

Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, Onur Mutlu

Preprint

Source Code

Executive Summary

Problem

Performing real-time genome analysis is inaccurate and inefficient for large genomes, causing serious barriers in fully exploiting the opportunities in real-time genome analysis

Goal

Enable efficient and accurate analysis for large genomes while the raw sequencing data is generated in real-time

 Encodes the raw sequencing data into hash values to accurately and efficiently identify similarities by matching their hash values

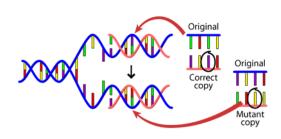
RawHash

 Makes real-time decisions that can stop sequencing a DNA molecule without fully sequencing it

 Proposes Sequence Until that can accurately and dynamically stop the entire sequencing of all DNA molecules at once

Up to **2x more accurate** mapping results compared to the state-of-the-art works

Key **Results**

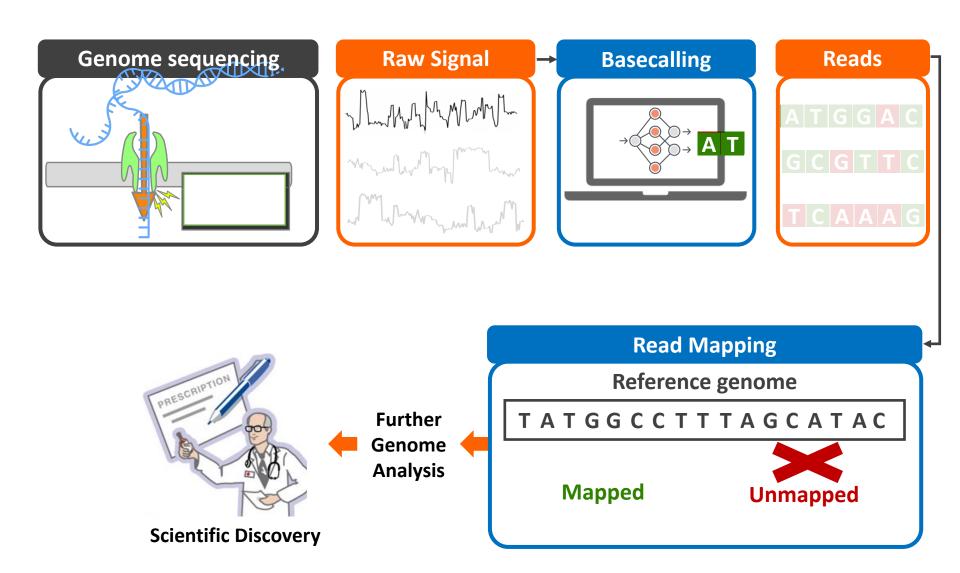

25.8x and 3.4x better average throughput compared to UNCALLED and Sigmap, respectively

The Sequence Until techniques enables reducing the sequencing time and cost by 15x

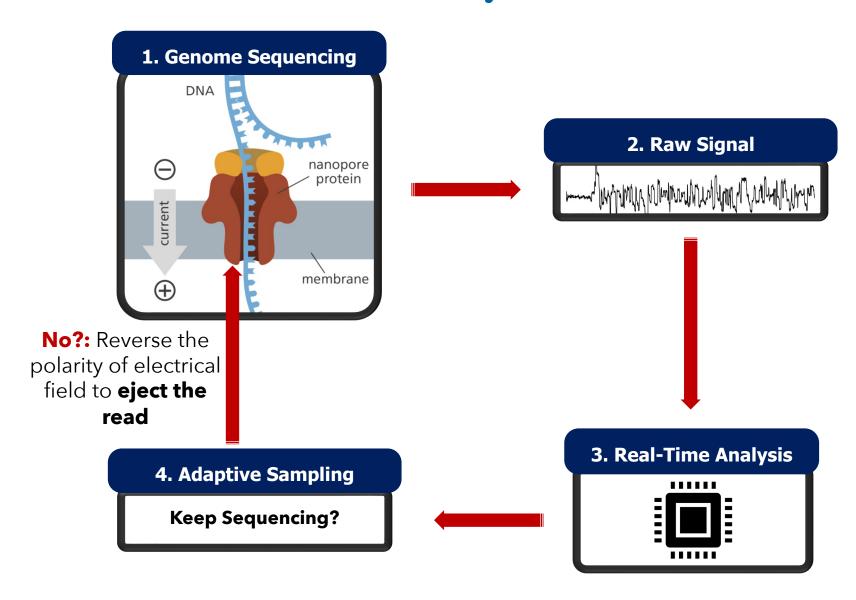
Genome Analysis

Genome Sequencing: Enables us to determine the order of the DNA sequence in an organism's genome

- Plays a pivotal role in:
 - Precision medicine
 - Outbreak tracing
 - Understanding of evolution



Nanopore Sequencing: a widely used sequencing technology


- Can sequence large fragments of DNA (i.e., 10Kbp 2Mbp)
- Has high throughput
- Low cost
- Provides unique features

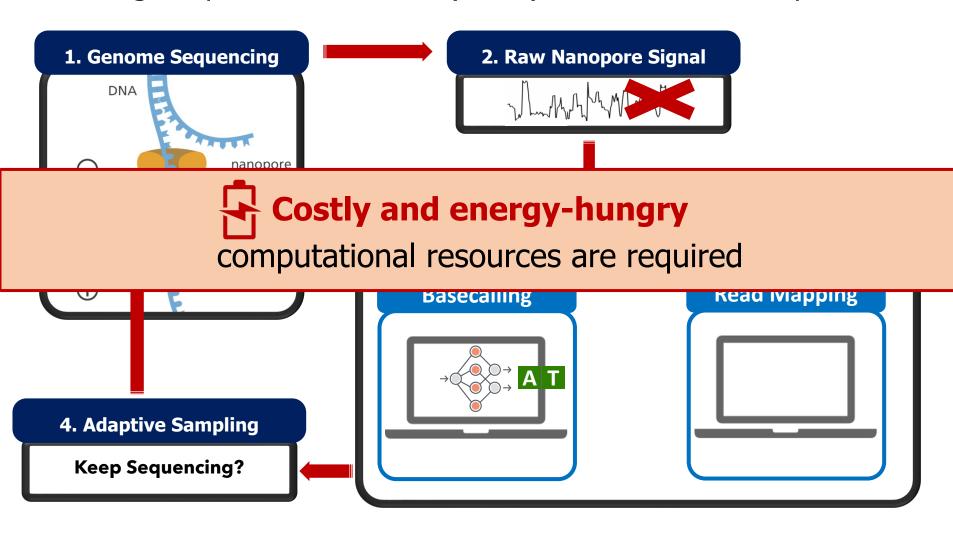
Traditional Genome Analysis Pipeline

Real-Time Genome Analysis

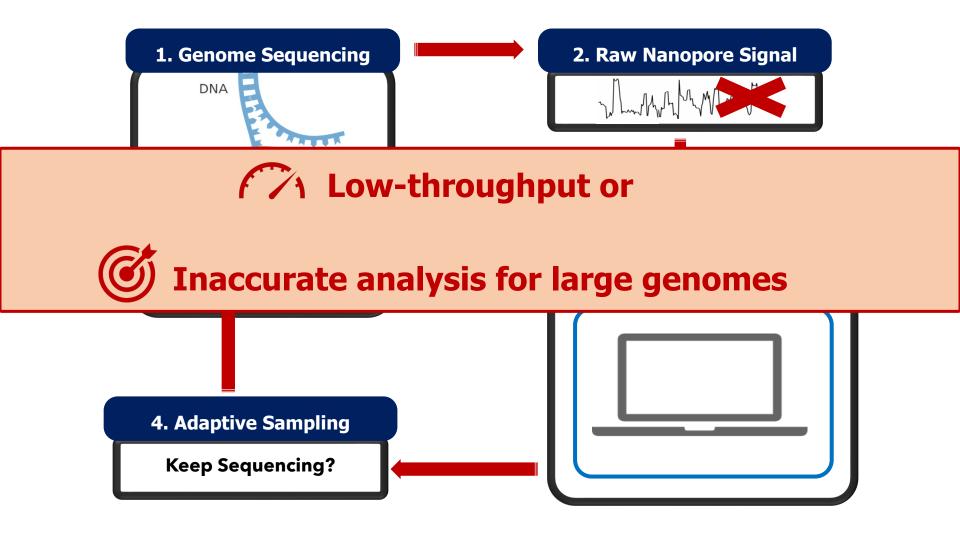
Objectives in Real-Time Genome Analysis

Fast analysis that can match the throughput of sequencer

Fast decision to reduce the sequencing time and cost with effective use of adaptive sampling


Accurate analysis from noisy raw signal data

Low-power to enable portable sequencing and better scalability


Solutions for Real-Time Analysis

1. Using deep neural networks (DNNs) to basecall and map reads

Solutions for Real-Time Analysis

2. Mapping signals without basecalling

Outline

Background

Goal and Key Ideas

RawHash

Evaluation

Conclusions

Goal

Fast decisions for adaptive sampling to reduce sequencing time and cost

Accurate analysis for large genomes

Low-power analysis that can be used with portable devices

The first mechanism that can **efficiently and accurately map** raw signals to **large genomes**using an efficient **hash-based search**

Proposes **Sequence Until**, a novel mechanism that can **decide in runtime** if further sequencing of reads is needed to **stop the** *entire* **sequencing process**

Outline

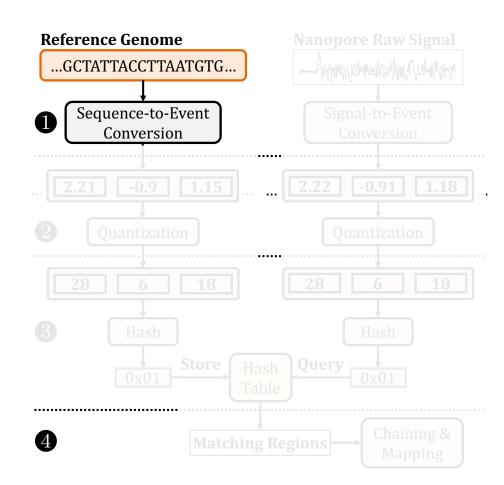
Background

Goal and Key Ideas

RawHash

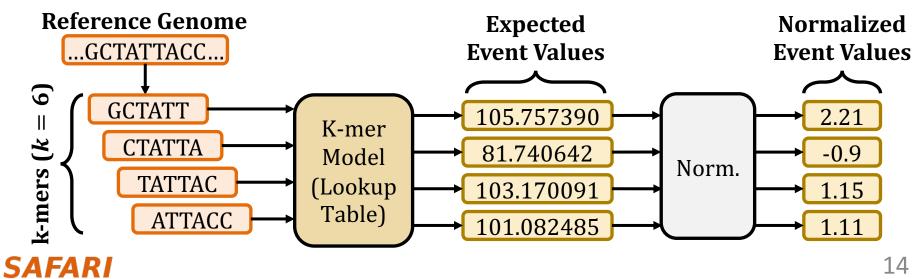
Evaluation

Conclusions

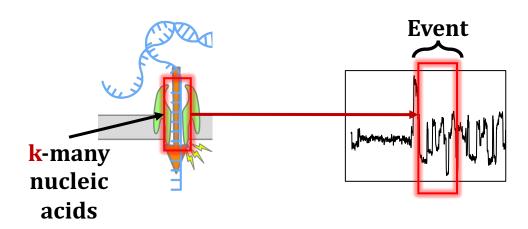

RawHash Overview

Indexing (offline):

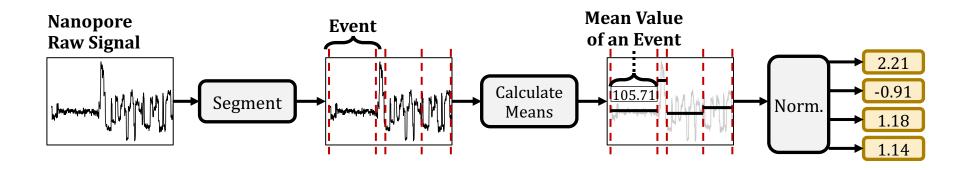
- Convert the reference genome to its signal representation
- 2. Generate hash values from signals
- Store hash values and their positions in a hash table


2. Mapping (real-time):

- Generate hash values from raw nanopore signals
- Use the hash table to find matching hash values between a reference genome and the nanopore raw signal
- 3. Mapping regions: Regions with a certain number of hash value matches


Converting the Reference Sequences to Signals

- To offload the translation costs to the offline indexing step
- To enable utilizing the rich information in raw nanopore signals
- Key Steps:
 - K-mer model: Expected current readings after sequencing a fixed k number of nucleic acids (k-mers)
 - Utilize the lookup table to convert all k-mers of a reference genome to their expected values (events)


Events in Raw Nanopore Signals

- **Event:** Series of current readings
 - Generated when sequencing a particular k-mer
 - Next event: DNA molecule is shifted by one nucleic acid, creating the next k-mer
- **Event detection** identifies regions of signals corresponding to the sequencing of certain **k**-mers in the DNA molecule
 - **Next event:** Abrupt signal changes between two consecutive k-mers

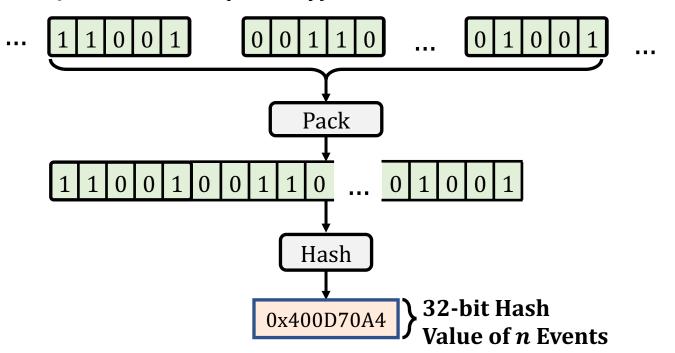
Event Detection in Raw Nanopore Signals

- **Event detection** identifies regions of signals corresponding to the sequencing of certain k-mers in the DNA molecule
 - By performing a statistical test (**segmentation**) to identify the **abrupt changes** in the signal generated as molecules move through nanopores

- Observation: Nanopore sequencers do not generate exactly the same signals when sequencing the same k-mer
 - However, the signals are still **slightly similar** to each other
 - How can we leverage this?

Quantizing the Event Values

 Goal: Assign the same bucket (i.e., quantized values) to the similar event values


Key Steps:

- 1. Use the binary representations of event values (floating-point)
- 2. Take the most significant Q bits (to quantize)
- 3. Ignore the p bits in the middle (does not add much value)

Hashing for Efficient Search

- Goal: Enable finding efficient similarity detection by accurately matching hash values between signals
- 1. Pack the quantized values of *some* consecutive k-mers
- 2. Hash the packed value to generate a hash value
- 3. Use efficient data structures (e.g., hash tables) to identify regions with the similar event values by matching their hash values

Quantized Values (in binary) of *n* Consecutive Events:

Outline

Background

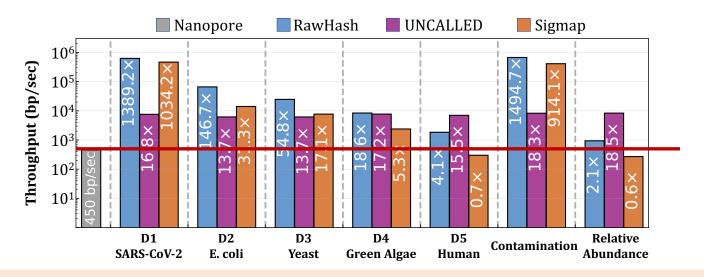
Goal and Key Ideas

RawHash

Evaluation

Conclusions

Evaluation Methodology

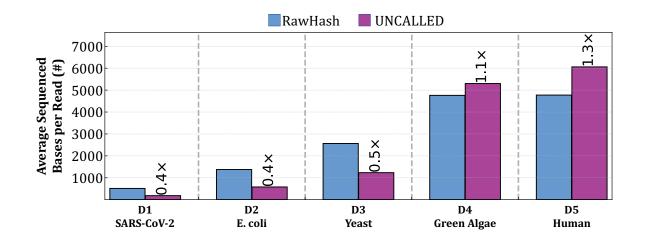

 Datasets from very small (viral) to large genomes (human and metagenomics)

- Compared with UNCALLED and Sigmap
 - RawHash, UNCALLED, and Sigmap do not require powerful computational resources (e.g., GPUs) to achieve efficient and portable genome analysis

- Use cases
 - 1. Read mapping
 - Relative abundance estimation
 - 3. Contamination analysis
- Benefits of Sequence Until

Performance

- Throughput (bases per second)
 - Throughput of a nanopore sequencer: 450 bp/sec



Fast Analysis: Both RawHash and UNCALLED can match the throughput of nanopore

Sigmap falls behind the throughput of nanopores for larger genomes

Sequencing Time and Cost

- Number of bases that needs to be sequenced before making a decision to eject the read
 - Lower is better (cheaper and faster sequencing)

Fast Decision: RawHash reduces the sequencing time and cost for large genomes than UNCALLED

Accuracy of Mapping

 Accuracy of genome analysis when mapping reads for three use cases

Dataset		UNCALLED	Sigmap	RawHash
	R	ead Mapping		
D1	Precision	0.9547	0.9929	0.9868
SARS-CoV-2	Recall	0.9910	0.5540	0.8735
	F_1	0.9725	0.7112	0.9267
D2	Precision	0.9816	0.9842	0.9573
E. coli	Recall	0.9647	0.9504	0.9009
	F_1	0.9731	0.9670	0.9282
D3	Precision	0.9459	0.9856	0.9862
Yeast	Recall	0.9366	0.9123	0.8412
	F_1	0.9412	0.9475	0.9079
D4	Precision	0.8836	0.9741	0.9691
Green Algae	Recall	0.7778	0.8987	0.7015
· ·	F_1	0.8273	0.9349	0.8139
D5	Precision	0.4867	0.4287	0.8959
Human HG001	Recall	0.2379	0.2641	0.4054
	F_1	0.3196	0.3268	0.5582

Dataset	τ	JNCALLED	Sigmap	RawHash
	Relative Abu	ndance Estima	ition	
	Precision	0.7683	0.7928	0.9484
D1-D5	Recall	0.1273	0.2739	0.3076
	F_1	0.2184	0.4072	0.4645
	Contami	nation Analysis	S	
	Precision	0.9378	0.7856	0.8733
D1, D5	Recall	0.9910	0.5540	0.8735
	F_1	0.9637	0.6498	0.8734

Accurate Analysis: RawHash provides the best accuracy for large genomes

Relative Abundance Estimations

- Estimating the relative abundance of each genome compared to the baseline as generated by minimap2
 - Distance: Euclidean distance (L2-norm) compared to the ground truth distance

Estimated Relative Abundance Ratios								
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance		
Ground Truth	0.0929	0.4365	0.0698	0.1179	0.2828	N/A		
UNCALLED	0.0026	0.5884	0.0615	0.1313	0.2161	0.1895		
Sigmap	0.0419	0.4191	0.1038	0.0962	0.3390	0.0877		
RawHash	0.1249	0.4701	0.0957	0.0629	0.2464	0.0847		

Accurate Analysis: RawHash provides the relative abundance estimations closest to the ground truth

The Sequence Until Mechanism

- Key Insight: Do we need to keep sequencing the entire sample for all applications in genome analysis?
- **Use case example:** Can we predict the relative abundance estimation by sequencing only a portion of the sample and still provide accurate results?
- Potential Benefits: Reduced sequencing time and costs by avoiding full sequencing

	Estimated Relative Abundance Ratios								
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance			
Ground Truth	0.0929	0.4365	0.0698	0.1179	0.2828	N/A			
UNCALLED (25%)	0.0026	0.5890	0.0613	0.1332	0.2139	0.1910			
RawHash (25%)	0.0271	0.4853	0.0920	0.0786	0.3170	0.0995			
UNCALLED (10%)	0.0026	0.5906	0.0611	0.1316	0.2141	0.1920			
RawHash (10%)	0.0273	0.4869	0.0963	0.0772	0.3124	0.1004			
UNCALLED (1%)	0.0026	0.5750	0.0616	0.1506	0.2103	0.1836			
RawHash (1%)	0.0259	0.4783	0.0987	0.0882	0.3088	0.0928			
UNCALLED (0.1%)	0.0040	0.4565	0.0380	0.1910	0.3105	0.1242			
RawHash (0.1%)	0.0212	0.5045	0.1120	0.0810	0.2814	0.1136			
UNCALLED (0.01%)	0.0000	0.5551	0.0000	0.0000	0.4449	0.2602			
RawHash (0.01%)	0.0906	0.6122	0.0000	0.0000	0.2972	0.2232			

Benefits of Sequence Until

- Sequence Until mechanism dynamically analyzes the results of a genome analysis use case to find outliers in the analysis
- If no outlier in the previous estimations
 - Further sequencing is unlikely to change the analysis significantly
 - Stop the **entire sequencing**: Significant reduction in sequencing time and cost

	Estimated I	Relative A	bundance	Ratios in 50,00	0 Random	Reads
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance
RawHash (100%)	0.0270	0.3636	0.3062	0.1951	0.1081	N/A
RawHash + Sequence Until (7%)	0.0283	0.3539	0.3100	0.1946	0.1133	0.0118

Sequence Until dynamically stops the entire sequencing after sequencing only 7% of the entire sample while providing high accuracy

Sequencing only a portion of the sample significantly reduces sequencing time and cost (~15x reduction)

Outline

Background

Goal and Key Ideas

RawHash

Evaluation

Conclusions

RawHash Summary

Problem

Performing real-time genome analysis is inaccurate and inefficient for large genomes, causing serious barriers in fully exploiting the opportunities in real-time genome analysis

Goal

Enable efficient and accurate similarity identification between raw signals

- RawHash
- Encodes the similar signal values into the same quantized value to alleviate the noise issues in raw signals
- Generates hash values from quantized values to efficiently identify similarities between signals based on hash value matches
- Proposes Sequence Until that can accurately and dynamically stop the entire sequencing
- Up to 2x more accurate mapping results

Key Results

- 25.8x and 3.4x better average throughput compared to UNCALLED and Sigmap, respectively
- The Sequence Until techniques enables reducing the

RawHash

To appear in the proceedings of ISMB/ECCB 2023

 <u>Can Firtina</u>, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,

"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes"

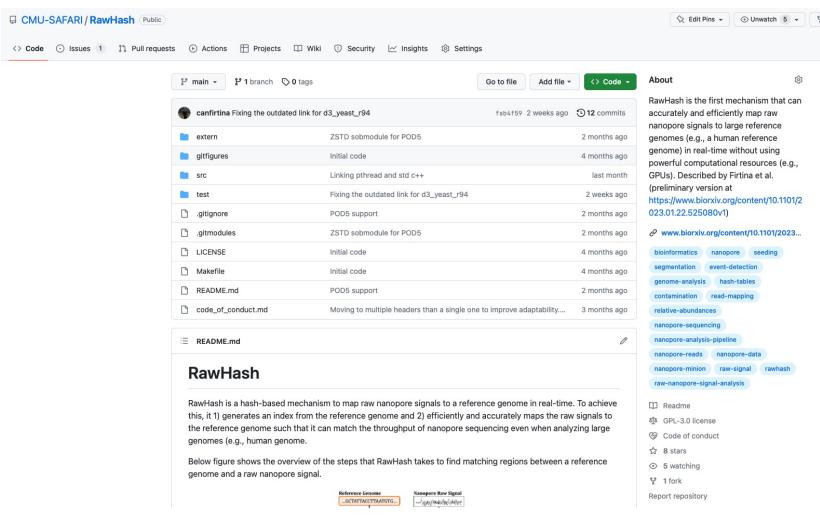
Proceedings of the <u>31st Annual Conference on Intelligent Systems for Molecular Biology</u> (**ISMB**) and the <u>22nd European Conference on Computational Biology</u> (**ECCB**), Jul 2023

[arXiv preprint] [Source Code]

> Bioinformatics, 2023, **00**, i1–i11 https://doi.org/10.1093/bioinformatics/btad272 ISMB/ECCB 2023

RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes

Can Firtina (1) 1,*, Nika Mansouri Ghiasi (1) 1, Joel Lindegger (1) 1, Gagandeep Singh (1) 1, Meryem Banu Cavlak (1) 1, Haiyu Mao (1) 1, Onur Mutlu (1) 1,*


^{*}Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland. E-mail: firtinac@ethz.ch (C.F.), omutlu@ethz.ch (O.M.)

¹Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

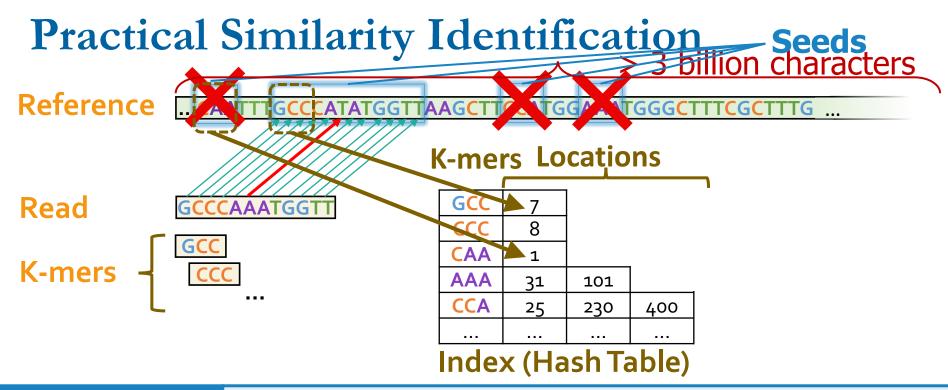
RawHash Source Code

https://github.com/CMU-SAFARI/RawHash

Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, Onur Mutlu

Preprint


Source Code

Backup Slides

Seeding

Determine potential matching regions (seeds) in the reference genome

Seed Filtering (e.g., Chaining)

Prune some seeds in the reference genome

Alignment

Determine the exact differences between the read and the reference genome

Sequencing Time and Cost Reductions

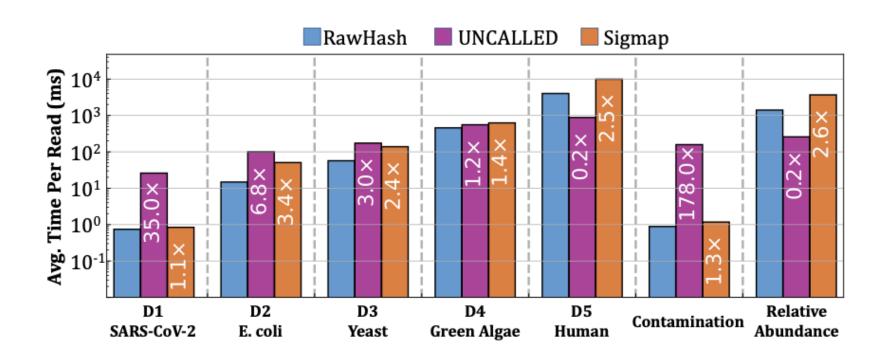
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human
-	Average se	equenced ba	se length pe	r read	200
UNCALLED	184.51	580.52	1,233.20	5,300.15	6,060.23
RawHash	513.95	1,376.14	2,565.09	4,760.59	4,773.58
	Average seque	enced numb	er of chunks	s per read	392
Sigmap	1.01	2.11	4.14	5.76	10.40
RawHash	1.24	3.20	5.83	10.72	10.70

Profiling the RawHash Steps

	Fraction of entire runtime (%)								
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human				
File I/O	0.00	0.00	0.00	0.00	0.00				
Signal-to-Event	21.75	1.86	1.01	0.53	0.02				
Sketching	0.74	0.06	0.04	0.03	0.00				
Seeding	3.86	4.14	3.52	6.70	5.39				
Chaining	73.50	93.92	95.42	92.43	94.46				
Seeding + Chaining	77.36	98.06	98.94	99.14	99.86				

Required Computation Resources in Indexing

Tool	Contamination	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Relative Abundance
			CPU Ti	me (sec)			
UNCALLED	8.72	9.00	11.08	18.62	285.88	4,148.10	4,382.38
Sigmap	0.02	0.04	8.66	24.57	449.29	36,765.24	40,926.76
RawHash	0.18	0.13	2.62	4.48	34.18	1,184.42	788.88
			Real tir	ne (sec)			
UNCALLED	1.01	1.04	2.67	7.79	280.27	4,190.00	4,471.82
Sigmap	0.13	0.25	9.31	25.86	458.46	37,136.61	41,340.16
RawHash	0.14	0.10	1.70	2.06	15.82	278.69	154.68
			Peak men	nory (GE	3)		
UNCALLED	0.07	0.07	0.13	0.31	11.96	48.44	47.81
Sigmap	0.01	0.01	0.40	1.04	8.63	227.77	238.32
RawHash	0.01	0.01	0.35	0.76	5.33	83.09	152.80



Required Computation Resources in Mapping

Tool	Contamination	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Relative Abundance
			CPU '	Time (sec)			
UNCALLED	265,902.26	36,667.26	35,821.14	8,933.52	16,769.09	262,597.83	586,561.54
Sigmap	4,573.18	1,997.84	23,894.70	11,168.96	31,544.55	4,837,058.90	11,027,652.91
RawHash	3,721.62	1,832.56	8,212.17	4,906.70	25,215.23	2,022,521.48	4,738,961.77
			Real	time (sec)			
UNCALLED	20,628.57	2,794.76	1,544.68	285.42	2,138.91	8,794.30	19,409.71
Sigmap	6,725.26	3,222.32	2,067.02	1,167.08	2,398.83	158,904.69	361,443.88
RawHash	3,917.49	1,949.53	957.13	215.68	1,804.96	65,411.43	152,280.26
			Peak m	emory (GB)			
UNCALLED	0.65	0.19	0.52	0.37	0.81	9.46	9.10
Sigmap	111.69	28.26	111.11	14.65	29.18	311.89	489.89
RawHash	4.13	4.20	4.16	4.37	11.75	52.21	55.31

Average Mapping Time per Read

