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Background:

distributed control and optimization

local subsystems and control
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Project samples in power systems

plug-and-play control in microgrids

power generation
disturbance power demands.

grid actuation

input

plant

grid sensing

FEED

output

BACK

feedback online optimization (now)

control in low-inertia systems (later) .



Distributed Control and Optimization in Smart Power Grids
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How are power systems operated?
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= objective: deliver power from
generators to loads (typically
time-varying & uncertain)

supply chain without storage

= physical constraints:
Kirchhoff’'s and Ohm'’s laws

= operational constraints:
thermal and voltage limits, ...

= specifications:
running costs, reliability,
quality of service



New challenges and opportunities

= fluctuating renewable sources

— poor short-range prediction
— correlated uncertainty

» distributed microgeneration
— conventional and renewable sources
— congestion (in urban grids)
— under-/over-voltage (in rural grids)

Installed renewable generation

Germany 2013
Germany
solar 24 6W
17 August 2014 wind
41GW wind 15GW
, ‘ 75%
biomass
hydro + biomass 6GW
hydro
solar
Transmission grid | Distribution grid
single residential single PV plant
load profile
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New challenges and opportunities cont’d

Energy consumption Electric Vehicle
by sector Fast charging
(2010) Buildin
gs
40.990 73.9%

120KW
Tesla
supercharger

aKwW
Domestic
consumer

Industry
31.3%

Transportation |
27.8%

25.9%

Electricity
consumption

= electric mobility

— flexible demand
— large peak (power) and total (energy) demand
— spatio-temporal patterns

= information and communication technology

— inexpensive reliable communication
— increasingly ubiquitous sensing

= inverter-based generation
— fast actuation
— control flexibility
— stability concerns




Recall: feedforward vs. feedback or optimization vs. control

closed-loop £ feedback control

+ Yy
. Controller |T>| System l—o—)

[Longchamp, 1995]

feedback control can achieve
¢ no steady-state error:
r(t)y =y(t)fort — oo
o stability: bounded output y
for bounded input r

e robustness: reduce influence
of uncertainties & disturbances



Recall: feedforward vs. feedback or optimization vs. control

closed-loop £ feedback control

+ Yy
. Controller |T>| System l—o—)

open-loop £ feedforward optimization

Longchamp, 1995 L
[Longchamp. ] T—>| Controller |T>| System l—’

feedback control can achieve feedforward optimization can achieve
¢ no steady-state error: e transient & asymptotic optimality:
r(t) = y(t) for t — oo min [° y(t)? + u(ty dt + ||y (t — o0)]|
o stability: bounded output y e operational constraints:
for bounded input r ut)yedandy(t) e Y
o robustness: reduce influence e taking into account forecasts of

of uncertainties & disturbances reference and disturbance signals



Complementary: feedforward optimization & feedback control

Feedforward optimization Feedback control

= highly model based

model-free (robust) design
= computationally intensive = fast response

optimal decision suboptimal operation

operational constraints = unconstrained operation



Complementary: feedforward optimization & feedback control

Feedforward optimization Feedback control

= highly model based

model-free (robust) design
= computationally intensive = fast response

optimal decision suboptimal operation

operational constraints = unconstrained operation

= combine complementary operation methods with a time-scale separation

Optimization |— +% Controller System !

offline & feedforward real-time & feedback



Power systems optimization and control architecture

Optimization stage

short-term
planning

(SC-OPF)

day-ahead

'
'

scheduling | ; schedule
0

D-1
(SC-OPF)

real-time
operation

Steady-state model
h(x,0) = 0 (AC power flow)

(- —— = i

generation;
setpoints 1 u
T low-level,
automatic Dynamic Power
controllers System Model
droop, AGC i = f(x,u,d)
.| AVR, PSS
state | Ed
estimation!

prediction (load, generation, downtimes)

time-scale separation between

» offline feedforward optimization: SC-OPF, planning, markets, ...
= real-time feedback control: droop, AGC, AVR, PSS, WAC, ...

spatial separation: decentralized (PSS) to distributed (WAC) to centralized (OPF)

nested and hierarchical operation layers: primary, secondary, tertiary, ...



Classic example: balancing

optimization phase
economic dispatch based
on load prediction

real-time operation
economic re-dispatch,
area balancing services

local feedback control
frequency regulation at
the individual generators

50.065 Hz

50 Hz

marginal costs in €/MWh

n
Q
S

@
=)

o
S

I3
=]

=)

o = N @ A O @ N ® ©
S o

mm Renewables

mm Nuclear energy

= | ignite

mm Hard coal
Natural gas

= Fuel oil

o o (=] o o o o
Capacity in GW

o
S

[Elcom/swissgrid, 2010]

49.935 Hz

0.5min 5min

15min  (swissgrid, 2010]
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Timely recent example: distribution grid congestion

mER

congestion: operation of the grid close or above the physical and operational limits
— due to simultaneous and uncoordinated distributed generation and demand
— inefficient, blackouts, curtailment of renewables, bottleneck to electric mobility



Timely recent example: distribution grid congestion

mER

congestion: operation of the grid close or above the physical and operational limits
— due to simultaneous and uncoordinated distributed generation and demand

— inefficient, blackouts, curtailment of renewables, bottleneck to electric mobility

traditional remedies: fit-and-forget design — unsustainable grid reinforcement



Timely recent example: distribution grid congestion

mER

congestion: operation of the grid close or above the physical and operational limits
— due to simultaneous and uncoordinated distributed generation and demand
— inefficient, blackouts, curtailment of renewables, bottleneck to electric mobility

traditional remedies: fit-and-forget design — unsustainable grid reinforcement

control & optimization opportunities via ICT, microgeneration, demand response

13



Ancillary services

¢ real-time balancing

e frequency control

e economic re-dispatch

o voltage regulation

¢ voltage collapse prevention

¢ line congestion relief

o reactive power compensation

e |osses minimization

Today: these services are partially automated, implemented independently, online
or offline, based on forecasts (or not), and operating on different time/spatial scales.
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e real-time balancing Recall new challenges:
o frequency control m increased variability & uncertainty
e economic re-dispatch = poor short-term prediction
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. Recall new opportunities:
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. . . m fast, inverter-based actuation
e line congestion relief L .
. . = ubiquitous sensing
¢ reactive power compensation . o
L = reliable communication
¢ losses minimization
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or offline, based on forecasts (or not), and operating on different time/spatial scales.



Ancillary services

e real-time balancing Recall new challenges:
o frequency control m increased variability & uncertainty
e economic re-dispatch = poor short-term prediction

o voltage regulation .
. Recall new opportunities:
¢ voltage collapse prevention

. . . m fast, inverter-based actuation
e line congestion relief L .
. . = ubiquitous sensing
e reactive power compensation ) o
L = reliable communication
e losses minimization

Today: these services are partially automated, implemented independently, online
or offline, based on forecasts (or not), and operating on different time/spatial scales.

A central paradigm of “smart(er) grids”: real-time operation

Future power systems will require faster operation, based on online monitoring and
measurement, in order to meet operational specifications in real time.



National & international redispatch

¢ unforeseen congestion
or voltage problems

e manually re-dispatched
on a 15-minute timescale

Redispatch actions in the German 15 811
transmission grid

in hours

8453
7
7160 965
5030
1588

2010 2011 2012 2013 2014 2015
[Bundesnetzagentur, Monitoringbericht 2016]

Cost of ancillary services of German TSOs
in mio. Euros

primary frequency
control reserves

secondary frequency
control reserves

tertiary frequency
control reserves

reactive power

national & internat.
redispatch

411.9

2013 2014 WM 2015
[Bundesnetzagentur, Monitoringbericht 2016]

2011 2012



Proposal: online optimization in closed loop

prediction (load, generation) )
P 1 """""""" L """ : e !
H ! ' I
'| short-term g | real-time T low-level dynamic |,
' planning schedCi) ! operations | controllers model !
! 1 ! :
“opfimization stage """ """ ' " 'steady-state model """ 77 '



Proposal: online optimization in closed loop

prediction (load, generation) )
E short-term g | real-time E low-level dynamic |,
+| planning schedCi) ! operations | controllers model !
“opfimization stage "=~~~ """ ' "~ steady-state'model ~ """ """ '

combining optimization & feedback control for real-time operation

m robust (feedback strategy) = steady-state optimality
= fast response m satisfaction of operational constraints

disclaimer: no predictive optimization (only for static systems)
focus today on real-time (no distributed) aspects



Proposal: online optimization in closed loop

prediction (load, generation) )
E short-term g : real-time E low-level dynamic |,
+| planning schedCi) ! operations | controllers model !
“opfimization stage "=~~~ """ ' "~ steady-state'model ~ """ """ '

combining optimization & feedback control for real-time operation

m robust (feedback strategy) = steady-state optimality
= fast response m satisfaction of operational constraints

disclaimer: no predictive optimization (only for static systems)
focus today on real-time (no distributed) aspects

lots of related work: [Bolognani et. al, A Survey of Distributed Optimization and Control

2015], [Dall’Anese and Simmonetto, Algorithms for Electric Power Systems

Daniel K. Molzahn," Me

2016], [Gan and Low, 2016], ... St . Lon!

Sandverg,! Member, IEEE,
iber; IEEE,
ael,™* Member, IEEE
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OVERVIEW

1. The power flow manifold, representations, and approximations
2. Projected gradient flow on the power flow manifold
3. Tracking performance and robustness of closed-loop optimization

4. Output feedback and state uncertainty



THE POWER FLOW MANIFOLD,
REPRESENTATIONS, AND APPROXIMATIONS



Steady-state AC power flow model

= quasi-stationary dynamics — complex impedances and voltages
= sources: locally controlled — buses are PQ or PV or slack V@

= loads: constant impedance, current, or PQ power (today)

Ohm’s Law Current Law
I
Il 12
v X
Iy I3
[V = 1] o=h+..+1]

AG power

AC power flow equations

Vi nodal voltage 2kl line impedance
Ij; current injection Iy, line current
Py, Qi power injections Py, Q. power flow

1
Se= > V(W -W) VkeN
leN (k) K

(all variables and parameters are C-valued)



Power flow representations

e complex form: Sy = Py +jQ = Z,Emk) YV - (V¢ = V) where yi = 1/z4
— complex-valued quadratic and useful for calculations & optimization

20
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o matrix form: replace Wy = Vi - V" where W is unit-rank p.s.d. Hermitian matrix
— linear and useful for relaxations in convex optimization problems

e polar form: replace Vi = |Vi| /% and split real / imaginary parts
— this is how power system engineers think: all specs on |Vi| and 6,
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Power flow representations

e complex form: Sy = Py +jQ = Z,Emk) YV - (V¢ = V) where yi = 1/z4
— complex-valued quadratic and useful for calculations & optimization

o rectangular form: replace Vi = e, + jfx and split real & imaginary parts
— real-valued quadratic and useful for homotopy methods & QCQPs

o matrix form: replace Wy = Vi - V" where W is unit-rank p.s.d. Hermitian matrix
— linear and useful for relaxations in convex optimization problems

e polar form: replace Vi = |Vi| /% and split real / imaginary parts
— this is how power system engineers think: all specs on |Vi| and 6,

¢ branch flow: parameterized in flows: lk_,; = yi(Vik — V) and Sy, = Vil;_,,
— useful in radial networks: equations can be expressed in magnitudes only
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Power flow representations

complex form: Sy = Py +jQx = Z,Emk) YV - (V¢ = V) where yi = 1/z4
— complex-valued quadratic and useful for calculations & optimization

rectangular form: replace Vi = e, + jfx and split real & imaginary parts
— real-valued quadratic and useful for homotopy methods & QCQPs

matrix form: replace Wy = Vi - V;* where W is unit-rank p.s.d. Hermitian matrix
— linear and useful for relaxations in convex optimization problems

polar form: replace Vi = |Vi| €/% and split real / imaginary parts
— this is how power system engineers think: all specs on |Vi| and 6,

branch flow: parameterized in flows: lx_,; = y(Vik — Vi) and Sk = Vil;_,,
— useful in radial networks: equations can be expressed in magnitudes only

many variations, coordinate changes, convexifications, etc.

— some problems become easier in different coordinates
20



A brief history of power flow approximations

for computational tractability, analytic studies, & control/optimization design

¢ DC power flow: polar form — %(Z) = 0, |V| = 1, and linearization
B. Stott, J. Jardim, & O. Alsac, DC Power Flow Revisited. [EEE TPS, 2009.
— standard (but often poor) approximation for transmission networks

21
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e LinDistFlow: branch flow — parameterization |V|? coordinates and linearization
M.E. Baran & F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. PES, 1988.
— very useful for voltages in (radial) distribution networks

e rectangular DC power flow: fixed-point expansion for small S?/V2,,

S. Bolognani & S. Zampieri, On the existence and linear approximation of the power flow solution in
power distribution networks. /EEE TPS, 2015.

— works amazingly well in distribution and transmission
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A brief history of power flow approximations

for computational tractability, analytic studies, & control/optimization design

¢ DC power flow: polar form — %(Z) = 0, |V| = 1, and linearization
B. Stott, J. Jardim, & O. Alsac, DC Power Flow Revisited. [EEE TPS, 2009.
— standard (but often poor) approximation for transmission networks

linear coupled power flow: polar form — linearization for small angles/voltages
— preserves losses and angles/voltages cross-coupling: suited for distribution

LinDistFlow: branch flow — parameterization |V|? coordinates and linearization
M.E. Baran & F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. PES, 1988.
— very useful for voltages in (radial) distribution networks

rectangular DC power flow: fixed-point expansion for small S?/V2,,

S. Bolognani & S. Zampieri, On the existence and linear approximation of the power flow solution in
power distribution networks. /EEE TPS, 2015.

— works amazingly well in distribution and transmission

many variations, extensions, sensitivity and Jacobian methods, etc. 21



A unifying geometric perspective: the power flow manifold

node 1 node 2
r—e
y=04—08] o

vi=1,0,=0 va, 02
P1, q1 P2, q2
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A unifying geometric perspective: the power flow manifold

node 1 node 2
r—e
y=04—08] o

vi=1,0,=0 vz, 02
P1, Q1 P2, q2

e variables: all of x = (|V],0,P, Q)

e power flow manifold: M = {x: h(x) =0}

— submanifold in R?" or R®" (3-phase)
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A unifying geometric perspective: the power flow manifold

node 1 node 2
r—e
y=04—08] o

vi=1,0,=0 va, 02
P1, q1 P2, q2

variables: all of x = (|]V|, 6, P, Q)

power flow manifold: M = {x : h(x) =0}
— submanifold in R?" or R®" (3-phase)

Oh(x)

normal space spanned by =~

.
=AL

tangent space Ay« (x —x*) =0
— best linear approximant at x*




A unifying geometric perspective: the power flow manifold

node 1 node 2
r—e
y=04—08] o
vi=1,0,=0 vz, 02
P1, q1 P2, q2

variables: all of x = (|]V|, 6, P, Q)

power flow manifold: M = {x : h(x) =0}
— submanifold in R?" or R®" (3-phase)

Oh(x)

normal space spanned by =~

AL
tangent space Ay« (x —x*) =0
— best linear approximant at x*

2
accuracy depends on curvature 2%
ox'

— constant in rectangular coordinates




Accuracy illustrated with unbalanced three-phase IEEE13

h b b b
11 phase a 106 phase 11 phase c
FE » 29%9 .
57 1.05 10af %@ 1.05
w #*
3 L2 0 s Bk %
‘E 1 * 1.02 1
5 EEx5E BEEE %
0.95 1 0.85
1 13 1 13 1 13
2 -119 120 %
E‘ ot & 120} &
=2 18 99 29
= 3 121 ¥
g e @ 116
-E_-d 122 QQQQQQ QQQQQQ
PRgRe @ RiRg®
-6 -123 114

Matlab/Octave code @ https://github.com/saveriob/1ACPF

13

O exact solution

13

1

13

* linear approximant
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Special cases reveal some old friends

o flat-voltage/0-injection point: x* = (|V|*,0*,P*,Q") = (1,0,0,0)
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gives linear coupled power flow [D. Deka, S. Backhaus, and M. Chertkov, '15]
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Special cases reveal some old friends

o flat-voltage/0-injection point: x* = (|V|*,0*,P*,Q") = (1,0,0,0)

e RY) =S|IV | P
= tangent space parameterization: [_% ) %(Y)} [0] = {Q}

gives linear coupled power flow [D. Deka, S. Backhaus, and M. Chertkov, '15]

= R(Y) = 0 gives DC power flow(s): —3(Y)0 =P and —(Y)E =Q

=
T T TFFFTT
i
i
s i

(77—~
v
....'...

l..
o9

linear coupled power flow ‘

P2

DC power flow approximation
(neglects PV coupling)

08

12 -
v 14 2 9, 24



Special cases reveal some old friends cont’d

o flat-voltage/0-injection point: x* = (|V|*,0*,P*,Q") = (1,0,0,0)
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= rectangular coordinates = rectangular DC flow [S. Bolognani and S. Zampieri, *15]
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Special cases reveal some old friends cont’d

o flat-voltage/0-injection point: x* = (|V|*,0*,P*,Q") = (1,0,0,0)

= rectangular coordinates = rectangular DC flow [S. Bolognani and S. Zampieri, *15]
« nonlinear change to quadratic coordinates from |V| to | V|

= linearization gives (non-radial) LinDistFlow [M.E. Baran and F.F. Wu, '88]

power flow manifold |

linear approximation |

linear approximation
in quadratic coordinates

0 1 15

25



Properties of power flow manifold that we will exploit

—

—

)

L4

nonlinear power flow is smooth manifold
coordinate-independent — no singularities
better local linear approximations

methods for manifold optimization/control

natural concept for closed-loop dynamics
M is attractive for grid dynamics
closed-loop trajectories x(t) live on M
control task: steer x(t) in tangent space

const.-rank linearization Ax-=(x —x*) =0
implicit — no input/outputs (no disadvantage)

sparse — A~ has the sparsity of the grid

structure — elements of Ax~ are local

— S. Bolognani & F. Dérfler (2015)
“Fast power system analysis via implicit linearization of the power flow manifold”26


http://dx.doi.org/10.1109/ALLERTON.2015.7447032
http://dx.doi.org/10.1109/ALLERTON.2015.7447032

PROJECTED GRADIENT FLOW ON THE POWER FLOW MANIFOLD

27



AC power flow model, constraints, and objectives

= model (physical constraint): x € M Ohm’s Law Current Law
I
Il 12
v [ X
1y I3
[V =21 D=0+ .+

AC power

AC power flow equations

1
Se= > V(i -V VkeN

*

Vi nodal voltage 2kl line impedance 1EN(k) kL
I}, current injection Iy, line current
Py, Q. power injections Py, Q11 power flow

(all variables and parameters are C-valued)

= operational constraints: generation capacity, voltage bands, no congestion
= objective: economic dispatch, minimize losses, distance to collapse, etc.

= control: state measurements and actuation via generator set-points

28



Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

® minimize cost of generation minimize E costy(P¢)
keN
® satisfy AC power flow laws subjectto  P% +jQ% = P* + jQ" + diag(V)Y* V*
® respect generation capacity P =< PkG < ﬁk, Qk < Of < 5,( vk e N
® no over-/under-voltage V, <%l <L Vi Vk e N
® no congestion 1Py +jQul < Si v(k,l) € €

Y admittance matrix, Pf, Qf power generation, PL, Oﬁ load, {Kk,Vk, ...} nodal limits, §k, line flow limit



Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

® minimize cost of generation minimize E cost(P7)
keN
® satisfy AC power flow laws subjectto  P% +jQ% = P* + jQ" + diag(V)Y* V*
® respect generation capacity P =< PkG < I_’k, Qk < Of < E;k vk e N
® no over-/under-voltage V, <%l <L Vi Vk e N
® no congestion 1Py +jQul < Si v(k,l) € €

Y admittance matrix, Pf, Qf power generation, PL, Oﬁ load, {Kk,Vk, ...} nodal limits, §k, line flow limit

Loads

generator
setpoints

physical, steady-state
. power system
Real-time (AC power flow equations)

operation
PG = Pt + R{diag(V)Y*V*}
Q% = Q- + 3{diag(V)Y*V~*}

state
measurements




Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

® minimize cost of generation minimize E cost(P7)
keN
® satisfy AC power flow laws subjectto  P% +jQ% = P* + jQ" + diag(V)Y* V*
® respect generation capacity P =< PkG < I_’k, Qk < Of < E;k vk e N
® no over-/under-voltage V, <%l <L Vi Vk e N
® no congestion 1Py +jQul < Si v(k,l) € €

Y admittance matrix, Pf, Qf power generation, PL, Oﬁ load, {Zk,Vk, ...} nodal limits, §k, line flow limit

A control problem with IE,cL)agsz
challenging specifications '
on the closed-loop system: generator
setpomts hvsical. stead tat
. . . sical, steady-state
1. its trajectory x(f) must satisfy . P ypower systgm
- : Real-time (AC power flow equations)
the constraints at all times operation
PG = PL + R{diag(V)Y*V*}
2. it must converge to x*, the prer Q% = Q- + S{diag(V)Y*V*}
solution of the AC OPF measurements




Ancillary services as a real-time OPF

Real-time optimal power flow (OPF)

® minimize cost of generation minimize E cost(PY)
keN

e satisfy AC power flow laws subjectto P +Q° = P- + jQ" + diag(V)Y* V*
e respect generation capacity P <P <P, Q <Qf <O vk e N
® no over-/under-voltage YV, < Vil < Vi vk e N
® no congestion [P+ jQu| < §k, V(k,l) e &

Y admittance matrix, PkG, Of power generation, PL, Qk load, {V,, Vi, . . .} nodal limits, Sjq line flow limit

Prototype of real-time OPF x=[|V| 0 P Q] gridstate
¢:R" 5 R objective function

minimize X
() MCR" AC power flow equations

subjectto x c K=MnNX X CR" operational constraints



Unconstrained optimization on the power flow manifold

= geometric objects:
manifold M = {x: h(x) =0} tangent space TxM = Kkerh(x)

objective ¢: M =R Riemann metric g: TxM x TiM = R
(degree of freedom)
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Unconstrained optimization on the power flow manifold

= geometric objects:
manifold M = {x: h(x) =0} tangent space TxM = Kkerh(x)
objective ¢: M =R Riemann metric g: TxM x TiM = R
(degree of freedom)

= target state: local minimizer on the power flow manifold x* € arg minye a1 (x)

= always feasible due to physics: trajectory remains on power flow manifold M
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Unconstrained optimization on the power flow manifold

= geometric objects:
manifold M = {x: h(x) =0} tangent space TxM = Kkerh(x)
objective ¢: M =R Riemann metric g: TxM x TiM = R

(degree of freedom)
= target state: local minimizer on the power flow manifold x* € arg minye a1 (x)

= always feasible due to physics: trajectory remains on power flow manifold M

linear approximant

= continuous-time gradient descent on M:

Gradient of cost function

1. grad ¢(x): gradient of cost function
(& soft constraints) in ambient space

Projected gradient

2. Tkgrad ¢(x): projection of gradient
on the linear approximant T, M

3. flow on manifold: x = -y nxgrad ¢(X) power flow manifold
31



Constraints: projected dynamical systems for feasibility

Operational constraints

Per specification, the trajectories need to
satisfy operational constraints at all times.

x(tyeK=MnNX

where

M power flow manifold
X operational constraints

— x(t) must belong to a feasible cone,
subset of the tangent space of M

precisely: x(t) € TxK C TxM,

the inward tangent cone at x




Constraints: projected dynamical systems for feasibility

Operational constraints

Per specification, the trajectories need to
satisfy operational constraints at all times.

x(HheL=MnX

where

M power flow manifold
X operational constraints

— x(t) must belong to a feasible cone,
subset of the tangent space of M

precisely: x(t) € TxK C TxM,

the inward tangent cone at x

K

F : R" — R" vector field, K C R" closed domain

Projected dynamical systems:
x =Mk (x, F(x))
where

Mi(x, F(x)) € arg min ||F(x) — v|g
veTy K



Projected gradient descent on the power flow manifold

X =Tk (x, —grad ¢(x)) ,  x(0) = xo
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Projected gradient descent on the power flow manifold

X =Tk (x, —grad ¢(x)) ,  x(0) = xo

¢ Does a solution trajectory exist for a non-convex K ? Is it unique ?
« Are solution trajectories (asymptotically) stable?
¢ Do solution trajectories converge to a minimizer of ¢ ?
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Projected gradient descent on the power flow manifold

X =Tk (x, —grad ¢(x)) ,  x(0) = xo

¢ Does a solution trajectory exist for a non-convex K ? Is it unique ?
« Are solution trajectories (asymptotically) stable?
¢ Do solution trajectories converge to a minimizer of ¢ ?

Corollary (simplified)

Let x : [0, 00) — K be a (Carathéodory-)solution of the initial value problem
X =Tk (x, —grade(x)) ,  x(0) =xo .

If » has compact level sets on K, x(t) will converge to a critical point x* of ¢ on K.
Furthermore, if x* is asymptotically stable then it is a local minimizer of ¢ on K.

— Hauswirth, Bolognani, Hug, & Dérfler (2016)
“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”
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How to induce the projected gradient flow

Controlled system aCtEate

S static
minimizeux  ¢(X) feedback system
optimizer
subjectto x € I piimiz h(x)=0
gl =u
g =u P

measure

m the state x is uniquely determined by
— the algebraic model h(x) = 0 describing the power flow equations
— an algebraic input constraint g(x) = u



How to induce the projected gradient flow

Controlled system aCtEate

L static
minimizeyx  &(x) feedback system
. optimizer
subjectto x € K P h(x)=0
glx)=u
gix)=u X
measure

m the state x is uniquely determined by
— the algebraic model h(x) = 0 describing the power flow equations
— an algebraic input constraint g(x) = u

» steady state: the closed-loop system converges to the solution of the OPF
= closed-loop trajectory remains in £ at all times
— no need to solve the optimization problem numerically

— no need to solve any power flow equation



From projected gradient flow to discrete-time feedback control

Xexo :|

artition: x =
P |:Xendo

exogenous variables:

inputs/disturbances
(e.g., reactive injection Qy)

endogenous variables:
determined by the physics
(e.g., voltage V)
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From projected gradient flow to discrete-time feedback control

linear approximant
Gradient of cost function

partition: x = | *°
Xendo

exogenous variables:
inputs/disturbances
(e.g., reactive injection Qi)

endogenous variables:
determined by the physics
(e.g., voltage V)
1. compute continuous feasible descent direction: d' = M (x, —grad ¢(x(t)))
2. Euler integration step to compute new set-points: X(t + 1) = x(f) + o - d"

3. actuate exogeneous variables (inputs) based on Xengo(t + 1)
(note: xexo Will be updated accordingly since h(x) = 0 holds implicitly by physics)
4. retraction step x(t + 1) = Ryp(X(t + 1)) =x(t+1) e M

(note: carried out by physics since M is attractive / use AC PF solver in simulations) .



Simple illustrative case study

Obijective Value [$]

real time cost
= = global minimum

0 ‘ ‘ ‘ I ‘
0 50 100 150 200 250 300
Bus voltages [p.u.]
105 | —
e
0.95 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

Active power generation [MW]

Slackbus = — GenA —-—=-GenB

0 50 100 150 200 250 300
iteration

feedback
optimizer

actuate
u

X
measure

static
system
h(x)=0
glx)=u
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TRACKING PERFORMANCE AND ROBUSTNESS
OF CLOSED-LOOP OPTIMIZATION
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The tracking problem
» the power system state is also affected by exogeneous inputs w;
— because of these inputs, the state could leave the feasible region K

— outside of K, the projected gradient flow is not defined
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The tracking problem

» the power system state is also affected by exogeneous inputs w;

— because of these inputs, the state could leave the feasible region IC

— outside of K, the projected gradient flow is not defined

feedback
optimizer

u

‘w,

+

static system
h(x,w;) =0
gx)=u

constraints satisfaction for non-controllable variables:

m /C accounts only for hard constraints on controllable variables u (e.g., generation limits)

— alternative method (not discussed today) is dualization (.e., integral control)

gradient projection becomes input saturation (saturated proportional feedback control)

soft constraints included via penalty functions in ¢ (e.g., thermal and voltage limits)
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Tracking performance

400
300
200
100
0

(® Generator e
(©) Synchronous Condensor ~*

® Solar
@ Wind

Aggregate Load & Available Renewable Power [MW]

— Load — Solar— Wind |

——at gl

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [hrs]

controller: penalty + saturation

1.05

0.95

Bus voltages [p.u.]

Active power injection [MW]

0 2 4 6 8 10 12 14 16 18 20 22 24
Time [hrs]

[ —Gent —Gen2 — Solar — Wind |

— Hauswirth, Bolognani, Dérfler, & Hug (2017)

“Online Optimization in Closed Loop on the Power Flow Manifold”
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Tracking performance

:‘1 ' "
I Comparison

m closed-loop feedback trajectory

(@) Generator gt
(©) Synchronous Condensor
(S Solar
W) Wind

= benchmark: feedforward OPF

(solution of an ideal OPF without computation delay)

Generation cost
T T T 7T

Feedback OPF
Optimal cost

1,500 |- |-

» practically exact tracking
1,000

+ trajectory feasibility

+ robustness to model
mismatch 0

e L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [hrs]

40



Trajectory feasibility

The feasible region K = M N X often has disconnected components.

aa

M




Trajectory feasibility

The feasible region K = M N X often has disconnected components.

e

M

= feedback (gradient descent)
— the closed-loop trajectory x(t) is guaranteed to be feasible
— convergence of x(t) to a local minimum is guaranteed

= feedforward (OPF)
— optimizer x* = arg minycx ¢(x) can be in different disconnected component
— no feasible trajectory exists: x, — x* must violate constraints



lllustration of trajectory feasibility

5-bus example known to have two
disconnected feasible regions:

60°0+20°0

m [0s,2000s]: separate feasible regions

m [2000s,3000s]: loosen limits on
reactive power Q, — regions merge

= [4000s,5000s]: tighten limits on Q,
— vanishing feasible region

1200

Objective Value [$]

1000 -

—Feedback
= -Feed-forward r=--

1000 2000 3000
Voltage Levels [p.u.]

4000

5000

1000 2000 3000

4000

Active Power Generation P [MW]

5000

300 f;
OV At — PSS A S

T S —

= Genl
— Gen2

0 1000 2000 3000 4000 5000
Reactive Power Generation Q [MVAR]
200 T—=aom T : : .
100 F :gznmzm /___/_/\_\—f
oL e Nu—
T S T i
0 1000 2000 3000 4000 5000



Robustness to model mismatch

Intuition in 2D case: cost on x4, soft penalty for constraint x, < X», actuation on x;
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Intuition in 2D case: cost on x4, soft penalty for constraint xo < X, actuation on x;

1 feedforward (OPF)
model-based approach: model
mismatch directly affects the decision u*
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Robustness to model mismatch

Intuition in 2D case: cost on x4, soft penalty for constraint xo < X, actuation on x;

1 feedforward (OPF)
model-based approach: model
mismatch directly affects the decision u*

«+ feedback (gradient descent)
grad ¢ is orthogonal to the tangent plane

43



lllustration of robustness to model mismatch

IEEE 30-bus test system

wr
© Generator . J controller:
(© Synchronous Condensor u .
®solar E = saturation of
e s 7|£ generation
feedback static system constraints
optimizer hg‘(’x";”l o 0
= penalty for
X operational
constraints
no automatic re-dispatch feedback optimization
model uncertainty | feasible? | f—r* | |lv—v*|| | feasible? | r—r | v —v|
loads +40% 94.6 0.03 yes 0.0 0.0
line params +20% 0.19 0.01 yes 0.01 0.003

2 line failures -0.12 0.06 yes 0.19 0.007



lllustration of robustness to model mismatch

IEEE 30-bus test system

wy
© Gonerator . J controller:
(© Synchronous Condensor "~ u t ti f
® solar ® saturation o
@\j/l‘nd u .
generation
feedback static system constraints
oepetimiaz%r hg‘(’x")v’l o 0
= penalty for
X operational
constraints
no automatic re-dispatch feedback optimization
model uncertainty | feasible? | f—r* | |lv—v*|| | feasible? | r—r | v —v|
loads +40% 94.6 0.03 yes 0.0 0.0
line params +20% 0.19 0.01 yes 0.01 0.003
2 line failures -0.12 0.06 yes 0.19 0.007

on-going work: observations can be made mathematically rigorous and quantified



OUTPUT FEEDBACK AND STATE UNCERTAINTY
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Use real-time output measurements to reduce uncertainty

lw

actuate
u
static
feedback system
optimizer h(x, w) = 0

gix) =u

y=y(X)

output

How to project the trajectory to K = M N X when the state is partially known?
= power flow manifold M: attractive manifold + robustness v/

» operational constraints ': how to deal with state uncertainty ?
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Use real-time output measurements to reduce uncertainty

lw

actuate
u
static
feedback system
optimizer h(x, w) = 0

gix) =u

y=y(X)

output

How to project the trajectory to K = M N X when the state is partially known?
= power flow manifold M: attractive manifold + robustness v/

» operational constraints ': how to deal with state uncertainty ?

Chance constraints

generally non-convex set of all u suchthat P[x € Xy |y(x) =y] > 1 —¢
where w is random and € € (0, 1) is probability of constrained violation ks




Scenario approach to chance-constrained optimization

» chance constraint: P[x € Aw] > 1—¢ where wisrandomand e € (0,1)

— often intractable for complex (possibly unknown) distributions/constraints
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— often intractable for complex (possibly unknown) distributions/constraints
» sample from distribution — deterministic constraints x € X, i € {1,...,N}
m convert stochastic constraint to large set of deterministic ones: X, =~ ﬂL X0

— # samples to approximate chance constraint depends on n, e, and accuracy
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Scenario approach to chance-constrained optimization
» chance constraint: P[x € Aw] > 1—¢ where wisrandomand e € (0,1)
— often intractable for complex (possibly unknown) distributions/constraints
» sample from distribution — deterministic constraints x € X, i € {1,...,N}
m convert stochastic constraint to large set of deterministic ones: X, =~ ﬂL X0

— # samples to approximate chance constraint depends on n, e, and accuracy

IEEE 13 grid with random demand and Pen '
actuation (microgenerators & tap changers) feasible region with scenario approach



Scenario approach with real-time measurements

m scenario approach: stochastic constraint — large set of deterministic ones
IPW[XGXW]Z 1—€ — XG)('W(;)7 i€ {1,,N} 8

= two sources of information on the unknown w

1. historical samples w" of prior distribution

— classic scenario-based approach
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— use measurements to reduce uncertainty?
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= two sources of information on the unknown w

1. historical samples w" of prior distribution
— classic scenario-based approach 2

2. online measurements y from the system ol

— use measurements to reduce uncertainty?

= re-sampling solution: scenario approach based on conditional distribution
— high computational demand, large memory footprint, not suited for real time

48



Scenario approach with real-time measurements

m scenario approach: stochastic constraint — large set of deterministic ones

IPW[XGXW]Z1—6 — XG)('W(;')7 IG{1,,N} 8

= two sources of information on the unknown w

1. historical samples w" of prior distribution
— classic scenario-based approach 2

2. online measurements y from the system ol

— use measurements to reduce uncertainty?

= re-sampling solution: scenario approach based on conditional distribution
— high computational demand, large memory footprint, not suited for real time

= today: online computation of posterior distribution after measurement
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Linear case

= linear grid model
X = Au + Bw

= polytopic constraints
Cx <z

= linear measurement
y = Hw
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Linear case
= linear grid model
X = Au + Bw

= polytopic constraints
Cx <z

= linear measurement
y = Hw

Approximate conditioning
affine transformation:

Wy =w + K(y — Hw)
where K = 3HT (HZH") ™

— projection of uncertainty
in the subspace {y = Hw}

— Gaussian case: recovers
the conditional distribution




Linear case

. . Bimodal distribution Mean Variance Skewness Kurtosis
= linear grid model
True posterior 3.35 4.23 -0.74 2.00
X = Au + BW Gaussian approximation 3.20 3.57 0 3

Affine transformation 3.20 3.57 -0.54 2.35
= polytopic constraints

Cx<z

= linear measurement
y = Hw

Approximate conditioning e

affine transformation:

Annular distribution Mean Variance Skewness Kurtosis
n True posterior -0.6 32.9 0 1.08
Wy =w + K(y = HW) Gaussian approximation -0.6 17.8 0 3
Affine transformation -0.6 17.8 0 1.60
T T\ 1
where K = SH" (HZHT) WF S 1

— projection of uncertainty
in the subspace {y = Hw}

— Gaussian case: recovers
the conditional distribution
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Affine transformation of the feasible region
transformation: the feasible polytope Cx < z can be rewritten as
CAu+BW) <z =~ C(Au+B(w+K0/—HW)) <z
———

X|y=Hw

50
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Affine transformation of the feasible region
transformation: the feasible polytope Cx < z can be rewritten as
CAu+BW) <z =~ C(Au+B(w+K0/—HW)) <z
———
X|y=Hw

scenario approach: replace w with finitely many historical samples w

N
m C(Au +Bw" +K(y — Hw(’))) <z — polytopellinuandy
i=1
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Affine transformation of the feasible region

transformation: the feasible polytope Cx < z can be rewritten as

CAu+BW) <z =~ C(Au+B(w+KU/—HW)) <z
———

X|y=Hw

scenario approach: replace w with finitely many historical samples w!

N

ﬂ C(Au +BwW" + K(y — HW(i))) <z — polytopelinuandy

i=1

Preprocessing

Disturbance
samples
{wy

Real-time feedback

Measurement

Offline algorithm y

1 1

[

Augmented
polytope Online algorithm
u

Two-phase algorithm

= offline: construct a feasible region
U(y) parametrized in y

= online: compute the conditional
feasible polytope U = Z)(}/measured)

— Bolognani, Arcari, & Dérfler (2017)
“A fast method for real-time chance-constrained
decision with application to power systems”50
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Example: IEEE 123-bus test system

scalar measurement
total demand

operational constraint
overvoltage limits

actuation

distributed microgenerators
samples

metered demand of 1200 households

Probability density

p3o [MW]

(\,/.), MW]

no measurement
y =0 [MW]

Computation time

Offline

Online

Compute X and K
Construct augmented polytope I/
Compute minimal representation of ¢

Total offline computation time 55 min

Slice &7 at y = y™ to obtain U

Total online computation time 1.8 ms

Memory footprint

0 2 4
s (kW)

0 2 4 6
Pio (kW]

Offline
Online

Augmented polytope I
Minimal representation of I/

48620 constraints
12 constraints
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CONCLUSIONS
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Summary and conclusions

= control perspective on real-time
power system operation

— feedback control on manifolds

steady-state optimality
feasibility at all times

= robustness and performance

real-time constrained tracking
robust to model uncertainty
chance constraints

= ongoing and future work

quantify robustness margins

saddle-flows on manifolds
for primal-dual optimization

distributed control approach
include primary frequency control
online scenario-based approach

1if [—Bus1

0.95

400

300

200

100

Bus voltages [p.u]

Bus 2 Bus 3
Bus 5 Bus 6

——Bus4

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [hrs]

Active power injection [MW]

7]

—50

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hrs]

Reactive power injection [MVAR]

Gen 3

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [hrs]
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Thanks !

Florian Dorfler

http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch
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