support from NSF grant ECCS-1406894.⇤⇤: University of California, Berkeley, Department of Industrial Engineering
and Operations Research, Berkeley, CA, USA, lavaei@berkeley.edu

providing demand response resources, etc.), the centralized
paradigm most prevalent in current power systems will poten-
tially be augmented with distributed optimization algorithms.
Rather than collecting all problem parameters and performing
a central calculation, distributed algorithms are computed
by many agents that obtain certain problem parameters via
communication with a limited set of neighbors. Depending on
the specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
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Steady-state AC power flow model

quasi-stationary dynamics→ complex impedances and voltages
sources: locally controlled→ buses are PQ or PV or slack Vθ
loads: constant impedance, current, or PQ power (today)
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Power flow representations

• complex form: Sk = Pk + jQk =
∑

l∈N(k) y
∗
klVk · (V∗k − V∗l ) where ykl = 1/zkl

→ complex-valued quadratic and useful for calculations & optimization

• rectangular form: replace Vk = ek + jfk and split real & imaginary parts
→ real-valued quadratic and useful for homotopy methods & QCQPs

• matrix form: replace Wkl = Vk ·V∗l where W is unit-rank p.s.d. Hermitian matrix
→ linear and useful for relaxations in convex optimization problems

• polar form: replace Vk = |Vk | e jθk and split real / imaginary parts
→ this is how power system engineers think: all specs on |Vk | and d

dt θk

• branch flow: parameterized in flows: Ik→l = ykl(Vk − Vl) and Sk→l = Vk I∗k→l

→ useful in radial networks: equations can be expressed in magnitudes only

• many variations, coordinate changes, convexifications, etc.
→ some problems become easier in different coordinates
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A brief history of power flow approximations
for computational tractability, analytic studies, & control/optimization design

• DC power flow: polar form→ <(Z ) = 0, |V | = 1, and linearization
B. Stott, J. Jardim, & O. Alsac, DC Power Flow Revisited. IEEE TPS, 2009.

→ standard (but often poor) approximation for transmission networks

• linear coupled power flow: polar form→ linearization for small angles/voltages
→ preserves losses and angles/voltages cross-coupling: suited for distribution

• LinDistFlow: branch flow→ parameterization |V |2 coordinates and linearization
M.E. Baran & F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. PES, 1988.

→ very useful for voltages in (radial) distribution networks

• rectangular DC power flow: fixed-point expansion for small S2/V2
slack

S. Bolognani & S. Zampieri, On the existence and linear approximation of the power flow solution in
power distribution networks. IEEE TPS, 2015.

→ works amazingly well in distribution and transmission

• many variations, extensions, sensitivity and Jacobian methods, etc.
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A unifying geometric perspective: the power flow manifold
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• variables: all of x = (|V |, θ,P,Q)

• power flow manifold: M = {x : h(x) = 0}
→ submanifold in R2n or R6n (3-phase)

• normal space spanned by ∂h(x)
∂x

∣∣
x∗

=AT
x∗

• tangent space Ax∗ (x − x∗) = 0

→ best linear approximant at x∗

• accuracy depends on curvature ∂2h(x)
∂x2

→ constant in rectangular coordinates
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Accuracy illustrated with unbalanced three-phase IEEE13

◦ exact solution ? linear approximant

Matlab/Octave code @ https://github.com/saveriob/1ACPF
23



Special cases reveal some old friends

• flat-voltage/0-injection point: x∗ = (|V |∗, θ∗,P∗,Q∗) = (1, 0, 0, 0)

⇒ tangent space parameterization:
[
<(Y ) −=(Y )
−=(Y ) <(Y )

][
|V |
θ

]
=
[
P
Q

]
gives linear coupled power flow [D. Deka, S. Backhaus, and M. Chertkov, ’15]

⇒ <(Y ) = 0 gives DC power flow(s): −=(Y )θ = P and −=(Y )E = Q
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Special cases reveal some old friends cont’d

• flat-voltage/0-injection point: x∗ = (|V |∗, θ∗,P∗,Q∗) = (1, 0, 0, 0)

⇒ rectangular coordinates⇒ rectangular DC flow [S. Bolognani and S. Zampieri, ’15]

• nonlinear change to quadratic coordinates from |Vk | to |Vk |2

⇒ linearization gives (non-radial) LinDistFlow [M.E. Baran and F.F. Wu, ’88]
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Properties of power flow manifold that we will exploit

nonlinear power flow is smooth manifold
→ coordinate-independent – no singularities
→ better local linear approximations
→ methods for manifold optimization/control

natural concept for closed-loop dynamics
→ M is attractive for grid dynamics
→ closed-loop trajectories x(t) live onM
→ control task: steer ẋ(t) in tangent space

const.-rank linearization Ax∗ (x − x∗) = 0

→ implicit – no input/outputs (no disadvantage)
→ sparse – Ax∗ has the sparsity of the grid
→ structure – elements of Ax∗ are local
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→ S. Bolognani & F. Dörfler (2015)
“Fast power system analysis via implicit linearization of the power flow manifold”26
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PROJECTED GRADIENT FLOW ON THE POWER FLOW MANIFOLD
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AC power flow model, constraints, and objectives

model (physical constraint): x ∈M

2
5

3
4

6

7
8

910

11

12 13

nodal voltage
current injection
power injections

line impedance
line current
power flow

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)

operational constraints: generation capacity, voltage bands, no congestion

objective: economic dispatch, minimize losses, distance to collapse, etc.

control: state measurements and actuation via generator set-points
28



Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

• minimize cost of generation

• satisfy AC power flow laws

• respect generation capacity

• no over-/under-voltage

• no congestion

minimize
∑

k∈N
costk (PG

k )

subject to PG + jQG = PL + jQL + diag(V )Y∗V∗

Pk ≤ PG
k ≤ Pk , Qk ≤ QG

k ≤ Qk ∀k ∈ N

V k ≤ |Vk | ≤ V k ∀k ∈ N

|Pkl + jQkl | ≤ Skl ∀(k, l) ∈ E

Y admittance matrix, PG
k ,Q

G
k power generation, PL

k ,Q
L
k load, {Vk , Vk , . . .} nodal limits, Skl line flow limit

A control problem with
challenging specifications
on the closed-loop system:

1. its trajectory x(t) must satisfy
the constraints at all times

2. it must converge to x?, the
solution of the AC OPF

Real-time
operation

physical, steady-state
power system

(AC power flow equations)
PG = PL + <{diag(V )Y ∗V∗}
QG = QL + ={diag(V )Y ∗V∗}

Loads
PL, QL

generator
setpoints

state
measurements

29
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Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

• minimize cost of generation

• satisfy AC power flow laws

• respect generation capacity

• no over-/under-voltage

• no congestion

minimize
∑

k∈N
costk (PG

k )

subject to PG + jQG = PL + jQL + diag(V )Y∗V∗

Pk ≤ PG
k ≤ Pk , Qk ≤ QG

k ≤ Qk ∀k ∈ N

V k ≤ |Vk | ≤ V k ∀k ∈ N

|Pkl + jQkl | ≤ Skl ∀(k, l) ∈ E

Y admittance matrix, PG
k ,Q

G
k power generation, PL

k ,Q
L
k load, {Vk , Vk , . . .} nodal limits, Skl line flow limit

Prototype of real-time OPF

minimize φ(x)
subject to x ∈ K =M∩X

x =
[
|V | θ P Q

]
grid state

φ : Rn → R objective function
M⊂ Rn AC power flow equations
X ⊂ Rn operational constraints
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Unconstrained optimization on the power flow manifold
geometric objects:

manifold M = {x : h(x) = 0}

objective φ :M→ R

tangent space TxM = kerh(x)
Riemann metric g : TxM× TxM→ R
(degree of freedom)

target state: local minimizer on the power flow manifold x? ∈ argminx∈M φ(x)

always feasible due to physics: trajectory remains on power flow manifoldM

continuous-time gradient descent onM:

1. gradφ(x): gradient of cost function
(& soft constraints) in ambient space

2. Πxgrad φ(x): projection of gradient
on the linear approximant TxM

3. flow on manifold: ẋ = −γ Πxgrad φ(x) power flow manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

ẋ
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3. flow on manifold: ẋ = −γ Πxgrad φ(x) power flow manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

ẋ
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Constraints: projected dynamical systems for feasibility

Operational constraints

Per specification, the trajectories need to
satisfy operational constraints at all times.

x(t) ∈ K =M∩X

where

M power flow manifold
X operational constraints

→ ẋ(t) must belong to a feasible cone,
subset of the tangent space ofM

precisely: ẋ(t) ∈ TxK ⊂ TxM,
the inward tangent cone at x

F : Rn → Rn vector field,K ⊂ Rn closed domain

Projected dynamical systems:

ẋ = ΠK
(
x,F (x)

)
where

ΠK(x,F (x)) ∈ arg min
v∈TxK

‖F (x)− v‖g
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→ ẋ(t) must belong to a feasible cone,
subset of the tangent space ofM

precisely: ẋ(t) ∈ TxK ⊂ TxM,
the inward tangent cone at x

F : Rn → Rn vector field,K ⊂ Rn closed domain

Projected dynamical systems:
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Projected gradient descent on the power flow manifold

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0

• Does a solution trajectory exist for a non-convex K ? Is it unique ?
• Are solution trajectories (asymptotically) stable?̇
• Do solution trajectories converge to a minimizer of φ?

Corollary (simplified)

Let x : [0,∞)→ K be a (Carathéodory-)solution of the initial value problem

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0 .

If φ has compact level sets on K, x(t) will converge to a critical point x? of φ on K.
Furthermore, if x? is asymptotically stable then it is a local minimizer of φ on K.

→ Hauswirth, Bolognani, Hug, & Dörfler (2016)
“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”

33
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ẋ = ΠK (x,−gradφ(x)) , x(0) = x0 .

If φ has compact level sets on K, x(t) will converge to a critical point x? of φ on K.
Furthermore, if x? is asymptotically stable then it is a local minimizer of φ on K.

→ Hauswirth, Bolognani, Hug, & Dörfler (2016)
“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”

33

http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234


How to induce the projected gradient flow

Controlled system

minimizeu,x φ(x)
subject to x ∈ K

g(x) = u

feedback
optimizer

static
system
h(x) = 0
g(x) = u

actuate
u

x
measure

the state x is uniquely determined by
– the algebraic model h(x) = 0 describing the power flow equations
– an algebraic input constraint g(x) = u

steady state: the closed-loop system converges to the solution of the OPF

closed-loop trajectory remains in K at all times

→ no need to solve the optimization problem numerically

→ no need to solve any power flow equation
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From projected gradient flow to discrete-time feedback control

partition: x =
[
xexo
xendo

]
exogenous variables:
inputs/disturbances
(e.g., reactive injection Qk )

endogenous variables:
determined by the physics
(e.g., voltage Vk )

1. compute continuous feasible descent direction : d t = ΠK (x,−gradφ(x(t)))

2. Euler integration step to compute new set-points : x̃(t + 1) = x(t) + α · d t

3. actuate exogeneous variables (inputs) based on x̃endo(t + 1)
(note: xexo will be updated accordingly since h(x) = 0 holds implicitly by physics)

4. retraction step x(t + 1) = Rx(t)(x̃(t + 1)) ⇒ x(t + 1) ∈M
(note: carried out by physics sinceM is attractive / use AC PF solver in simulations)
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(e.g., reactive injection Qk )

endogenous variables:
determined by the physics
(e.g., voltage Vk )

power flow manifold

linear approximant
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Simple illustrative case study
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Objective Value [$]

real time cost

global minimum
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Bus voltages [p.u.]
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iteration
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Active power generation [MW]
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feedback
optimizer

static
system
h(x) = 0
g(x) = u

actuate
u

x
measure
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TRACKING PERFORMANCE AND ROBUSTNESS

OF CLOSED-LOOP OPTIMIZATION

37



The tracking problem
the power system state is also affected by exogeneous inputs wt

→ because of these inputs, the state could leave the feasible region K

→ outside of K, the projected gradient flow is not defined

feedback
optimizer

static system
h(x, wt) = 0

g(x) = u

u

x

U

wt

constraints satisfaction for non-controllable variables:
K accounts only for hard constraints on controllable variables u (e.g., generation limits)

gradient projection becomes input saturation (saturated proportional feedback control)

soft constraints included via penalty functions in φ (e.g., thermal and voltage limits)

→ alternative method (not discussed today) is dualization (i.e., integral control)
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Tracking performance
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→ Hauswirth, Bolognani, Dörfler, & Hug (2017)
“Online Optimization in Closed Loop on the Power Flow Manifold”

39

http://control.ee.ethz.ch/~bsaverio/papers/Powertech17.pdf
http://control.ee.ethz.ch/~bsaverio/papers/Powertech17.pdf


Tracking performance
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Trajectory feasibility
The feasible region K =M∩X often has disconnected components.

M

Kx∗

x0

feedback (gradient descent)
→ the closed-loop trajectory x(t) is guaranteed to be feasible
→ convergence of x(t) to a local minimum is guaranteed

feedforward (OPF)
– optimizer x? = argminx∈K φ(x) can be in different disconnected component
→ no feasible trajectory exists: x0 → x? must violate constraints
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Illustration of trajectory feasibility

5-bus example known to have two
disconnected feasible regions:
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[0s,2000s]: separate feasible regions

[2000s,3000s]: loosen limits on
reactive power Q2 → regions merge

[4000s,5000s]: tighten limits on Q2
→ vanishing feasible region
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Robustness to model mismatch

Intuition in 2D case: cost on x1, soft penalty for constraint x2 ≤ x̄2, actuation on x1

x1 = u

x2

x̄2

↑ feedforward (OPF)
model-based approach: model
mismatch directly affects the decision u?

← feedback (gradient descent)
gradφ is orthogonal to the tangent plane
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Illustration of robustness to model mismatch

IEEE 30-bus test system

G1

G2 C1

C3 C2

W

S

Generator

Synchronous Condensor

Solar

Wind

G

C

S

W

feedback
optimizer

static system
h(x, wt) = 0

g(x) = u

u

x

U

wt controller:
saturation of
generation
constraints
penalty for
operational
constraints

no automatic re-dispatch feedback optimization

model uncertainty feasible ? f − f∗ ‖v − v∗‖ feasible ? f − f∗ ‖v − v∗‖
loads ±40% no 94.6 0.03 yes 0.0 0.0

line params ±20% yes 0.19 0.01 yes 0.01 0.003

2 line failures no -0.12 0.06 yes 0.19 0.007

on-going work: observations can be made mathematically rigorous and quantified
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OUTPUT FEEDBACK AND STATE UNCERTAINTY
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Use real-time output measurements to reduce uncertainty

feedback
optimizer

static
system

h(x, w) = 0
g(x) = u

actuate
u

y = y(x)
output

w

How to project the trajectory to K =M∩X when the state is partially known?
power flow manifoldM: attractive manifold + robustness X

operational constraints X : how to deal with state uncertainty ?

Chance constraints
generally non-convex set of all u such that P [x ∈ Xw | y(x) = y] ≥ 1− ε
where w is random and ε ∈ (0, 1) is probability of constrained violation
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Scenario approach to chance-constrained optimization

chance constraint: P [x ∈ Xw ] ≥ 1− ε where w is random and ε ∈ (0, 1)

→ often intractable for complex (possibly unknown) distributions/constraints

sample from distribution→ deterministic constraints x ∈ Xw(i) , i ∈ {1, . . . ,N}

convert stochastic constraint to large set of deterministic ones: Xw ≈
⋂N

i=1 Xw(i)

→ # samples to approximate chance constraint depends on n, ε, and accuracy

IEEE 13 grid with random demand and
actuation (microgenerators & tap changers) feasible region with scenario approach
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Scenario approach with real-time measurements

scenario approach: stochastic constraint→ large set of deterministic ones

Pw [x ∈ Xw ] ≥ 1− ε → x ∈ Xw(i) , i ∈ {1, . . . ,N}

two sources of information on the unknown w

1. historical samples w (i) of prior distribution

→ classic scenario-based approach

2. online measurements y from the system

→ use measurements to reduce uncertainty?

−4 −2 0 2 4 6
−2

0

2

4

6

8

re-sampling solution: scenario approach based on conditional distribution
→ high computational demand, large memory footprint, not suited for real time

today: online computation of posterior distribution after measurement
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Linear case
linear grid model
x = Au + Bw
polytopic constraints
Cx ≤ z
linear measurement
y = Hw

Approximate conditioning

affine transformation:

ŵy = w + K (y − Hw)

where K = ΣH>
(
HΣH>

)−1

→ projection of uncertainty
in the subspace {y = Hw}

→ Gaussian case: recovers
the conditional distribution

Bimodal distribution Mean Variance Skewness Kurtosis

True posterior 3.35 4.23 -0.74 2.00
Gaussian approximation 3.20 3.57 0 3
Affine transformation 3.20 3.57 -0.54 2.35
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0.4

Annular distribution Mean Variance Skewness Kurtosis

True posterior -0.6 32.9 0 1.08
Gaussian approximation -0.6 17.8 0 3
Affine transformation -0.6 17.8 0 1.60
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Affine transformation of the feasible region
transformation: the feasible polytope Cx ≤ z can be rewritten as

C (Au + Bŵy )︸ ︷︷ ︸
x|y=Hw

≤ z ≈ C
(
Au + B(w + K (y − Hw)

)
≤ z

scenario approach: replace w with finitely many historical samples w (i)

N⋂
i=1

C
(
Au + B(w (i) + K (y − Hw (i))

)
≤ z → polytope Û in u and y

Disturbance
samples
{w(i)}

Offline algorithm

Augmented
polytope
Û

Measurement
y

Online algorithm U

Preprocessing

Real-time feedback

Two-phase algorithm

offline: construct a feasible region
Û(y) parametrized in y
online: compute the conditional
feasible polytope U = Û(ymeasured)

→ Bolognani, Arcari, & Dörfler (2017)
“A fast method for real-time chance-constrained

decision with application to power systems”
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Example: IEEE 123-bus test system
scalar measurement
total demand

operational constraint
overvoltage limits

actuation
distributed microgenerators

samples
metered demand of 1200 households
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y = 3 [MW]

no measurement

p30 [MW]

p38 [MW]

Computation time

Offline Compute Σ and K
Construct augmented polytope Û
Compute minimal representation of Û

Total offline computation time 55 min

Online Slice Û at y = ymeas to obtain U

Total online computation time 1.8 ms

Memory footprint

Offline Augmented polytope Û 48620 constraints
Online Minimal representation of Û 12 constraints
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CONCLUSIONS
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Summary and conclusions

control perspective on real-time
power system operation

– feedback control on manifolds
– steady-state optimality
– feasibility at all times

robustness and performance
– real-time constrained tracking
– robust to model uncertainty
– chance constraints

ongoing and future work
– quantify robustness margins
– saddle-flows on manifolds

for primal-dual optimization
– distributed control approach
– include primary frequency control
– online scenario-based approach
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Thanks !

Florian Dörfler
http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch
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