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MOTIVATION

01

How do social networks form?

The social network structure influences 
individual behavior.

Individual behavior determines the 
social network structure.



OBSERVATIONS

02

Actors decide with whom they want to interact.

directionality: followers  followees≠
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OBSERVATIONS

02

Actors decide with whom they want to interact.

Network positions provide benefits to the actors.

directionality: followers  followees≠

Limited information is available.

Ties can have different weights.



SOCIAL NETWORK 
POSITIONS’ BENEFITS

03

Social Influence
The more people we are connected to, 
the more we can influence them.
[Robins, G. Doing social network research, 2015]



SOCIAL NETWORK 
POSITIONS’ BENEFITS

The more our friends’ friends are our 
friends, the safer we feel.

Social Support

03

[Coleman, J. Foundations of Social Theory, 1990]

[Robins, G. Doing social network research, 2015]

Social Influence
The more people we are connected to, 
the more we can influence them.



SOCIAL NETWORK 
POSITIONS’ BENEFITS

The more we are on the path between 
people, the more we can control.

Brokerage

The more our friends’ friends are our 
friends, the safer we feel.

Social Support

03
[Burt, R. S. Structural Hole (Harvard Business 
School Press, Cambridge, MA, 1992]

[Coleman, J. Foundations of Social Theory, 1990]

[Robins, G. Doing social network research, 2015]

Social Influence
The more people we are connected to, 
the more we can influence them.



SOCIAL NETWORK 
POSITIONS’ BENEFITS

Betweenness Centrality

Clustering CoefficientDegree Centrality

The more we are on the path between 
people, the more we can control.

Brokerage

03
[Burt, R. S. Structural Hole (Harvard Business 
School Press, Cambridge, MA, 1992]

[Robins, G. Doing social network research, 2015]

Social Influence
The more people we are connected to, 
the more we can influence them.

The more our friends’ friends are our 
friends, the safer we feel.

Social Support

[Coleman, J. Foundations of Social Theory, 1990]



Economics Sociology

Complex Networks

SOCIAL NETWORK 
FORMATION

•Preferential Attachment 
•Small-World Network 
•Agent-Based Model

•Stochastic Actor-Oriented Models 
•Exponential Random Graph Models•Strategic Network Formation Model



A typical action of agent  :

 

i

ai = [ai1, …, ai,i−1, ai,i+1, …, aiN] ∈ 𝒜 = [0,1]N−1

Directed weighted network  with  agents. 

The weight  quantifies the importance of the 

friendship among  and  from ’s point of view.

𝒢 𝒩 = {1,…, N}

aij ∈ [0,1]

i j i

04

SOCIAL NETWORK 
FORMATION MODEL

Every agent  is endowed with a payoff function    

and is looking for   

                               

i Vi

a⋆
i ∈ arg max

ai∈𝒜
Vi(ai, a−i)



Vi(ai, a−i) = ti(ai, a−i)PAYOFF FUNCTION

05

Social influence on friends

ti(ai, a−i) = ∑
j≠i

aji + δi ∑
k≠j

∑
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where                 [Jackson, M. O. & Wolinsky, A. A strategic model of social              
                                 & economic networks. J. Econom. Theory 71, 44–74 (1996)]

δi ∈ [0,1]



PAYOFF FUNCTION

05
ui(ai, a−i) = ∑

j≠i

aij ∑
k≠i,j

aikakj

Clustering coefficient

ti(ai, a−i) = ∑
j≠i

aji + δi ∑
k≠j

∑
j≠i

akjaji

paths of length 2

+ δ2
i ∑

l≠k
∑
k≠j

∑
j≠i

alkakjaji

paths of length 3

Vi(ai, a−i) = ti(ai, a−i) + ui(ai, a−i)

i

kj

Social influence on friends

[Burger, M. J. & Buskens, V. Social context and network formation: an 
experimental study. Social Networks 31, 63–75 (2009)].

where                 [Jackson, M. O. & Wolinsky, A. A strategic model of social              
                                 & economic networks. J. Econom. Theory 71, 44–74 (1996)]

δi ∈ [0,1]



PAYOFF FUNCTION

05 ci(ai) = ∑
j≠i

aijCost

ti(ai, a−i) = ∑
j≠i

aji + δi ∑
k≠j

∑
j≠i

akjaji

paths of length 2

+ δ2
i ∑

l≠k
∑
k≠j

∑
j≠i

alkakjaji

paths of length 3

Vi(ai, a−i) = ti(ai, a−i) + ui(ai, a−i) − ci(ai)

i

jj

j

j

j

j

Social influence on friends

ui(ai, a−i) = ∑
j≠i

aij ∑
k≠i,j

aikakj

Clustering coefficient

[Burger, M. J. & Buskens, V. Social context and network formation: an 
experimental study. Social Networks 31, 63–75 (2009)].

where                 [Jackson, M. O. & Wolinsky, A. A strategic model of social              
                                 & economic networks. J. Econom. Theory 71, 44–74 (1996)]

δi ∈ [0,1]



PAYOFF FUNCTION

ti(ai, a−i) = ∑
j≠i

aji + δi ∑
k≠j

∑
j≠i

akjaji

paths of length 2

+ δ2
i ∑

l≠k
∑
k≠j

∑
j≠i

alkakjaji

paths of length 3

αi ≥ 0, βi ∈ ℝ, γi > 0

θi = {αi, βi, γi}
Vi(ai, a−i |θi) = αi ti(ai, a−i) + βi ui(ai, a−i) − γi ci(ai)

i

jj

j

j

j

j

Social influence on friends

05 ci(ai) = ∑
j≠i

aijCost

ui(ai, a−i) = ∑
j≠i

aij ∑
k≠i,j

aikakj

Clustering coefficient

[Burger, M. J. & Buskens, V. Social context and network formation: an 
experimental study. Social Networks 31, 63–75 (2009)].

where                 [Jackson, M. O. & Wolinsky, A. A strategic model of social              
                                 & economic networks. J. Econom. Theory 71, 44–74 (1996)]

δi ∈ [0,1]



Individual 
Behavior θi

Game (𝒩, Vi(θi), 𝒜) Network
𝒢⋆(θi)

Nodes 𝒩

Payoff 
Vi(θi)

Action 
Space 𝒜

NASH EQUILIBRIUM

06

Definition.

⟹
The network  is a Nash Equilibrium if for all agents : 𝒢⋆ i

Vi (ai, a−i⋆ |θi) ≤ Vi (a⋆
i , a−i⋆ |θi), ∀ai ∈ 𝒜

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θi)



INDIVIDUAL 
BEHAVIOR θi

STRATEGIC 
PLAY

DETERMINE

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θi)

STRATEGIC NETWORK FORMATION MODEL

SOCIAL NETWORK 
STRUCTURE 𝒢⋆ (θi)

Question: Given , which  is in equilibrium ?θi 𝒢⋆



INDIVIDUAL 
BEHAVIOR θi

STRATEGIC 
PLAY

GAME-THEORETICAL INFERENCE

∀i,  find  θi  s.t.  Vi (ai, θi |a⋆
−i) ≤ Vi (θi |a⋆

i , a⋆
−i), ∀ai ∈ 𝒜

SOCIAL NETWORK 
STRUCTURE 𝒢⋆ (θi)

Question: Given , for which  is  in equilibrium ?𝒢⋆ θi 𝒢⋆

DETERMINE

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θi)

STRATEGIC NETWORK FORMATION MODEL



HOMOGENEOUS 
RATIONAL AGENTS

07

Assumptions.

Derive Necessary and Sufficient conditions for Nash equilibrium stability of 4 stylised network motifs.

Empty Complete Complete Balanced Bipartite Star

(i) Homogeneity: for all agents . 

(ii) Fully rational agents.

θi = θ, i

θ = {α, β, γ}
α ≥ 0, β ∈ ℝ, γ > 0

Vi(ai, a−i |θ) =
α
γ

ti(ai, a−i) +
β
γ

ui(ai, a−i) − ci(ai)



07 α /γ

β /γ
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Assumptions.

HOMOGENEOUS 
RATIONAL AGENTS

(i) Homogeneity: for all agents . 

(ii) Fully rational agents.

θi = θ, i

θ = {α, β, γ}
α ≥ 0, β ∈ ℝ, γ > 0

Vi(ai, a−i |θ) =
α
γ

ti(ai, a−i) +
β
γ

ui(ai, a−i) − ci(ai)



HOMOGENEOUS 
RATIONAL AGENTS

07

Assumptions.

⟨∇Vi (ai, a⋆
−i |θ)

a⋆
i

, ai − ai⋆⟩ ≤ 0, ∀ai ∈ 𝒜 .

Definition.

The network  is a Nash Equilibrium if for all agents : 𝒢⋆ i

Vi (ai, a−i⋆ |θ) ≤ Vi (a⋆
i , a−i⋆ |θ), ∀ai ∈ 𝒜

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θ) .⟹

Using the Variational Inequality approach, it is equivalent to 

(i) Homogeneity: for all agents . 

(ii) Fully rational agents.

θi = θ, i

θ = {α, β, γ}
α ≥ 0, β ∈ ℝ, γ > 0

Vi(ai, a−i |θ) =
α
γ

ti(ai, a−i) +
β
γ

ui(ai, a−i) − ci(ai)



EXAMPLE:  
COMPLETE NETWORK

08

Theorem.
Let  be a complete network of  homogeneous, rational agents.  
Define: 
 

 

 
then  is a Nash equilibrium if and only if .

𝒢CN N

γ̄NE := {
αδ (1 + δ(2N − 3)) + β (N − 2), if β > 0

αδ (1 + δ(2N − 3)) + 2β (N − 2), if β ≤ 0,

𝒢CN γ ≤ γ̄NE

NE

α /γ

β / γ

0 1 2 3 4 5
− 2

− 1

0

1

2

θ = {α, β, γ}
α ≥ 0, β ∈ ℝ, γ > 0

Vi(ai, a−i |θ) =
α
γ

ti(ai, a−i) +
β
γ

ui(ai, a−i) − ci(ai)



INDIVIDUAL 
BEHAVIOR θi

STRATEGIC 
PLAY

SOCIAL NETWORK 
STRUCTURE 𝒢⋆ (θi)

Question: Given , for which  is  in equilibrium ?𝒢⋆ θi 𝒢⋆

DETERMINE

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θi)

STRATEGIC NETWORK FORMATION MODEL

GAME-THEORETICAL INFERENCE

∀i,  find  θi  s.t.  Vi (ai, θi |a⋆
−i) ≤ Vi (θi |a⋆

i , a⋆
−i), ∀ai ∈ 𝒜



STRATEGIC /  
IRRATIONAL 
PLAY

INDIVIDUAL 
BEHAVIOR θi

Question: Given , for which  is  in equilibrium ?𝒢⋆ θi 𝒢⋆

SOCIAL NETWORK 
STRUCTURE 𝒢⋆ (θi) providing the most rational explanationθi

DETERMINE

∀i, a⋆
i ∈ arg max

ai∈𝒜
Vi (ai, a⋆

−i |θi)

STRATEGIC NETWORK FORMATION MODEL

GAME-THEORETICAL INFERENCE



INVERSE OPTIMIZATION 
PROBLEM

09

Positive error corresponds to a violation  
of the Nash equilibrium condition:

max {0, ei(ai, θi)} ≥ 0

ei(ai, θi) < 0

ei(ai, θi) := Vi (ai, a⋆
−i |θi) − Vi (a⋆

i , a⋆
−i |θi)

Error function.

Distance function.

di(θi) := ∫𝒜
(max {0, ei(ai, θi)})

2
dai

No violations: can be neglected

ai10

e+
i (ai, θi)

Deviation from Nash equilibrium:

max {0, ei(ai, θi)} ≥ 0



INVERSE OPTIMIZATION 
PROBLEM

10

Let                          

                     

Then  is continuously differentiable, and its gradient reads as 

                 

Moreover,  is convex. 

di(θi) = ∫𝒜
(max {0, ei(ai, θi)})

2
dai

di(θi)

∇θdi(θ) = ∫𝒜
2∇θi(ei(ai, θi)) max {0, ei(ai, θi)} dai .

di(θi)

Theorem [Smoothness & convexity of distance function].

Given a network of  agents, for all agents  find the vectors of preferences  such that 

                                 

𝒢⋆ N i θ⋆
i

θ⋆
i ∈ arg min

θi∈Θ
di(θi)

Problem [Minimum NE-Distance Problem].

θi

di(θi)



INVERSE OPTIMIZATION 
PROBLEM - SOLUTION

11

max operator within  - dimensional integral(N − 1)

First-order optimality condition 

                       0 = ∇θi(di(θi)) = 2∫𝒜
∇θi(ei(ai, θi)) max {0, ei(ai, θi)} dai .



11
The solution  is similar to the solution of a Generalized Least Square Regression Problem. 

Note:  The estimate needs to be unbiased due to the positiveness of the error terms. 

̂θi ∈ arg min
θi∈Θ

d̃i(θi)

INVERSE OPTIMIZATION 
PROBLEM - SOLUTION

Search for an approximate solution: Consider a finite set of possible actions (samples)

and let  be the corresponding error.ei(aj
i , θi)

{aj
i }

ni

j=1
⊂ 𝒜

𝒜

Approximate the distance function as  

                                                         

d̃i(θi) :=
ni

∑
j=1

(max {0, ei(aj
i , θi)})

2

≈ ∫𝒜
(max {0, ei(ai, θi)})

2
dx



AUSTRALIAN BANK

12

Branch 
Manager

Deputy 
Manager

Service 
Adviser 1

Service 
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Service 
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0
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[Pattison, P., Wasserman, S., Robins, G. & Kanfer, A. M. Statistical evaluation of algebraic constraints for social networks. J. Math. Psychology 44, 536–568 (2000)]



RENAISSANCE 
FLORENCE NETWORK

12
Pazzi
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0

 95% CIβ/γ ±
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Business
Combined

0-0.5-1

[Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259-1319]



PREFERENTIAL 
ATTACHMENT MODEL

13

Nodes are introduced sequentially.  
Each newborn receives 2 incoming ties from existing nodes (randomly selected, proportionally to the outdegree),  
and creates 2 outgoing ties to existing nodes (randomly selected, proportionally to the indegree).
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SMALL-WORLD 
NETWORKS

13

rewiring 
probability

# neighbors



SUMMARY & OPEN 
DIRECTIONS

Starting from the strategic network formation literature, we proposed a new model: 
•sociologically well-founded, 
•mathematically tractable, and 
•statistically robust, 
capable of reverse-engineering human behavior from easily accessible data on the network structure.

We provided evidence that our results are consistent with empirical, historical, and sociological observations.

Our method offers socio-strategic interpretations of random network models.

The model can be adapted to further specifications of the payoff function.

Incorporating prior knowledge on the action space of the agents can reduce the computational burden.

14
Actors’ attributes have not yet been considered.
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BACK UP SLIDES
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NASH AND PAIRWISE 
NASH EQUILIBRIA
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Empty
Complete
Bipartite
StarDefinition.

The network  is a Nash Equilibrium if  
• for all agents :

𝒢⋆

i
Vi (ai, a−i⋆ |θi) ≤ Vi (a⋆

i , a−i⋆ |θi), ∀ai ∈ 𝒜 .

Definition.

The network  is a Pairwise-Nash 
Equilibrium if  
   
•for all pairs of distinct agents :

  
  

•for all pairs of distinct agents : 

𝒢⋆

(i, j)
Vi (aij, a⋆

i−(i, j), a⋆
−i) ≤ Vi (a⋆

ij , a⋆
i−(i, j), a⋆

−i), ∀aij ∈ [0,1],

(i, j)

Vi (aij, aji, a⋆
−(i, j)) > Vi (a⋆

ij , a⋆
ji , a⋆

−(i, j))
⇓

Vj (aij, aji, a⋆
−(i, j)) < Vj (a⋆

ij , a⋆
ji , a⋆

−(i, j)) .



STRATEGIC 
PLAY

Assumption: Homogeneous agents

[Buechel, B. & Buskens, V. The dynamics of 
closeness and betweenness. J.Math. Sociol. 37, 
159–191 (2013)]

STRATEGIC NETWORK 
FORMATION MODEL



STRATEGIC 
PLAY [Burger, M. J. & Buskens, V. Social context and 

network formation: an experimental study. Social 
Networks 31, 63–75 (2009).]

Assumption: Homogeneous agentsSTRATEGIC NETWORK 
FORMATION MODEL



 
BEHAVIOUR θi

STRATEGIC 
PLAY

[Buechel, B. In Networks, Topology and Dynamics. Springer 
Lecture Notes in Economic and Mathematical Systems Vol. 613, 
95–109 (Springer, 2008)]

Assumption: Homogeneous agentsSTRATEGIC NETWORK 
FORMATION MODEL


