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Executive Summary

Key Results: Across 5 genomes of varying sizes, Rawsamble provides
– Average speedup of 16× compared to Dorado (Fast model) + minimap2
– 37% of overlapping pairs shared with the minimap2 overlaps
– Unitigs up to 400× longer than the average read length

Key Contributions:
1. Rawsamble: the first mechanism that can find overlapping pairs 

between raw nanopore signals
2. First de novo assemblies ever constructed directly from 

raw signal overlaps without basecalling
3. A new assembler to build and output the assemblies of signals

Goal: Enable raw signal analysis without a reference genome

Problem: Existing solutions cannot interpret raw signals directly
for reference-free applications
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Nanopore Sequencing: a widely used sequencing technology
•  Can sequence large fragments of nucleic acid molecules
•  Offers high throughput
•  Cost-effective
•  Enables real-time and portable genome analysis
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Nanopore Sequencing
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Nanopore Sequencing – How it Works

Raw Signals: Ionic current measurements generated at a certain throughput

Real-Time Decisions: Stopping sequencing early based on real-time analysis

(Real-Time) Analysis: Analyzing raw signals instantly as they are generated

Nanopore 
Sequencer

Single Nanopore
Raw Signals

(~5000 signals/sec)
(Real-Time)

Analysis



Traditional: Translating (basecalling) 
signals to bases before analysis

Recent Works: Directly analyzing 
signals without basecalling

Analyzing Raw Nanopore Signals

Raw Signals Basecalling

G GA T

Read Mapping Raw Signals Raw Signal Mapping

Basecalled sequences are 
less noisy than raw signals✓

Many analysis tools use 
basecalled sequences✓

Costly and power-hungry
computational requirements✕

Efficient analysis with better 
scalability and portability✓

Raw signals retain more 
information than just bases✓

Lack of established tools 
for downstream analysis✕
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RawHash [Firtina+, ISMB/ECCB’23]; RawHash2 [Firtina+, Bioinformatics’24]

Reference Genome
CTGCGTAGCAGCGTAATAG......

Synthetic Reference Signals

Reference-to-Signal Conversion

Hash

Raw Nanopore Signals

HashHash-Based 
Seeding and Mapping

Synthetic signals are mainly free from noise✓
A reference genome must exist for mapping✕
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The State-of-the-Art Raw Signal Mapper



RawHash [Firtina+, ISMB/ECCB’23]; RawHash2 [Firtina+, Bioinformatics’24]

Reference Genome
CTGCGTAGCAGCGTAATAG......

Synthetic Reference Signals ......

Reference-to-Signal Conversion

Hash

Raw Nanopore Signals

HashHash-Based 
Seeding and Mapping

Synthetic signals are mainly free from noise✓
A reference genome must exist for mapping✕
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The State-of-the-Art Raw Signal Mapper

Existing solutions cannot analyze raw signals
directly without a reference genome



TGCTGCAATCGTGATCCGAAGTCAGCCGTAGTGGACCACCGGTAAGCT

TGCTGCAA

CTGCAATC TGATCCGA

CGAAGTCA

TCAGCCGT

CGTAGTGG

AGTGGACC

CCACCGGT

GGTAAGCT

9

Beyond Reference Mapping: Overlapping
Raw Nanopore Signals

Hash-Based 
Seeding and Mapping

Raw Nanopore Signals

Reference Signals

Reference Genome 
(Converted to Signals)

Challenge: Reference genomes are not always available

Assembly: Constructing genome from overlapping reads

Existing solutions cannot find overlapping reads without basecalling✕
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Challenges with Overlapping Raw Signals

Hash-Based 
Seeding and Mapping

Challenge: Finding many useful overlapping pairs 
(all-vs-all overlapping)

Challenge: Identifying hash matches when both signals are noisy

Challenge: Generating long paths from useful overlaps
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Enable raw signal analysis 
without a reference genome

Goal
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The first mechanism that can perform
all-vs-all overlapping from raw signals

First de novo assemblies ever constructed directly 
from raw signal overlaps without basecalling

Rawsamble

A new assembler to build and output 
the assemblies from raw signals
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Build on the existing state-of-the-art 
raw signal mapper: RawHash2

Extend RawHash2 to support overlapping 
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Rawsamble Key Ideas

RawHash2 [Firtina+, Bioinformatics’24]



Raw Signal Mapping with RawHash2 
In

de
xi

ng M
apping

Chaining & 
MappingFiltering

Hash Table
(Index)

Store

Matching 
Regions

Query
Hash Hash

Sketching Sketching

Output:
Mapping Positions

Raw Nanopore Signals

Adaptive
Quantization

Adaptive
Quantization

Reference Signals
Reference Genome
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Integrating Rawsamble into RawHash2 

RawHash2
Rawsamble

In
de

xi
ng O

verlapping
Raw Nanopore Signals Raw Nanopore Signals

Chaining & 
MappingFiltering

Hash Table
(Signal Index)

Matching 
Regions

Store
Query

Adaptive
Quantization

Hash

Sketching

Adaptive
Quantization

Hash

Sketching

Aggressive
Filtering

Aggressive
Filtering

Output: All-vs-all 
Overlapping Pairs

Assembly
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1. Constructing the hash table index from raw nanopore signals
• Reference-to-signal conversion is mainly free from noise (e.g., stay errors)
• Indexed raw nanopore signals are not free from noise

2. Aggressively filtering consecutive and similar signals
to substantially reduce noise at the cost of data loss
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Indexing using Raw Signals

Aggressive Filtering

2.21 2.12 2.35 -0.9 -1.05 -0.85 -0.89 -1.01 1.15 1.25 1.20

2.21 2.12 2.35 -0.9 -1.05 -0.85 -0.89 -1.01 1.15 1.25 1.20

Raw Nanopore Signals



3. Adjusting the minimum chaining score to avoid false chains
• All-vs-all overlapping tends to find a larger number of

seed hits than mapping to a reference genome
• Minimum score for a chain during overlapping is set to be 

~5× larger than mapping
• All such chains are reported (instead of a single best mapping)

4. Avoid cyclic overlaps with deterministic comparisons
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Chaining and Outputting Overlaps

Target

Query
Target
Query
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Evaluation Methodology
• Rawsamble is integrated into RawHash2 [Firtina+, Bioinformatics'24]

• Compared to the minimap2 [Li, Bioinformatics'18] overlaps (forward strand)
• Basecalling with Dorado’s various models (using CPUs & GPUs)

• Use case for raw signal overlapping:
• De novo assembly construction using miniasm [Li, Bioinformatics’16]
• New exciting directions to be discussed as future work

• Evaluation metrics:
• Overall runtime when performing all-vs-all overlapping
• Percentage of shared overlaps between tools
• Assembly statistics

• 5 real datasets with
• Various coverage (0.6× – 445×) and
• Genome lengths (viral to human genomes)
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Normalized Runtime Results
Minimap2 +
Dorado CPU (Fast)Rawsamble Minimap2 +

Dorado CPU (HAC)
Minimap2 +
Dorado GPU (HAC)

Minimap2 +
Dorado GPU (SUP)

SARS-CoV-2 E. coli Yeast Green Algae Human Geo. Mean
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Compared to the fastest CPU model (Fast):
Average speedup of 16.36×

Compared to the conventional GPU model (HAC):
Average speedup of 1.99×



• Percentage of overlapping pairs that are:

Green Algae Human

SARS-CoV-2 E. coli Yeast

Unique to RawsambleShared Overlaps Unique to Minimap2

~37% of overlapping pairs are shared with the minimap2 overlaps

How to evaluate the usefulness of these overlaps?
22

All-vs-All Overlapping Statistics
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de novo Assemblies from Raw Signals

First de novo assemblies 
ever constructed 

from raw signal overlaps 
without basecalling

Contigs of half the E. coli 
genome length
(~2.7 Mbases):

~400× longer than the 
average read length

Future work: Utilize the overlap and assembly information
when training and using basecallers

2,722,499 bps

5,207,206 bps

Minimap2 (D2) Rawsamble (D2)

E. coli Assembly
(From the Rawsamble Overlaps)



• Results are shown relative to the best result from each metric
• Metrics: auN, longest unitig, largest connected unitigs (component)
• Coverage: 0.6x
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Low-Coverage Human Genome Assembly

auN

Longest unitig
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Minimap2Rawsamble Flye

Rawsamble leads to
better contiguity

than using basecalled reads
at a low coverage dataset

Can the richer information
in raw signals

improve assembly quality
where basecalled analysis falls short?



New Directions in Raw Signal Analysis

Constructing (and analyzing) de novo assemblies✓

Utilizing the overlap information for more accurate (and faster) basecalling

Utilizing the constructed assembly for basecalling

Error correction & assembly: Basecalling

BasecallingRaw Signals
Overlapping Raw Signals
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• Can Firtina, Maximilian Mordig, Harun Mustafa, Sayan Goswami,
Nika Mansouri Ghiasi, Stefano Mercogliano, Furkan Eris, Joël Lindegger, 
Andre Kahles, and Onur Mutlu
"Rawsamble: Overlapping and Assembling Raw Nanopore Signals 
using a Hash-based Seeding Mechanism"
arXiv, Oct 2024
[Source Code] arXiv

Rawsamble

Source code
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https://arxiv.org/pdf/2410.17801
https://arxiv.org/pdf/2410.17801
https://github.com/CMU-SAFARI/RawHash


Rawasm: Raw Signal Assembler [Beta]
• Slightly modified version of 

miniasm
• To output assembled raw signals 

instead of basecalled sequences

• Supports all major 
raw signal file formats 
• FAST5, POD5, S/BLOW5 file 

formats

• Still in a testing phase: 
Feedback is appreciated! https://github.com/CMU-SAFARI/rawasm
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https://github.com/CMU-SAFARI/rawasm
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Conclusion

Key Results: Across 5 genomes of varying sizes, Rawsamble provides
– 16× average speedup compared to Dorado (Fast model) + minimap2
– 37% of overlapping pairs shared with the minimap2 overlaps
– Unitigs up to 400× longer than the average read length

Key Contributions:
1. Rawsamble: the first mechanism that can find overlapping pairs 

between raw nanopore signals
2. First de novo assemblies ever constructed directly from 

raw signal overlaps without basecalling
3. A new assembler to build and output the assemblies of signals

Many opportunities for analyzing raw nanopore signals:
– Indexing is cheap: Future use cases with the on-the-fly index construction
– We should rethink the algorithms to perform downstream analysis

fully using raw signals
– We should rethink the basecalling approaches by integrating

raw signal analysis
29
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A Common Genome Analysis Pipeline
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Hash-Based Sketching and Seed Matching
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Chaining (Two Points)
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Chaining (Multiple Points)
• Exact hash value matches: Needed for finding matching 

regions between a reference genome and a read

• What if there are mutations or errors?
• No hash (seed) match will occur in such positions

• The chaining algorithm links exact matches in a proximity 
even though there are gaps (no seed matches) between 
them
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Nanopore Sequencing
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Source of  Noise in Nanopore Sequencing
• Stochastic thermal fluctuations in the ionic current

• Random ionic movement due to inherent thermal energy (Brownian motion)

• Variations in the translocation speed
• Mainly due to the motor protein

• Environmental factors
• Temperature: Affecting enzymes including the motor protein
• pH levels: Affecting charge and the shape of molecules

• Maybe: Aging & material-related noise between nanopores
• Their effects potentially can be minimized with normalization techniques



• Dual reader head

• Motor protein with more consistent translocation speed in R10

• Duplex sequencing in R10
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R9 vs. R10 Chemistries



Challenges in Real-Time Analysis

Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

Accurate analysis from noisy raw signal data

Power-efficient computation for scalability and portability
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Applications of  Read Until
Depletion: Reads mapping to a particular reference genome is ejected

Enrichment: Reads not mapping to a particular reference genome is ejected

• Microbiome studies by removing host DNA

• Eliminating known residual DNA or RNA (e.g., mitochondrial DNA)

• High abundance genome removal

• Removing contaminated organisms

• Targeted sequencing (e.g., to a particular region of interest in the genome)

• Low abundance genome enrichment
41



Reference-to-Event Conversion
• K-mer model: Provides expected event values for each k-mer

• Preconstructed based on nanopore sequencer characteristics

• Use the k-mer model to convert all k-mers 
of a reference genome to their expected event values

K-mer 
Model

(Lookup 
Table)

Reference Genome
GCTATTACC

GCTATT

TATTAC
CTATTA
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k-
m
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s 

(𝒌
=
𝟔) 105.757390

103.170091
81.740642

101.082485

N
orm

alize

2.21

1.15
-0.09

1.11

Expected 
Event Values

Normalized 
Event Values
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Enabling Analysis From Electrical Signals
• K many nucleotides (k-mers) sequenced at a time
• Event: A segment of the raw signal

• Corresponds to a particular k-mer

• Observation: Event values generated after sequencing the same k-mer 
are similar in value (not necessarily the same)
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Datasets
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Throughput
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Performance
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Overlapping Statistics
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Assembly Statistics



2,722,499 bps

5,207,206 bps

Minimap2 (D2) Rawsamble (D2)
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Visualizing the E. coli Assembly Graph



161,883 bps

464,054 bps

Minimap2 (D3) Rawsamble (D3)
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Visualizing the Yeast Assembly Graph



252,038 bps
198,709 bps

Minimap2 (D4) Rawsamble (D4)
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Visualizing the Green Algae Assembly Graph



364,113 bps

48,424 bps

Minimap2 (D5) Rawsamble (D5)
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Visualizing the Human Assembly Graph
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HERRO Correction Before and After
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Parameters
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Presets
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Versions



Reverse Complementing Raw Nanopore Signals

Dynamically Building the Hash Table in Real-Time

• Without reverse complementing, we are missing half of the useful 
information

• Needed for real-time de novo assembly construction

• What are the useful applications for real-time de novo assembly 
construction?

Future Work


