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feedforward optimization vs. feedback control

Optimization System
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y

complex optimal decision
operational constraints
MIMO (multi-input/output)
highly model-based
computationally intensive

Controller Systemr +
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robust to model uncertainty
fast response
measurement driven
suboptimal operation
unconstrained operation

→ typically complementary methods are combined via time-scale separation

Optimization Controller System
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offline & feedforward
∣∣∣ real-time & feedback
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Example: power systems load / generation balancing

optimization stage
SC-OPF, market

real-time
operation

automated/manual
services/re-dispatch

low-level
automatic
controllers
droop, AGC

power system

disturbance δt

u

x

generation
setpoints

state
estimation

prediction (load, generation, downtimes)

schedule

optimization stage
economic dispatch based
on predictions/markets

real-time operations
unforeseen deviations from
schedule (e.g. congestion)

low-level automatic control
frequency regulation at
the individual generators
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Price for time-scale separation

re-dispatch to deal with unforeseen
load, congestion, & renewables

⇒ ever more uncertainty &
fluctuations on all time scales

⇒ operation architecture becomes
infeasible & inefficient
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There must be a better way of operation.
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Ancillary services: synopsis and proposal

Today: partially automated, provided by separate mechanisms, hitting limits
• real time balancing
• voltage regulation
• loss minimization

• economic re-dispatch
• collapse prevention
• line congestion relief

• reactive power
compensation

• frequency control

Central paradigm of future “smart” grids: automation for real-time operation

feedback
optimizer

e.g.,

u̇ = −∇φ(y, u)

power
system

ẋ = f (x, u, w)
y = h(x, u, w)

actuation
u

real-time state
measurements

y

operational
constraints

u ∈ U

disturbance w Proposal: online optimization
algorithms as feedback control
→ robust (feedback)
→ fast response
→ operational constraints
→ steady-state optimal
→ MIMO decision making
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Brief review on related literature
• historical roots: optimal routing and queuing in communication networks, e.g.,

in the internet (TCP/IP) [Kelly et al. 1998/2001, Low, Paganini, and Doyle 2002, Srikant 2012, . . . ]

• lots of recent theory development in power systems & other infrastructures
lots of related work: [Bolognani et al,
2015], [Dall’Anese and Simmonetto,
2016/2017], [Gan and Low, 2016],
[Tang and Low, 2017], . . .
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A Survey of Distributed Optimization and Control
Algorithms for Electric Power Systems

Daniel K. Molzahn,⇤ Member, IEEE, Florian Dörfler,† Member, IEEE, Henrik Sandberg,‡ Member, IEEE,
Steven H. Low,§ Fellow, IEEE, Sambuddha Chakrabarti,¶ Student Member, IEEE,

Ross Baldick,¶ Fellow, IEEE, and Javad Lavaei,⇤⇤ Member, IEEE

Abstract—Historically, centrally computed algorithms have
been the primary means of power system optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring optimization and control of power systems with many
controllable devices, distributed algorithms have been the subject
of significant research interest. This paper surveys the literature
of distributed algorithms with applications to optimization and
control of power systems. In particular, this paper reviews
distributed algorithms for offline solution of optimal power flow
(OPF) problems as well as online algorithms for real-time solution
of OPF, optimal frequency control, optimal voltage control, and
optimal wide-area control problems.

Index Terms—Distributed optimization, online optimization,
electric power systems

I. INTRODUCTION

CENTRALIZED computation has been the primary way
that optimization and control algorithms have been ap-

plied to electric power systems. Notably, independent system
operators (ISOs) seek a minimum cost generation dispatch
for large-scale transmission systems by solving an optimal
power flow (OPF) problem. (See [1]–[8] for related litera-
ture reviews.) Other control objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optimization and control problems are formulated
using network parameters, such as line impedances, system
topology, and flow limits; generator parameters, such as cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and control problems.

With increasing penetrations of distributed energy resources
(e.g., rooftop PV generation, battery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads

⇤: Argonne National Laboratory, Energy Systems Division, Lemont, IL,
USA, dmolzahn@anl.gov. Support from the U.S. Department of En-
ergy, Office of Electricity Delivery and Energy Reliability under contract
DE-AC02-06CH11357.†: Swiss Federal Institute of Technology (ETH), Automatic Control Labora-
tory, Zürich, Switzerland, dorfler@control.ee.ethz.ch‡: KTH Royal Institute of Technology, Department of Automatic Control,
Stockholm, Sweden, hsan@kth.se§: California Institute of Technology, Department of Electrical Engineering,
Pasadena, CA, USA, slow@caltech.edu¶: University of Texas at Austin, Department of Electrical and Computer En-
gineering, Austin, TX, USA, sambuddha.chakrabarti@gmail.com,
baldick@ece.utexas.edu. Support from NSF grant ECCS-1406894.⇤⇤: University of California, Berkeley, Department of Industrial Engineering
and Operations Research, Berkeley, CA, USA, lavaei@berkeley.edu

providing demand response resources, etc.), the centralized
paradigm most prevalent in current power systems will poten-
tially be augmented with distributed optimization algorithms.
Rather than collecting all problem parameters and performing
a central calculation, distributed algorithms are computed
by many agents that obtain certain problem parameters via
communication with a limited set of neighbors. Depending on
the specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
to share limited amounts of information with a subset of
the other agents. This can improve cybersecurity and reduce
the expense of the necessary communication infrastructure.
Distributed algorithms also have advantages in robustness with
respect to failure of individual agents. Further, with the ability
to perform parallel computations, distributed algorithms have
the potential to be computationally superior to centralized
algorithms, both in terms of solution speed and the maxi-
mum problem size that can be addressed. Finally, distributed
algorithms also have the potential to respect privacy of data,
measurements, cost functions, and constraints, which becomes
increasingly important in a distributed generation scenario.

This paper surveys the literature of distributed algorithms
with applications to power system optimization and control.
This paper first considers distributed optimization algorithms
for solving OPF problems in offline applications. Many dis-
tributed optimization techniques have been developed con-
currently with new representations of the physical models
describing power flow physics (i.e., the relationship between
the complex voltage phasors and the power injections). The
characteristics of a power flow model can have a large impact
on the theoretical and practical aspects of an optimization
formulation. Accordingly, the offline OPF section of this
survey is segmented into sections based on the power flow
model considered by each distributed optimization algorithm.
This paper then focuses on online algorithms applied to
OPF, optimal voltage control, and optimal frequency control
problems for real-time purposes.

Note that algorithms related to those reviewed here have
found a wide variety of power system applications in dis-
tributed optimization and control. See, for instance, surveys
on the large and growing literature relevant to distributed
optimization of electric vehicle charging schedules [9] and
demand response applications [10] as well as work on dis-
tributed solution of multi-period formulations for model pre-

early adoptions: KKT control [Jokic et al, 2009] and Commelec [Bernstein et al, 2015]

• MPC version of “dropping argmin”: real-time iteration [Diel et al. 2005], real-time
MPC [Zeilinger et al. 2009], . . . and related papers with anytime guarantees

• independent literature in process control [Bonvin et al. 2009/2010] or extremum
seeking [Krstic and Wang 2000], . . . and probably much more

• recent system theory [Nelson et al. 2017], [Colombino et al. 2018], [Lawrence et al. 2018]

• algorithms as dynamic control systems [Lessard et al., 2014], [Wilson et al., 2018]
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OVERVIEW

1. Interconnected dynamics and stability analysis

2. Projected gradient flow on the power flow manifold

3. Numerical experiments
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INTERCONNECTED DYNAMICS

AND

STABILITY ANALYSIS
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Stylized problem description

Optimization Problem

minimize
y,u

φ(y, u)

subject to y = (CH +D)u+ CRw

u ∈ U

→ gradient control of steady state

u̇ = ΠU
(
−ε
[
CH +D I

]T∇φ
)

(u)

LTI Dynamics

ẋ = Ax+Bu+Qw

y = Cx+Du

with A Hurwitz & steady-state maps

x = −A−1B︸ ︷︷ ︸
H

u−A−1Q︸ ︷︷ ︸
R

w

y = (CH +D)u+ CRw

ε
∫

U
u

B
∫

∇u φ D A

−
[
CH +D I

]T∇y φ
y

C

+ x

+

+

+ ++
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Stability, feasibility, & asymptotic optimality of closed loop

Theorem: Assume that

LTI system asymptotically stable: ∃ γ > 0 , ∃P � 0 : PA+ATP � −γP

regularity of cost function φ : compact level sets and `-Lipschitz gradient

sufficient time-scale separation (small gain): 0 ≤ ε ≤ ε? , γ
2`‖H‖

Then the closed-loop system is stable and globally converges to the critical
points of the optimization problem while remaining feasible at all times.

Proof: LaSalle/Lyapunov analysis inspired from singular perturbation theory

Ψδ(u, e) = δ · eTPe︸ ︷︷ ︸
LTI Lyapunov function

+ (1− δ) · φ(e, u)︸ ︷︷ ︸
objective function

with steady-state error coordinate e = x−Hu−Rw & coefficient δ∈(0, 1)

→ derivative Ψ̇δ(u, e) is non-increasing if ε ≤ ε? and for optimal choice of δ
11



Example: optimal constrained frequency control

Dynamic model:

linearized swing dynamics

1st-order turbine-governor

primary frequency control

DC power flow approximation

θ̇ = ω

ω̇ = −M−1 (Dω + Bθ − p+ pL(t)
)

ṗ = −K
(
R−1ω + p− pC

)





ẋ = Ax+Bu+Qw where

x =
[
θ
ω
p

]
, u = pC , w = pL(t)

Measurements:

y =




0 1 0 . . . 0 0
B` 0 0
0 0 I





θ

ω

p


 =




frequency at node 1
selected line flows

active power injections
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Example: optimal constrained frequency control

optimization problem

minimize
y,u

φ(y)

subject to y = CHu+ CRw

u ∈ U
where y = CHu+ CRw is the steady-state input-output map

economic cost and operational limits are encoded in

φ(y) = cost(y)
︸ ︷︷ ︸
DC OPF

+ 1
2‖max{0, y − y}‖2Ξ + 1

2‖max{0, y − y}‖2Ξ
︸ ︷︷ ︸
operational limits (line flows, frequency, . . . )

U describes the saturation constraints on the actuation

→ control u̇ = ΠU (. . .∇φ) ≡ optimal Automatic Generation Control (AGC)
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Response to contingencies
Generator outage & double line tripping in IEEE 118-bus test system
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23→26 90→26 flow limit other lines

14



How conservative is ε ≤ ε? ?
Simulation on IEEE 118-bus test case

still stable for ε = 2 ε?
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0

5
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1

1.2
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Feedback Opt offline DC OPF
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unstable for ε = 10 ε?
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Note: conservativeness ranges from 1.2 to 1000, depending on penalty scalings.
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Highlights and comparison of our contributions

Weak assumptions on plant
internal stability

→ no observability/controllability needed
reduced model dependency

→ need only steady-state map H

Weak assumptions on cost
Lipschitz gradient + properness

→ no (strict/strong) convexity required
convexity⇒ global convergence

take-home msg: online optimization
algorithms can be applied to dynamics

Parsimonious but powerful setup
potentially conservative bound, but

→ minimal assumptions on
optimization problem & plant

→ constraints assured by general
plant dynamics (no primal/dual)
[Jokic et al. 2009], [Zhao et al. 2013]

→ directly useful for design (no LMIs)
[Nelson et al. 2017], [Colombino et al. 2018]

proof can be extended to other
algorithms & nonlinear dynamics

→ Menta, Hauswirth, Bolognani, Hug & Dörfler (2018)
“Stability of Dynamic Feedback Optimization

with Applications to Power Systems”
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PROJECTED GRADIENT FLOW

ON THE POWER FLOW MANIFOLD
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Steady-state AC power flow, constraints, and objectives

quasi-stationary dynamics

2
5

3
4

6

7
8

910

11

12 13

nodal voltage
current injection
power injections

line impedance
line current
power flow

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)

objective: economic dispatch, minimize losses, distance to collapse, etc.

operational constraints: generation capacity, voltage bands, congestion, etc.

control: state measurements and actuation via generation set-points
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What makes power flow optimization interesting?

graphical illustration of AC power flow

[Hiskens, 2001]

imagine constraints slicing this set
⇒ nonlinear, non-convex, disconnected

additionally the parameters are ±20%
uncertain . . . this is only steady state!

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)

[Molzahn, 2016]
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Key insights about our physical equality constraint
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AC power flow is complex but it
defines a smooth manifold

→ local tangent plane approximations,
local invertibility, & generic LICQ

→ Bolognani & Dörfler (2015)
“Fast power system analysis via implicit
linearization of the power flow manifold”

AC power flow is attractive steady
state for ambient physical dynamics

→ physics enforce feasibility even for
non-exact (e.g., discrete) updates

→ Gross, Arghir, & Dörfler (2018)

“On the steady-state behavior of a nonlinear power systemmodel”
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Control specifications as Optimal Power Flow (OPF)

Real-time optimal power flow
• minimize objective

• satisfy AC power flow laws

• respect generation capacity

• no over-/under-voltage

• no congestion

minimize φ(P,Q, V )

subject to P
G + jQ

G = P
L + jQ

L + diag(V )Y ∗
V

∗

P
k
≤ PG

k ≤ Pk, Q
k
≤ QG

k ≤ Qk

V k ≤ Vk ≤ V k

|Pkl + jQkl| ≤ Skl

where φ(P,Q, V ) can be cost of generation, distance to voltage collapse, etc.

Challenging specifications on the
closed-loop trajectories:

1. stay on the manifold at all times

2. satisfy constraints at all times

3. converge to the OPF solution

Real-time
operation

physical, steady-state
power system

(AC power flow equations)
PG = PL + <{diag(V )Y ∗V∗}
QG = QL + ={diag(V )Y ∗V∗}

Loads
PL, QL

generator
setpoints

state
measurements

21



Real-time optimization on the power flow manifold

Real-time optimal power flow
• minimize objective

• satisfy AC power flow laws

• respect generation capacity

• no over-/under-voltage

• no congestion

minimize φ(P,Q, V )

subject to P
G + jQ

G = P
L + jQ

L + diag(V )Y ∗
V

∗

Pk ≤ P
G
k ≤ Pk, Q

k
≤ QG

k ≤ Qk

V
k
≤ Vk ≤ V k

|Pkl + jQkl| ≤ Skl

Prototype of real-time OPF

minimize φ(x)
subject to x ∈ K =M∩X

φ : Rn → R objective function
M⊂ Rn AC power flow manifold
X ⊂ Rn operational constraints

TxK

v

Projection of trajectory v in feasible cone
ΠK(x, v) ∈ arg min

w∈TxK
||v − w||
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Simple illustrative case study

0 50 100 150 200 250 300
0

5

10
Objective Value [$]

real time cost

global minimum

0 50 100 150 200 250 300
0.95

1

1.05

Bus voltages [p.u.]

0 50 100 150 200 250 300

iteration

0

1

2
Active power generation [MW]

Slack bus Gen A Gen B

feedback
optimizer

u̇ = ΠK (u, −gradφ(y, u))

open-loop
system

0 = h(y, u)

actuate
u

y
measure

→ closed loop is projected grad descent
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Projected gradient descent on manifolds

K =
{
x : ‖x‖22 = 1 , ‖x‖1 ≤

√
2
}

Theorem (simplified)

Let x : [0,∞)→ K be a Carathéodory
solution of the initial value problem

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0 .

If φ has compact level sets on K, then x(t)
will converge to a critical point x? of φ on K.

→ Hauswirth, Bolognani, Hug, & Dörfler (2016)
“Projected gradient descent on Riemanniann manifolds with applications

to online power system optimization”

Hidden assumption: existence of a Carathéodory solution x(t) ∈ K
→ when does it exist, is forward complete, unique, and sufficiently regular ?

(in absence of convexity, Euclidean space, and other regularity properties)
24
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Analysis via projected systems hit mathematical bedrock

nonlinear power flow manifold disconnected regions cusps & corners (convex and/or inward)

constraint set gradient field metric manifold

existence (Krasovski) loc. compact loc. bounded - C1

Krasovski = Carathéodory Clarke regular C0 C0 C1

uniqueness of solutions prox regular C0,1 C0,1 C1,1

→ also forward-Lipschitz continuity of time-varying constraints

→ Hauswirth, Bolognani, Hug, & Dörfler (2018)
“Projected Dynamical Systems on Irregular Non-Euclidean

Domains for Nonlinear Optimization”

→ Hauswirth, Subotic, Bolognani, Hug, & Dörfler (2018)
“Time-varying Projected Dynamical Systems with Applications

to Feedback Optimization of Power Systems”
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NUMERICAL EXPERIMENTS
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Voltage stability in the Nordic system

historically known for voltage
collapse (Southern Sweden ’83)

high-fidelity model of Nordic system
(RAMSES + python + MATLAB)

heavily loaded system

large transfers between
north and central areas

all loads equipped with LTCs

generators equipped with
Automatic Voltage Regulators
and Over Excitation Limiters

frequency regulation through
speed governor control
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Voltage collapse

250 MW load ramp
from t = 500 s to t = 800 s

extra demand is balanced by
primary frequency control

cascade of activation of
over-excitation limiters

LTCs increase power demand
of distribution buses

. . . voltage collapse

very hard (nearly impossible) to
mitigate via conventional controls

Assume we can control AVR
set-points in real time . . .

28



Voltage collapse averted !

objective φ(P,Q, V ) = −log det
(
load flow Jacobian

)
= distance to collapse

29



The tracking problem
power system affected by exogeneous time-varying inputs w

→ disturbances may lead to infeasible states→ ill-defined dynamics

feedback
optimizer

e.g.,

u̇ = −∇φ(y, u)

power
system

ẋ = f (x, u, w)
y = h(x, u, w)

actuation
u

real-time state
measurements

y

operational
constraints

u ∈ U

disturbance w

U accounts for hard constraints on controllable variables u (e.g., generation limits)

→ gradient projection becomes input saturation (saturated proportional feedback control)

soft constraints via penalty in φ for non-controllable variables (e.g., voltage limits)

→ gradient of penalty functions becomes a proportional control (e.g., droop)

30



Transient tracking performance under disturbances

G1
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The tracking problem: optimality and robustness

practically exact tracking of
ground-truth OPF (knowing exact

disturbance & without computation delay)

transient trajectory feasibility
robustness to model mismatch
(asymptotic optimality under wrong model) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1,000

1,500

Time [hrs]

Generation cost

Feedback OPF

Optimal cost

offline optimization feedback optimization
model uncertainty feasible ? φ− φ∗ ‖v − v∗‖ feasible ? φ− φ∗ ‖v − v∗‖

loads ±40% no 94.6 0.03 yes 0.0 0.0
line params ±20% yes 0.19 0.01 yes 0.01 0.003
2 line failures no -0.12 0.06 yes 0.19 0.007

conclusion: simple algorithm performs extremely well & robust
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SUMMARY AND CONCLUSIONS
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Summary and conclusions

Summary:

necessity of real-time power system operation

our starting point: online optimization as feedback control

technical approach: singular perturbation & manifold optimization

unified framework accommodating various constraints & objectives

Ongoing work and open problems:

quantitative certificates for robustness, tracking performance, etc.

implementation issues: discretization, distributed, state estimation,
communication, etc. → microgrid experiments and RTE collaboration

extensions: stochastic disturbances, transient optimality à la MPC,
model-free à la extremum seeking, Nash-seeking in antagonistic context, etc.
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Thanks !

Florian Dörfler
http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch

35

http://control.ee.ethz.ch/~floriand/
mailto://dorfler@ethz.ch


BACK-UP SLIDES . . .SINCE YOU ASKED FOR IT
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LITERATURE COMPARISON
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Emerging research area: online optimization in closed loop

feedback
optimizer

e.g.,

u̇ = −∇φ(y, u)

power
system

ẋ = f (x, u, w)
y = h(x, u, w)

actuation
u

real-time state
measurements

y

operational
constraints

u ∈ U

disturbance w

Optimization perspective
Algorithms as dynamical systems
[Lessard et al., 2014], [Wilson et al., 2018]
→ implemented via the physics

Control perspective
Existing feedback systems
interpreted as solving opt. problem
→ general objective + constraints

Lots of recent development: theory and power system applications
[Bolognani et. al, 2015], [Cady et al.,
2015], [Dall’Anese and Simmonetto,
2016/2017], [Gan and Low, 2016],
[Tang and Low, 2017], . . .
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Abstract—Historically, centrally computed algorithms have
been the primary means of power system optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring optimization and control of power systems with many
controllable devices, distributed algorithms have been the subject
of significant research interest. This paper surveys the literature
of distributed algorithms with applications to optimization and
control of power systems. In particular, this paper reviews
distributed algorithms for offline solution of optimal power flow
(OPF) problems as well as online algorithms for real-time solution
of OPF, optimal frequency control, optimal voltage control, and
optimal wide-area control problems.

Index Terms—Distributed optimization, online optimization,
electric power systems

I. INTRODUCTION

CENTRALIZED computation has been the primary way
that optimization and control algorithms have been ap-

plied to electric power systems. Notably, independent system
operators (ISOs) seek a minimum cost generation dispatch
for large-scale transmission systems by solving an optimal
power flow (OPF) problem. (See [1]–[8] for related litera-
ture reviews.) Other control objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optimization and control problems are formulated
using network parameters, such as line impedances, system
topology, and flow limits; generator parameters, such as cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and control problems.

With increasing penetrations of distributed energy resources
(e.g., rooftop PV generation, battery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads
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ergy, Office of Electricity Delivery and Energy Reliability under contract
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baldick@ece.utexas.edu. Support from NSF grant ECCS-1406894.⇤⇤: University of California, Berkeley, Department of Industrial Engineering
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providing demand response resources, etc.), the centralized
paradigm most prevalent in current power systems will poten-
tially be augmented with distributed optimization algorithms.
Rather than collecting all problem parameters and performing
a central calculation, distributed algorithms are computed
by many agents that obtain certain problem parameters via
communication with a limited set of neighbors. Depending on
the specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
to share limited amounts of information with a subset of
the other agents. This can improve cybersecurity and reduce
the expense of the necessary communication infrastructure.
Distributed algorithms also have advantages in robustness with
respect to failure of individual agents. Further, with the ability
to perform parallel computations, distributed algorithms have
the potential to be computationally superior to centralized
algorithms, both in terms of solution speed and the maxi-
mum problem size that can be addressed. Finally, distributed
algorithms also have the potential to respect privacy of data,
measurements, cost functions, and constraints, which becomes
increasingly important in a distributed generation scenario.

This paper surveys the literature of distributed algorithms
with applications to power system optimization and control.
This paper first considers distributed optimization algorithms
for solving OPF problems in offline applications. Many dis-
tributed optimization techniques have been developed con-
currently with new representations of the physical models
describing power flow physics (i.e., the relationship between
the complex voltage phasors and the power injections). The
characteristics of a power flow model can have a large impact
on the theoretical and practical aspects of an optimization
formulation. Accordingly, the offline OPF section of this
survey is segmented into sections based on the power flow
model considered by each distributed optimization algorithm.
This paper then focuses on online algorithms applied to
OPF, optimal voltage control, and optimal frequency control
problems for real-time purposes.

Note that algorithms related to those reviewed here have
found a wide variety of power system applications in dis-
tributed optimization and control. See, for instance, surveys
on the large and growing literature relevant to distributed
optimization of electric vehicle charging schedules [9] and
demand response applications [10] as well as work on dis-
tributed solution of multi-period formulations for model pre-
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Model Predictive Control vs. feedback optimization

MPC

MPC Control
u? = arg minu

∫ T

0 f(y, u) dt + φ(y(T ), u(T ))
subject to dynamic model and constraints

Systemr
u

y

d

highly model-based
computationally intensive

optimal trajectories
stabilization

Feedback optimization← drop argmin, stage cost, & dynamic model

Feedback Optimizer
u̇ = ΠU (−ε∇φ(y, u)) System

u

y

d

model-free (robust) design
fast response

suboptimal trajectories
requires stable system
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TECHNICAL INGREDIENT I:

THE POWER FLOW MANIFOLD
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Geometric perspective: the power flow manifold
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Accuracy illustrated with unbalanced three-phase IEEE13

◦ exact solution ? linear approximant

dirty secret: power flow manifold is very flat (linear) near usual operating points

→ Matlab/Octave code @ https://github.com/saveriob/1ACPF
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Coordinate-dependent linearizations reveal old friends

• flat-voltage/0-injection point: x∗ = (|V |∗, θ∗, P ∗, Q∗) = (1,0, 0,0)

→ tangent space parameterization
[
<(Y ) −=(Y )
−=(Y ) <(Y )

][
|V |
θ

]
=
[
P

Q

]

is linear coupled power flow and <(Y ) ≈ 0 gives DC power flow approximation

• nonlinear change to quadratic coordinates |V | → |V |2

→ linearization ≡ (non-radial) LinDistFlow [M. Baran and F.F. Wu, ’88]→ more exact in |V |
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TECHNICAL INGREDIENT II:

MANIFOLD OPTIMIZATION
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Unconstrained manifold optimization: the smooth case
geometric objects:

manifold M = {x : h(x) = 0}
tangent space TxM = ker ∂h(x)

∂x

>
objective φ :M→ R

Riemann metric g : TxM× TxM→ R
(degree of freedom)

target state: local minimizer on the manifold x? ∈ arg minx∈M φ(x)

always feasible↔ trajectory/sequence x(t) remains on manifoldM

continuous-time gradient descent onM:

1. gradφ(x): gradient of cost
function in ambient space

2. ΠM (x,−gradφ(x)): projection of
gradient on tangent space TxM

3. flow on manifold: ẋ =
ΠM (x,−gradφ(x))

               manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

ẋ
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Constrained manifold optimization: the wild west

dealing with operational constraints g(x) ≤ 0

1. penalty in cost function φ
→ barrier: not practical for online implementation
→ soft penalty: practical but no real-time feasibility

2. dualization and gradient flow on Lagrangian
→ poor performance & no real-time feasibility
→ theory: close to none available on manifolds

→ Hauswirth, Bolognani, Hug, & Dörfler (2018)

“Generic Existence of Unique Lagrange Multipliers in AC Optimal Power Flow”

3. projection of gradient flow trajectory x(t) on feasible set K =M∩ {g(x) ≤ 0}

ẋ = ΠK (x,−gradφ(x)) ∈ arg min
v∈TxK

‖ − gradφ(x)− v‖g

where TxK ⊂ TxM is inward tangent cone
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Implementation issue: how to induce the gradient flow?

Open-loop system

ẋ1 = u controlled generation

0 = h(x1, x2, w) AC power flow manifold

relating x1 & other variables

Desired closed-loop system

ẋ1 = f1(x1, x2) desired projected

ẋ2 = f2(x1, x2) gradient descent

where f(x) = ΠK (x,−gradφ(x))

Solution: physics are non-singular→ 0 = h(x1, x2, w) can be solved for x2

Feedback equivalence

The trajectories of the desired closed
loop coincide with those of the open
loop under the feedback
u = f1(x1, x2).

feedback
optimizer

ΠK (x, −gradφ(x))1

open-loop
system

ẋ1 = u
0 = h(x1, x2, w)

actuate
u

x
measure

→ closed-loop trajectory remains feasible at all times and converges to optimality
→ no need to numerically solve the optimization problem or power flow equation 47



Implementation issue: discrete-time manifold optimization

always feasible↔ trajectory/sequence x(t) remains on manifoldM

discrete-time gradient descent onM:

1. gradφ(x): gradient of cost function

2. ΠM (x,−gradφ(x)): projection of gradient

3. Euler integration of gradient flow:
x̃(t+ 1) =
x(t)− εΠM (x,−gradφ(x))

4. retraction step: x(t+ 1) = Rx(t)
(
x̃(t+ 1)

)
               manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

x(t + 1)
Retraction

Discrete-time control implementation:
→ manifold is attractive steady state for ambient dynamics
→ retraction is taken care of by the physics: “nature enforces feasibility”
→ can be made rigorous using singular perturbation theory (Tikhonov) 48



FURTHER NUMERICAL STUDIES
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Trajectory feasibility
The feasible region K =M∩X often has disconnected components.

M

Kx∗

x0

feedforward (OPF)
– optimizer x? = argminx∈K φ(x) can be in different disconnected component
→ no feasible trajectory exists: x0 → x? must violate constraints

feedback (gradient descent)
→ continuous closed-loop trajectory x(t) guaranteed to be feasible
→ convergence of x(t) to a local minimum is guaranteed
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Illustration of continuous trajectories & reachability

5-bus system known to have two
disconnected feasible regions:
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[Molzahn, 2016]

[0s,2000s]: separate feasible regions

[2000s,3000s]: loosen limits on
reactive power Q2 → regions merge

[4000s,5000s]: tighten limits on Q2
→ vanishing feasible region
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Feedback optimization with frequency

frequency ω as global variable

primary control: P = PG −Kω
secondary frequency control
incorporated via dual multiplier

20% step increase in load
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Same feedback optimization with grid dynamics
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dynamic grid model: swing equation & simple turbine governor
work in progress based on singular perturbation methods
⇒ dynamic and quasi-stationary dynamics are “close” and converge to

the same optimal solutions under “sufficient” time-scale separation
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Feedback optimization in dynamic IEEE 30-bus system
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events:
→ generator outage at 4:00
→ PV generation drops

at 11:00 and 14:15

⇒ feedback optimization can provide
all ancillary services + optimal +
constraints + robust + scalable +
. . .
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