
Fast and Efficient Genome Analysis
via New Algorithms and Architectures

Can Firtina
canfirtina@gmail.com
https://canfirtina.com

6 May 2025
Inria – GenScale & Symbiose

mailto:canfirtina@gmail.com
https://canfirtina.com/

The Goal of Computing: Beyond Numbers

“The purpose of computing is [to

gain] insight, not numbers”

2

Richard Hamming

"Numerical Methods for Scientists and Engineers," Richard Hamming, 1962.

https://safari.ethz.ch/digitaltechnik/lib/exe/fetch.php?media=numerical.methods.for.scientists.and.engineers_2ed_hamming_0486652416.pdf

3

Computing is Bottlenecked by Data

Large recommender systems Large Language Models

Graph/Tree Processing Genomics

4

Computing is Bottlenecked by Data

Large recommender systems Large Language Models

Graph/Tree Processing Genomics

Data movement →
Performance & Energy Bottleneck

5

Problems with Data Analysis Today

Special-Purpose Machine
for Data Generation

FAST

General-Purpose Machine
for Data Analysis

SLOW

Processing capabilities oblivious to data analysis requirements

Large amounts of data movement

6

Data Movement Dominates Performance

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing
Machine

• Data movement dominates performance and
is a major system energy bottleneck (accounting for 40%-62%)

- Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
- Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
- Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160× - 800× more energy
compared to performing an addition operation

7

We need to co-design
algorithms and architecture

to handle data well

8

Pushing Towards New Architectures

GPUs

Heterogeneous
Processors &
Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs

Modern systems

?
Sequencing Machine

9

Pushing Towards New Architectures

GPUs

Heterogeneous
Processors &
Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs

Modern systems

?
Sequencing Machine

10

Algorithm-Architecture Co-design is Critical

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture
(expanded view)

• Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.
[Related Invited Paper]
[arXiv version]
[Slides (pptx) (pdf)]
[Talk Video at DAC 2023] (38 minutes, including Q&A)

11

Accelerating Genome Analysis [DAC ‘23]

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8

Detecting pathogens
in the environment

Rapid surveillance of
disease outbreaks

Altering genomes to solve
fundamental challenges of life

12

Personalized Medicine

Analyzing Genomes Reveals Key Insights

13

Generating the Entire Genomic Sequence

Whole Genome: 6.4B bps
(Non-human-readable)

CGAAATGCC...AGATTAAACGCT...TGCCCTAA...GAATGGCGT
Whole Human Genome: 6.4B bps (Human-readable)

Raw Genomic Data
(Human-readable?)

Sequencing Device

Translator
(Basecalling) AI

CGAAATGCC...AGATTAAACGCT...TGCCCTAA...GAATGGCGT

Human (Reference) Genome: 3.2 Billion bps (haploid)

14

Genomic Data: Giant Jigsaw Puzzle to Solve

Unknown origins?
Non-identical reference genome

Small pieces (reads)

Large volume of data to analyze

AAATGG

Read: ~100 – 100,000 bps

?
Scale: ~1/10!
CGAAATGCC...AGATTAAATGGT...TGCCCTAA...GAATGGCGT

Entire Genomic Sequence of an Organism

Data Science for
Massive Datasets

(TBs to PBs)

CGAAATGCC...AGATTAAACGCT...TGCCCTAA...GAATGGCGT

Human (Reference) Genome: 3.2 Billion bps (haploid)

15

Solving the Puzzle: The Naïve Way

AAATGG

Pairwise
Approximate

String Matching
(Alignment)

Entire Genome
For All Reads
𝑂 𝑛𝑚𝑘
≅ 𝑂 10"#

≅Years

CGAAATGCC...AGATTAAACGCT...TGCCCTAA...GAATGGCGT
Performing

the costly computations
only for a few regions

16

Solving the Puzzle: The Practical Way
Goal: Quickly and accurately reduce the search space

Read Mapping

Hash 0x01

Indexing
Hash Table

0x00
0x01

0xFF

…
Hash Positions

2,64,…

13,21

1,101,…Sketching

Reference Genome

St
or
e

Q
uery
Chaining

Hash Matches

Seeding

Hash0x00

Sketching

Read
Alignment

DP Calculations

AAATGG

AAATGG AAATGG

Exact Match

AAA AAA CTA AAT

AAA

A Common Genome Analysis Pipeline

17

Assembly Variant Calling Metagenomics

D
ow

ns
tr

ea
m

A

na
ly

si
s

Raw
Reads

Read
Mapping

Basecalling
(Translator)

AAATGTGGTCCATTG

Basecalled
(Translated)

Reads

18

Genome Analysis is Energy Inefficient
Raw

Reads
Read

Mapping
Basecalling
(Translator)

- Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
- Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
- Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Single memory request consumes >160× - 800× more energy
compared to performing an addition operation

Costly and large volumes
of data movement

Power-Hungry
Devices

AAATGTGGTCCATTG

Basecalled
(Translated)

Reads

19

Genome Analysis is Computationally Costly

16

1.5

1

10

100

Basecalling + Read Mapping Assembly

Ru
nt

im
e

(H
ou

r)

Heterogeneous System (with CPUs and GPUs)

Significant computation and energy overhead

20

Limited Application Scope and Accuracy

Energy-efficient analysis for
Resource-constrained devices

Urgent analysis
within minutes

Large-scale analysis
without sacrificing accuracy

and performance

21

Enabling New Directions in
Genome Analysis

via New Algorithms

• Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis
of Raw Nanopore Signals for Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular
Biology (ISMB) and the 22nd European Conference on Computational Biology
(ECCB), July 2023
[Online link at Bioinformatics Journal]
[arXiv version]
[Slides (pptx) (pdf)]
[Talk Video at ISMB/ECCB 2023] (19 minutes)
[RawHash Source Code]

22

New Frontiers: Raw Signal Analysis [ISMB ‘23]

https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://arxiv.org/abs/2301.09200
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://www.youtube.com/watch?v=ti0M6TvRkTs
https://github.com/CMU-SAFARI/RawHash

• Can Firtina, Melina Soysal, Joël Lindegger, and Onur Mutlu,
"RawHash2: Mapping Raw Nanopore Signals Using
Hash-Based Seeding and Adaptive Quantization"
Bioinformatics, July 2024.
[Online link at Bioinformatics Journal]
[arXiv version]
[RawHash Talk Video] (19 minutes)
[RawHash2 Source Code]

23

Real-Time Raw Signal Analysis [Bioinform. ‘24]

https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://academic.oup.com/bioinformatics
https://doi.org/10.1093/bioinformatics/btae478
https://arxiv.org/abs/2309.05771
https://www.youtube.com/watch?v=ti0M6TvRkTs
https://github.com/CMU-SAFARI/RawHash

• Can Firtina, Maximilian Mordig, Harun Mustafa, Sayan Goswami,
Nika Mansouri Ghiasi, Stefano Mercogliano, Furkan Eris, Joël Lindegger,
Andre Kahles, and Onur Mutlu
"Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a
Hash-based Seeding Mechanism"
arXiv, October 2024
[arXiv version]
[Talk Video at CSHL Data Science 2024] (16 minutes)
[Source Code]

24

New Directions: Assembling Raw Signals

arXiv Source code

https://arxiv.org/pdf/2410.17801
https://arxiv.org/pdf/2410.17801
https://arxiv.org/abs/2410.17801
https://youtu.be/D3-QytzMdMc
https://github.com/CMU-SAFARI/RawHash

• Joel Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad Sadrosadati,
Mohammed Alser, and Onur Mutlu,
"RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal Mapping
via Combining Seeding and Alignment"
IEEE Access, December 2024.
[Online link at IEEE Access Journal]
[arXiv version]
[RawAlign Source Code]

25

Quickly Aligning Raw Signals

https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/pdf/2310.05037.pdf
https://ieeeaccess.ieee.org/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10810749
https://arxiv.org/abs/2310.05037
https://github.com/CMU-SAFARI/RawAlign

• Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali,
Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos
Kanellopoulos, Can Alkan, and Onur Mutlu,
"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism
to Find Fuzzy Seed Matches in Genome Analysis"
NAR Genomics and Bioinformatics, March 2023.
[Online link at NAR Genomics and Bioinformatics Journal]
[arXiv version]
[bioRxiv version]
[Talk Video at RECOMB 2023] (23 minutes)
[BLEND Source Code]

26

Tolerating Noise in String Matching [NARGAB ‘23]

https://academic.oup.com/nargab/article/5/1/lqad004/6993940
https://academic.oup.com/nargab/article/5/1/lqad004/6993940
https://academic.oup.com/nargab
https://academic.oup.com/nargab/article/5/1/lqad004/6993940
https://arxiv.org/abs/2112.08687
https://doi.org/10.1101/2022.11.23.517691
https://www.youtube.com/watch?v=k9NzGwaF_mE
https://github.com/CMU-SAFARI/BLEND

• Jeremie S. Kim*, Can Firtina*, Meryem Banu Cavlak, Damla Senol Cali,
Nastaran Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,
"AirLift: A Fast and Comprehensive Technique
for Remapping Alignments between Reference Genomes"
IEEE/ACM TCBB, August 2024.
[Online link at IEEE/ACM TCBB Journal]
[arXiv version]
Presented at the 21st Asia Pacific Bioinformatics Conference (APBC),
Changsha, China, April 2023.
[Slides (pptx) (pdf)]
[Talk Video at BIO-Arch 2023 Workshop] (22 minutes)
[AirLift Source Code]

27

Mitigating Useless Computations [TCBB ‘24]

*Equal contribution

https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8857
https://doi.org/10.1109/TCBB.2024.3433378
https://arxiv.org/abs/1912.08735
http://bioinformatics.csu.edu.cn/APBC2023/
https://people.ee.ethz.ch/~firtinac/pub/airlift-firtina-2023_04_16-apbc.pptx
https://people.ee.ethz.ch/~firtinac/pub/airlift-firtina-2023_04_16-apbc.pdf
https://www.youtube.com/watch?v=nJKJK15t5YM
https://github.com/CMU-SAFARI/AirLift

• Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali,
Can Alkan, and Onur Mutlu,
"FastRemap: A Tool for Quickly Remapping Reads
between Genome Assemblies"
Bioinformatics, October 2022.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[FastRemap Source Code]

28

Mitigating Useless Computations [Bioinform. ‘22]

https://arxiv.org/pdf/2201.06255.pdf
https://arxiv.org/pdf/2201.06255.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btac554
https://arxiv.org/abs/2201.06255
https://github.com/cmu-safari/fastremap

29

Utilizing AI/ML in
Genome Analysis

via New Algorithms and
Architectures

• Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali,
A. Ercument Cicek, Can Alkan, and Onur Mutlu,
"Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate
Assembly Polishing Algorithm"
Bioinformatics, June 2020.
[Online link at Bioinformatics Journal]
[arXiv version]
[Slides (pptx)][(pdf)]
[Source Code]

30

Error Correction using ML [Bioinform. ‘20]

https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://doi.org/10.1093/bioinformatics/btaa179
https://arxiv.org/abs/1902.04341
https://people.ee.ethz.ch/~firtinac/pub/apollo-firtina-2021_05_26-workshop.pptx
https://people.ee.ethz.ch/~firtinac/pub/apollo-firtina-2021_05_26-workshop.pdf
https://github.com/CMU-SAFARI/Apollo

• Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol
Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger,
Mohammed Alser, Juan Gomez Luna, Sreenivas Subramoney and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
efficient Genome Analysis"
ACM Transactions on Architecture and Code Optimization (TACO), Feb 2024.
[ACM Digital Library version]
[arXiv version]
Presented at the 19th HiPEAC Conference, Munich, Germany, January 2024.
[Slides (pptx) (pdf)]
[Talk Video HiPEAC 2024] (35 minutes)
[ApHMM Source Code]

31

Accelerating ML & Genome Graphs [TACO ‘24]

https://arxiv.org/pdf/2207.09765
https://arxiv.org/pdf/2207.09765
http://taco.acm.org/
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://www.hipeac.net/2024/munich/
https://people.ee.ethz.ch/~firtinac/pub/aphmm-firtina-2024-hipeac.pptx
https://people.ee.ethz.ch/~firtinac/pub/aphmm-firtina-2024-hipeac.pdf
https://youtu.be/a8RFca-jXPk
https://github.com/CMU-SAFARI/ApHMM-GPU

• Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina,
Alireza Khodamoradi, Meryem Banu Cavlak, Henk Corporaal and Onur Mutlu,
"RUBICON: A Framework for Designing Efficient Deep Learning-Based
Genomic Basecallers"
Genome Biology, February 2024.
[arXiv version]
[Online link at Genome Biology Journal]
[RUBICON Source Code]

32

Translating Raw Signals using ML [Genome. Biol. ‘24]

https://arxiv.org/pdf/2211.03079
https://arxiv.org/pdf/2211.03079
https://www.nature.com/nprot/
https://arxiv.org/abs/2211.03079
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-024-03181-2
https://github.com/CMU-SAFARI/Rubicon

• M. Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel
Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan,
and Onur Mutlu,
"TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-
Basecalling Filtering"
Frontiers in Genetics, October 2024.
[Online link at Frontiers in Genetics Journal]
[arXiv Version]
[Talk Video at BIO-Arch 2023 Workshop]
[TargetCall Source Code]

33

Eliminating Useless Basecalling [Front. In Genetics ‘24]

https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1429306/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1429306/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1429306/full
https://arxiv.org/abs/2212.04953
https://www.youtube.com/watch?v=2rCsb4-nLmg&t=21973s
https://github.com/cmu-safari/targetcall

• Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur
Mutlu,
"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (25 minutes)]
[arXiv version]

34

ML-based Genome Analysis via PIM [MICRO ‘22]

https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600

• Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger,
Can Firtina, Stephan Wong, Onur Mutlu, and Said Hamdioui,
"Swordfish: A Framework for Evaluating Deep Neural Network-based
Basecalling using Computation-In-Memory with Non-Ideal Memristors"
Proceedings of the 56th International Symposium on Microarchitecture (MICRO),
Toronto, ON, Canada, November 2023.
[Slides (pptx) (pdf)]
[arXiv version]

35

Basecalling using PIM [MICRO ‘23]

https://arxiv.org/pdf/2310.04366.pdf
https://arxiv.org/pdf/2310.04366.pdf
https://dl.acm.org/doi/proceedings/10.1145/3613424
https://people.inf.ethz.ch/omutlu/pub/Swordfish_micro23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Swordfish_micro23-talk.pdf
https://arxiv.org/abs/2310.04366

36

Fast, Accurate, and Efficient
Genome Analysis

via Algorithm-Architecture
co-design

• Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya
Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser,
Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),
Virtual, October 2020.
[Lightning Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

37

Accelerating String Matching [MICRO ‘20]

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

• Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol,
Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim,
Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna,
Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-
Graph and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[SeGraM Source Code and Datasets]
[Talk Video (22 minutes)]

38

Accelerating Genome Graphs [ISCA ‘22]

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22-talk.pdf
https://arxiv.org/pdf/2205.05883.pdf
https://github.com/CMU-SAFARI/SeGraM
https://www.youtube.com/watch?v=gyjqYoyDP9s%22

• Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao,
Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar,
Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, Feb 2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

39

In-Storage Filtering for Genomics [ASPLOS ‘22]

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

• Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-
Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

40

In-Storage Metagenomics [ISCA ‘24]

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113

• Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.
[Related Invited Paper]
[arXiv version]
[Slides (pptx) (pdf)]
[Talk Video at DAC 2023] (38 minutes, including Q&A)

41

Accelerating Genome Analysis [DAC ‘23]

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8

42

My Involvements During my Ph.D.

First/Co-First
Author

Publications

Today’s Talk

Algorithm & Hardware
Design for AI

in Genome Analysis
[Bioinformatics'20]
[ACM TACO'24]
[Genome Biology'24]
[Front. in Genetics'24]

Real-Time and
Raw Sequencing

Data Analysis

[ISMB/ECCB'23]
[Bioinformatics'24]
[IEEE Access'24]
[arXiv'24 &
HiTSeq'24]

Accurate and Fast
Algorithm Design
for Read Mapping

[Bioinformatics'22]
[NARGAB'23 &
RECOMB'23]
[arXiv'23]
[arXiv'23]
[IEEE/ACM TCBB'24]

Data-Centric
Architectures for
Genome Analysis

[MICRO'20]
[MICRO'22]
[ISCA'22]
[ASPLOS'22]
[IEEE Access'22]
[MICRO'23]
[ISCA'24]

Reviews: [CSBJ'22] [DAC'23] [Nature Protocols'24]

Goal: Enable Fast, Energy-Efficient, Accurate,
and Scalable Genome Analysis

by Designing Algorithms and Architectures

43

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

44

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

RawHash Rawsamble ApHMM Future Research

45

Basecalling is Accurate yet Costly

Raw
Reads

Read
Mapping

Basecalling
(Translator)

Costly
AI Models

AAATGTGGTCCATTG

Basecalled
Reads

Highly
accurate reads

Noisy
Raw Signals

How to make this pipeline cheaper?
RawHash Rawsamble ApHMM Future Research

46

Can We Survive Without Translation?

Raw
Reads

Read
Mapping

Reference Genome
CTGCGTAGCAGCGTAATAG......

How to communicate
without an accurate
translator?

Noisy
Raw Signals

RawHash Rawsamble ApHMM Future Research

47

Can We Survive With Noisy Signal Analysis?

Raw
Reads

Read
Mapping

Reference Genome
CTGCGTAGCAGCGTAATAG......

-0.06,0.24,-0.74,

Reference-to-Signal Conversion

Raw Signal Analysis

How to identify
similarity between
noisy signals?

Noisy
Raw Signals

RawHash Rawsamble ApHMM Future Research

Key Idea: Perform similarity estimation
based on vector similarity search

[, , , ,]

48

Noise in Raw Electrical Signals

-0.22 0.96-0.75-0.06 -0.49
Raw

Signals:

-0.21 1.01-0.76-0.05 -0.51
Raw

Signals:

Problem: Too Costly for Large Genomes

[, , , ,]

Sequencing CTGCGTAGCA

Sequencing CTGCGTAGCA

Nearest Neighbor Search

Observation: Identical molecules generate
similar raw signals

RawHash Rawsamble ApHMM Future Research

49

Scalability Issues Limit Real-Time Analysis

SARS-CoV-2 Green Algae HumanE. coli Yeast

103

102

101

1

Nearest Neighbor Search (Sigmap)

Co
m

pu
ta

tio
n

Sp
ee

d
/

Da
ta

 G
en

er
at

io
n

Sp
ee

d

Genome Size Increase: 150× 2.4× 9.2× 28×

No Real-Time Analysis for Larger Genomes:
Searching mechanism does not scale well

RawHash Rawsamble ApHMM Future Research

50

Benefits of Real-Time Analysis

Sequencing Analysis
Time

Reducing sequencing time and cost by stopping sequencing early✓

Reducing latency by overlapping analysis with sequencing✓

Completely Sequenced Read
Sequenced Bases

Sequencing & Real-Time Analysis
Reduced Latency

Partially Sequenced Read

Sequencing is stopped early with a real-time decision

Reduced Sequencing Time (and Cost)

RawHash Rawsamble ApHMM Future Research

51

Goal

Enable Fast, Accurate, and Scalable
Real-Time Analysis for Larger Genomes

RawHash Rawsamble ApHMM Future Research

[, , , ,]

52

Key Idea

RawHash Rawsamble ApHMM Future Research

-0.22 0.96-0.75-0.06 -0.49
Raw

Signals:

-0.21 1.01-0.76-0.05 -0.51
Raw

Signals:

Key Idea: Perform similarity estimation
based on quick exact matches

Challenge: How to generate the same hash value
for similar enough signals with various noise types?

Hash

Hash

0x77db

0x77db

Fast
MatchCTGCGT

[, , , ,]

53

RawHash Key Idea – Quantization

Range of raw signals (normalized)-3.00 +3.00

0 1 2 3 4 5 6 7 8 9 14 1510 11 12 13Bucket #

CTGCGT

-0.06-0.07-0.05 -0.05 -0.06

Enables matching raw signals by eliminating slight differences✓

QuantizeQuantize Quantize Quantize Quantize

RawHash Rawsamble ApHMM Future Research

54

How to Better Quantize Signals?

Range of raw signals (normalized)-3.00 +3.00

0 1 2 3 4 5 6 7 8 9 14 1510 11 12 13Bucket #

Equal-width buckets leads to
unbalanced bucket loading✕

Reduced uniqueness and poor resource utilization✕

-3.00 +3.00

200

400

600

150 1 2 3 4 5 6 7 8 9 10 11 12 13 14K-
m

er
 c

ou
nt

RawHash Rawsamble ApHMM Future Research

• Key Idea: Quantizing raw signals with non-equal bucket widths
by leveraging raw signal distribution

55

Adaptive Quantization

-3.00 3.00K-
m

er
 c

ou
nt

Better bucket utilization✓

Range of raw signals (normalized)-3.00 +3.00

0 1 2 3 4 5 6 7 8 9 14 1510 11 12 13Bucket #

RawHash Rawsamble ApHMM Future Research

56

RawHash Key Idea – Hash-based Matching

Sequencing CTGCGTAGCA

-0.22 0.96-0.75-0.06 -0.49

Hash 0x77db

Fast and Accurate Match

RawHash Rawsamble ApHMM Future Research

[, , , ,]

Key Contribution: The first hash-based search
(and indexing) mechanism for raw signals

Quantize

0b0111

Quantize

0b0111

Quantize

0b0110

Quantize

0b1011

Quantize

0b0110

Pack 0b01110111011010110110 Hash 0x77db

SARS-CoV-2 Green Algae HumanE. coli Yeast

103

102

101

1

Nearest Neighbor Search (Sigmap)

Co
m

pu
ta

tio
n

Sp
ee

d
/

Da
ta

 G
en

er
at

io
n

Sp
ee

d

SARS-CoV-2 Green Algae HumanE. coli Yeast

103

102

101

1

Co
m

pu
ta

tio
n

Sp
ee

d
/

Da
ta

 G
en

er
at

io
n

Sp
ee

d

Nearest Neighbor Search (Sigmap) RawHash

57

Real-Time Analysis Benefits from Fast Search

Genome Size Increase: 150× 2.4× 9.2× 28×

Real-time Analysis for Human Genomes:
Fast search instead of costly neighbor search

RawHash Rawsamble ApHMM Future Research

58

Fast Search Leads to Accurate Search

SARS-CoV-2 Green Algae HumanE. coli Yeast

Ac
cu

ra
cy

 (F
1

sc
or

e)

0.0

0.2

0.4

0.6

0.8

1.0
Nearest Neighbor Search (Sigmap) RawHash

Best accuracy for all genomes:
Hash values span longer sequences than vectors ->

More unique and informative matches

(Almost) Identical accuracy to basecalled analysis:
Is the small difference because RawHash is even better?

RawHash Rawsamble ApHMM Future Research

59

RawHash is Open Source

RawHash Rawsamble ApHMM Future Research

60

RawHash’s Impact

RawHash
Several works
building on RawHash:
Alignment without
basecalling [IEEE Access'24]
Assembly without
basecalling [arXiv’24]
In-storage processing
[Accepted to ICS'25]
In-memory processing
[Unpublished work]

Collaboration
with Industry
to Accelerate
Genome Analysis

[Ongoing]

Collaboration
with Medical Centers
to Accelerate
Sequence-to-Answer

[Ongoing]RawHash Rawsamble ApHMM Future Research

61

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

RawHash Rawsamble ApHMM Future Research

62

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

RawHash Rawsamble ApHMM Future Research

63

Pushing the Boundaries of
Application Scope

via New Algorithms

TGCTGCAATCGTGATCCGAAGTCAGCCGTAGTGGACCACCGGTAAGCT

TGCTGCAA

CTGCAATC TGATCCGA

CGAAGTCA

TCAGCCGT

CGTAGTGG

AGTGGACC

CCACCGGT

GGTAAGCT

64

Beyond Reference Mapping: Overlapping
Raw Nanopore Signals

Hash-Based
Seeding and Mapping

Raw Nanopore Signals

Reference Signals

Reference Genome
(Converted to Signals)

Challenge: Reference genome is not always available

Assembly: Constructing genome from overlapping reads

Existing solutions cannot find overlapping reads without basecalling✕
RawHash Rawsamble ApHMM Future Research

65

Challenges with Overlapping Raw Signals

Hash-Based
Seeding and Mapping

Challenge: Finding many useful overlapping pairs
(all-vs-all overlapping)

Challenge: Identifying hash matches when both signals are noisy

Challenge: Generating long paths from useful overlaps

RawHash Rawsamble ApHMM Future Research

The first mechanism that can perform
all-vs-all overlapping from raw signals

Rawsamble

66RawHash Rawsamble ApHMM Future Research

67

Eliminating Basecalling from the Pipeline
Basecalling (CPU)
+ OverlappingRawsamble Basecalling (GPU)

+ Overlapping

SARS-CoV-2 E. coli Yeast Green Algae Human Geo. Mean

10!

10"

10#

El
ap

se
d

Ti
m

e
(N

or
m

al
iz

ed
 to

 R
aw

sa
m

bl
e)

Average speedup of 60× than CPU-based basecalling:
Eliminating basecalling leaves a significant room

for performance improvements

Average speedup of 2× than the GPU-based basecalling:
GPU vs. GPU comparison is likely to provide even better results

RawHash Rawsamble ApHMM Future Research

68

Key Results – First Ever Assemblies

First assemblies
ever constructed

without basecalling

~400× longer assembled pieces
than the average read length:
Informative overlaps lead to

longer paths

It is time to rethink if we want to translate
individual reads separately

2,722,499 bps

5,207,206 bps

Minimap2 (D2) Rawsamble (D2)

E. coli Assembly
(From the Rawsamble Overlaps)

RawHash Rawsamble ApHMM Future Research

69

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

RawHash Rawsamble ApHMM Future Research

70

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

RawHash Rawsamble ApHMM Future Research

71

Algorithm Design Demands
General-Purpose Computing Capabilities

RawHash Rawsamble ApHMM Future Research

Function 2Function 4

72

Algorithm Design Demand
General-Purpose Computing Capabilities

RawHash Rawsamble ApHMM Future Research

General-Purpose Systems
(e.g., CPUs)

Function 1

Function 3

Your Favorite
Output

Your Favorite
Algorithm

Paid Costs for Generality:
Supporting unnecessary operations
Inefficient data and control flow
Limited parallelism & bandwidth

High latency &
Substantial energy

73

Great Algorithms Demand Specialization

RawHash Rawsamble ApHMM Future Research

Goal: Avoid wasting
computation & energy

Opportunities:
Better data flow with
minimal latency & power

Everyone’s Favorite
Algorithm

Function 2
Function 1

Function 3

Function 1

Function 2

Function 3

Application-Specific
Architecture

Paid Costs for
Specialization:
Poor programmability
High manufacturing
and engineering costs

Efficient processors
customized for the task
Better parallelism

74

Acceleration Efforts for AI and Genomics

RawHash Rawsamble ApHMM Future Research

Google’s TPUs:Cerebras WSE-3
The largest ML

accelerator chip

NVIDIA H100

75

Important and
Commonly Used Applications

Demand Specialization

Graphs in Genomics

76

Graphs are commonly used
to identify variations between sequences

To avoid redundant comparisons
and storage

To provide rich information
on expected variations Reference Genome

Graph

RawHash Rawsamble ApHMM Future Research

Graph-Based Applications in Genomics

77RawHash Rawsamble ApHMM Future Research

Protein

Protein
Family #1

Protein
Family #2

Protein Family Search
with Graph Alignment

GCCCATATGGTTAAGCTT

CCCT TGCT GCTA

CCTA GCTT

ATGC AAGC

CCCT GCTT

GCCCTTATGCTTAAGCTA

Error Correction
with Probabilistic Graphs

GCCC-TATGGTTAAGCTT

GCCCATATGATTAAGCTT

GCCCATATGGTTAAGCTT

GCCCATATGGTTAAGCTT

GCCCGTATGGTT--GCTT

GCCCATATGCTTAAGCTT

GCCC---TGGTTAAGCT-

GCCCATATCCTTAAGCTT

Multiple Sequence
Alignment

78

A Common Graph Structure in Genomics

A C T T

D

I I I I

D D

A: 0.1
T: 0.2
G: 0.6
C: 0.1

A: 0.9
T: 0.1
G: 0.0
C: 0.0

A: 0.1
T: 0.1
G: 0.1
C: 0.7

A: 0.2
T: 0.2
G: 0.2
C: 0.4

0.2

0.4

0.7

0.6

0.3

0.1

RawHash Rawsamble ApHMM Future Research

Profile Hidden Markov Models (PHMMs):
A probabilistic graph structure

79

Underlying ML Technique in Genomic Graphs

Ft(i) =
∑

j→V Ft↑1(j)ωjieS[t](vi)

Forward Calculations
Bt(i) =

∑
j→V Bt+1(j)ωijeS[t+1](vj)

Backward Calculations

ω→
ij =

nS↑1∑
t=1

ωijeS[t+1](vj)Ft(i)Bt+1(j)

nS↑1∑
t=1

∑
x↓V

ωixeS[t+1](vx)Ft(i)Bt+1(x)

Updating
Transition Probabilities

e→X(vi) =

nS∑
t=1

Ft(i)Bt(i)[S[t] = X]

nS∑
t=1

Ft(i)Bt(i)

Updating
Emission Probabilities

RawHash Rawsamble ApHMM Future Research

80

Underlying ML Technique in Genomic Graphs

Forward Calculations Backward Calculations

RawHash Rawsamble ApHMM Future Research

Function 1 Function 1 Function 2 Function 2

Function 3 Function 4

Updating
Transition Probabilities

Updating
Emission Probabilities

Costly Use of ML in Genomic Graphs

Error
Correction

80604020
Percentage	of	Total	Execution	Time	(%)

0

Forward	Calculation Backward	Calculation Parameter	Updates

100

Protein
Family	Search

Multiple
Sequence
Alignment

24.11% 21.65%

26.48% 24.96%

75.63%10.47%12.47%

21.65%24.11%

26.48% 24.96%

45.76%

51.44%

98.57%

81RawHash Rawsamble ApHMM Future Research

Cost of Using Machine Learning (ML) in pHMMs:

Goal

Enable rapid and power-efficient
use of the underlying ML technique in genome graphs

82RawHash Rawsamble ApHMM Future Research

SW

HW

• Reduce redundant data storage by utilizing
the fixed data pattern

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

• Reduce data movement by processing data where it
makes sense

• Flexible and efficient hardware design

Key Approach: HW-SW Co-Design

83RawHash Rawsamble ApHMM Future Research

HW: Simple Data Pattern in DP Calculations

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Simple Pattern

A DI D C I D T I

84RawHash Rawsamble ApHMM Future Research

Store and access data
where it makes sense

Many Different Patterns

𝒊
𝑡

Dynamic Programming
(DP) Operations:

DP Operations
in pHMMs:

Frequent off-chip
access

DP Computation in pHMMs

Fast On-chip
Memory Access

MUL ADD FP DIVMUL

SW: Reducing Unnecessary Computations

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Dense DP Calculations

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Sparse (Filtered) DP Calculations

A DI D C I D T I

A

T

G

T

Filter by
sorting

85

Observation:
Calculating the entire DP

is not needed

Challenge:
Sorting is costly in hardware

RawHash Rawsamble ApHMM Future Research

SW: Reducing Unnecessary Computations

Histogram Filter

.

.

.

8, 9
10, 14
15, 16, 18
11, 20, 21, …
13, 17, 19, …

State IDs Range
1.00 – 0.94
0.94 – 0.88
0.88 – 0.82
0.82 – 0.76
0.76 – 0.70

0.06 – 0.00

.

.

.

86

Software co-design:
Replace sorting with a cheaper filtering

RawHash Rawsamble ApHMM Future Research

Putting the Optimizations Together

87RawHash Rawsamble ApHMM Future Research

Compute	Block

Update	Emission	(UE)

Calculate	
Emission
Numerator

Calculate	
Emission

Denominator

Division	&	
Update	
Emission

Calculate	Forward/Backward	&	Update	Transition

Write	
Selector

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	Group	#1

PE	Engine	#1PE	Engine	#1PE	Engine	#1PE	#1

PE	#1

Index	Control

Forward/
Backward	(PE)

Previous	Step	Coefficients	(L1):
!! " or	#!"#(%) (Broadcasting)

!! " or	#!"#(%)

LUT
'$%×)&"'(*)

Update	Transition	(UT)

Previous	Transition	Numerator
8KB	Transition	
Scratchpad

MUL ADD FP	DIV

'$%×)&"'(*)

Dot	Product	Tree Accumulator

Reduction	Tree

!!"# % or	
#!(")!! " ,	#!"# %

TE	MUL

Effectively implementing the hardware and software optimizations

to improve performance and reduce power requirements

88

Integrating ApHMM in a Complete System

Input/Output

C
P
U

DRAM

Global	
Event	
Control

L2-DMAL2	Memory

L1-DMA
Probs-DMA

Apollo
core

L1	Memory
Shared	
Bus LUTs

Disabled

Apollo
core

L1	Memory

ApHMM
Core

L1	Mem.
Shared	
Bus

The specialized task can be offloaded

to an accelerator whenever needed

RawHash Rawsamble ApHMM Future Research

Key Results: Performance

89RawHash Rawsamble ApHMM Future Research

Specialized design enables computation
up to two orders of magnitude faster:

Better data flow with reduced latency and improved parallelism

23

75

260

0

50

100

150

200

250

300

Sp
ee

du
p

O
ve

r
CP

U
 (1

 T
hr

ea
d)

CPU (32 Threads) GPU ApHMM

90RawHash Rawsamble ApHMM Future Research

…and a significant reduction in energy consumption
by up to three orders of magnitude:

simpler hardware with a minimized off-chip memory accesses
and data movement

1 1.5

2474

0

500

1000

1500

2000

2500

3000

En
er

gy
 R

ed
uc

tio
n

O
ve

r C
PU

CPU GPU ApHMM

Key Results: Energy Consumption

91

Specialization Provides
Significant Performance

and Energy Benefits

92

Today’s Talk

Significant computation and energy overhead

Limited accuracy and application scope

Algorithm & Hardware Design
for AI in Genome Analysis

3
ApHMM

 (TACO'24 &
 HiPEAC'24)
Accelerating ML operations
in Genome Graphs

Real-Time and
Raw Sequencing Data Analysis

1
RawHash

 (ISMB/ECCB'23)
Enabling real-time and accurate
read mapping without basecalling

2
Rawsamble

 (arXiv'24 &
 HiTSeq'24)
Enabling new applications by
assembling raw sequencing data

• Collaborators:

• Funding agencies and industry sponsors:
• BioPIM, SNSF, Intel, Google, Huawei, Microsoft, VMware, and SRC

93

Acknowledgements

Fast and Efficient Genome Analysis
via New Algorithms and Architectures

Can Firtina
canfirtina@gmail.com
https://canfirtina.com

6 May 2025
Inria – GenScale & Symbiose

mailto:canfirtina@gmail.com
https://canfirtina.com/

95

Sequencing Data Analysis
Heuristic

Algorithms
Data Structures

Filters

Distributed
Computing

Hardware
Accelerators

Quick, accurate, and
energy-efficient analysis✓

✕
Imperfections in
sequencing data

impacts design choices

TATGG

GCCTA

TGCAC

AAGCC
TATAT

TGGTA

AGATA

CCTGG

96

Data Movement Overhead

A memory access consumes ~100-1000X
the energy of a complex addition

William Dally,
HiPEAC 2015

RawHash Rawsamble ApHMM Future Research

97

Minimizer Sketching

Hash 0xA1

0x02

0xFC

0x45

Find
Minimum

W
in

do
w

 o
f

k-
m

er
s

(𝒘
	=

	𝟒
)

Overlapping
k-mers (𝒌 = 𝟕)

GCTATTA

TATTACC

CTATTAC

ATTACCT

0x02

CTATTAC

Sampled
k-mer

(Minimizer)

Hash

Hash

Hash

Hash
Table

GCTATTACCT

1

2

3

4

98

Spaced Seeding

Pattern GXTAXTAGCTATTA

GATACTA GXTAXTA

GACACTA GXCAXTA

0xA1

0xA1

0xFC

Spaced Seeds

Hash

Hash

Hash

Pattern

Pattern

1 2

99

Strobemer Sketches

GCTATTACCTTAATGTGATGGAC

GCTATCCCCTTAATGGGATGGAC

Link GCTATTAATGGA

GCTATTAATGGA

GCCCTCCCCTTAAAGGGAATGGA CCTCTAAATGGA

0xA1

0xA1

0xFC

Selected k-mers (e.g., minimizers) Strobemers

Hash

Hash

Hash

Link

Link

1

2

3

Hash-Based Sketching and Seed Matching

CAGGCTATAACCCTAATGTTGC

Target Sequence

Hash

Query Sequence

0x01

Hash Table

St
or

e

Q
ue

ry

Match

No Match

GCTATTACCTTAATGTGATGGACGA

0xA4 0x41 0x01 0xFE

0x01 0xA4 0x41

Q
ue

ry

St
or

e

St
or

e

Hash Hash Hash Hash

Sketching Sketching

GCTA TAAT GACG GCTA ATGT

<List of
Positional

Information>

101

Chaining (Two Points)

Query Seq.

Target Seq. 𝑎𝑖

𝑥𝑖

𝑎𝑖

𝑦𝑖

𝑎𝑗

𝑥𝑗

𝑎𝑗

𝑦𝑗

𝑤𝑖Anchor
(Seed match)

Chaining

Q
ue

ry
 S

eq
.

Target Seq.
(𝑥𝑖− 𝑥𝑗)

(𝑦𝑖 − 𝑦𝑗)

𝑤
𝑖

𝑎𝑗1

2

3

4

5

Chaining (Multiple Points)
• Exact hash value matches: Needed for finding matching

regions between a reference genome and a read

• What if there are mutations or errors?
• No hash (seed) match will occur in such positions

• The chaining algorithm links exact matches in a proximity
even though there are gaps (no seed matches) between
them

Alignment

Dynamic Programming Matrix

A

A

G

C

C

T

A

T

A G C C CC C T G T

A A G C -C A T

A G C C CC C T G T

- -

M
atch

Substitution

D
eletion

-

T

Insertion
1

2

3

4

5

103

Sequence Alignment

<latexit sha1_base64="b/GPUo8HQToGNLj8IB7vzjeDhqU=">AAADxniczVLLatwwFFXGfaTuI5Nm2Y3oJJBAauwSmkAYCO0myxQ6ScA2gyzLGTF6GEluZiIE/Y8uum0/qX9TeWZa6iR03QuCw7lX9577KGpGtYnjn2u94MHDR4/Xn4RPnz1/sdHffHmuZaMwGWHJpLoskCaMCjIy1DByWSuCeMHIRTH90PovPhOlqRSfzLwmOUdXglYUI+OpcX8rw1RhRkrR8IIou51su3F/EEfxwuBdkKzAAKzsbLzZ+5qVEjecCIMZ0jpN4trkFilDfW4XZo0mNcJTdEVSDwXiROd2od7BHc+UsJLKP2Hggv37h0Vc6zkvfCRHZqJv+1ryPl/amOoot1TUjSECLwtVDYNGwnYUsKSKYMPmHiCsqNcK8QQphI0fWKfKTHvU7cMaOr3pMrNlQx3OL4q5MMwEucaScyRK2524S5PcZgpRTQo5s3GU1MbZEMKsVtJ4fVlbKP294+EunyOBJ1JFLbWXd0KFLEm6TL9fUcaG0T4VgijoBQ3j6MgvBf5JsAe9lFaxfRO5zI+RMZgZMjNFZQeJc8duJ3T/1F78N+L9+mqj6Q25pwN/zsnt470Lzt9Gybvo4OPB4OT96rDXwSvwGuyCBByCE3AKzsAIYDAH38B38CM4DUTQBNfL0N7a6s8W6Fjw5RepWT66</latexit>

1
<latexit sha1_base64="aL0HWU/TFPWUd37xYFJvXd1ATcA=">AAADxniczVLLatwwFFXGfaTua9IsuxGdBBJIjd2GNFAGQrvJMoVOErDNIMtyRoweRpKTmQhB/6OLbttP6t9UnpmWOgld94LgcO7Vvec+ippRbeL451ovuHf/wcP1R+HjJ0+fPe9vvDjVslGYjLBkUp0XSBNGBRkZahg5rxVBvGDkrJh+bP1nl0RpKsVnM69JztGFoBXFyHhq3N/MMFWYkVI0vCDKbr3dcuP+II7ihcHbIFmBAVjZyXij9zUrJW44EQYzpHWaxLXJLVKG+twuzBpNaoSn6IKkHgrEic7tQr2D254pYSWVf8LABfv3D4u41nNe+EiOzETf9LXkXb60MdVhbqmoG0MEXhaqGgaNhO0oYEkVwYbNPUBYUa8V4glSCBs/sE6Vmfao24c1dHrdZWbLhjqcXxRzYZgJcoUl50iUtjtxlya5zRSimhRyZuMoqY2zIYRZraTx+rK2UPp7x8MdPkcCT6SKWmo374QKWZJ0mX6voowNoz0qBFHQCxrG0aFfCvyTYBd6Ka1i+zpymR8jYzAzZGaKyg4S59677dD9U3vx34j366uNptfkjg78OSc3j/c2OH0TJQfR/qf9wdGH1WGvg5fgFdgBCXgHjsAxOAEjgMEcfAPfwY/gOBBBE1wtQ3trqz+boGPBl1+v+T68</latexit>

3

<latexit sha1_base64="RkJd00oxPEp6IB1kAqSBMGiSyZ0=">AAADxniczVLLatwwFFXGfaTua9IsuxGdBBJIjR1CEwgDod1kmUInCdhmkGU5I0YPI8nNTISg/9FFt+0n9W8qz0xLnYSue0FwOPfq3nMfRc2oNnH8c60XPHj46PH6k/Dps+cvXvY3Xp1r2ShMRlgyqS4LpAmjgowMNYxc1oogXjByUUw/tP6Lz0RpKsUnM69JztGVoBXFyHhq3N/MMFWYkVI0vCDKbu1vuXF/EEfxwuBdkKzAAKzsbLzR+5qVEjecCIMZ0jpN4trkFilDfW4XZo0mNcJTdEVSDwXiROd2od7Bbc+UsJLKP2Hggv37h0Vc6zkvfCRHZqJv+1ryPl/amOoot1TUjSECLwtVDYNGwnYUsKSKYMPmHiCsqNcK8QQphI0fWKfKTHvU7cMaOr3pMrNlQx3OL4q5MMwEucaScyRK2524S5PcZgpRTQo5s3GU1MbZEMKsVtJ4fVlbKP294+EOnyOBJ1JFLbWbd0KFLEm6TL9XUcaG0R4VgijoBQ3j6MgvBf5JsAu9lFaxfRu5zI+RMZgZMjNFZQeJc8duO3T/1F78N+L9+mqj6Q25pwN/zsnt470Lzvej5F108PFgcPJ+ddjr4DV4A3ZAAg7BCTgFZ2AEMJiDb+A7+BGcBiJogutlaG9t9WcTdCz48gusqT67</latexit>

2

104

Nanopore Sequencing

105

Source of Noise in Nanopore Sequencing
• Stochastic thermal fluctuations in the ionic current

• Random ionic movement due to inherent thermal energy (Brownian motion)

• Variations in the translocation speed
• Mainly due to the motor protein

• Environmental factors
• Temperature: Affecting enzymes including the motor protein
• pH levels: Affecting charge and the shape of molecules

• Maybe: Aging & material-related noise between nanopores
• Their effects potentially can be minimized with normalization techniques

• Dual reader head

• Motor protein with more consistent translocation speed in R10

• Duplex sequencing in R10

106

R9 vs. R10 Chemistries

107

Proteomics with Nanopores

Motone+, “Multi-pass, single-molecule nanopore reading of long protein strands”, Nature 2024.

108

Processing Raw Nanopore Signals
• K many nucleotides (k-mers) sequenced at a time

• Observation: Abrupt change in the signal as DNA moves
inside a nanopore (e.g., when sequencing a new k-mer)

• Goal: Identify raw signal segments corresponding each sequenced k-mer
• Statistical tests (segmentation) to identify abrupt changes
• Event: A raw signal segment corresponding to a particular k-mer

Event

Segment

pA
m

pe
re

Time

…
…

6-mer

…
…

-0.06
TGCGTC

-0.22
ATGCGT

CGAAATGCC...AGATTAAATGGGCTTTCT...TGCCCTAA...GAATGGCGT

A Large Genome (Human)

109

Scalability Issues with Costly Calculations

CGAAATGCC...AGATTAAATGGGCTTTCT

A Small Genome (Bacteria)

Computation Cost
(per Region)

Data Generation
Speed

Computation Cost
(per Region)

Data Generation
Speed

Waiting for Data Waiting for Data
Data

Waiting for Data Waiting for Data
Data

Increased Latency
No Real-Time Analysis

Real-Time
Analysis:
Data is
consumed
before
next one
arrives

110

Reference-to-Signal Conversion
• Goal: Enable direct comparison to raw signals by converting reference

genome into its synthetic signal (one-time task)

• K-mer model: Provides expected signal values for every possible k-mer
• A lookup table preconstructed based on nanopore’s characteristics

• Use the k-mer model to convert all k-mers of a reference genome
to their expected signal values

Reference Genome

Expected Signal

CTGCGTAGCAGCGTAATAG......

GCGTAG K-mer model -0.74

CTGCGT K-mer model -0.06

TGCGTA K-mer model 0.24

-0.06,0.24,-0.74,......

Reference Signals

K-mer model

K-mer Signal

AAAAAA

TTTTTT

…
-0.29

0.04

…

Challenges in Real-Time Analysis

Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

Accurate analysis from noisy raw signal data

Power-efficient computation for scalability and portability

111

Applications of Read Until
Depletion: Reads mapping to a particular reference genome is ejected

Enrichment: Reads not mapping to a particular reference genome is ejected

• Microbiome studies by removing host DNA

• Eliminating known residual DNA or RNA (e.g., mitochondrial DNA)

• High abundance genome removal

• Removing contaminated organisms

• Targeted sequencing (e.g., to a particular region of interest in the genome)

• Low abundance genome enrichment
112

Applications of Run Until & Sequence Until
Run Until: Stopping the entire sequencing run

Sequence Until: Run Until with accuracy-aware decision making

• Stopping when reads reach to a particular depth of coverage

• Stopping when the abundance of all genomes reach a particular threshold

• Stopping when relative abundance estimations do not change substantially
(for high-abundance genomes)

• Stopping when finding that the sample is contaminated with a particular set
of genomes

• …

113

• Polymerase Chain Reaction (PCR) as a way of in vitro “analysis”
• Can increase the quantity of DNA in a sample
• Non-dynamic targeted sequencing (e.g., low abundance known targets)
• Requires additional resources: Time and money for preparation and

execution of PCR

• Adaptive sampling as a way of in silico (i.e., computational) analysis
• Cannot increase the existing quantity of DNA in a sample
• Dynamic targeted sequencing: Decisions can be made based on real-time

analysis (e.g., Sequence Until)
• Minimal additional resources

• Almost no additional resources for preparation and execution
• Simultaneous enrichment and depletion is possible
• Better suited for rapid whole genome sequencing

• Beauty of computational analysis (e.g., high flexibility – no need for primers)

• PCR and adaptive sampling can be combined depending on the
analysis type

114

In Vitro (e.g., PCR) vs. In Silico

• Useful for any application that requires exact genomic position
• Variant calling in downstream analysis
• Specifically: Identifying rare variants in cancer genomics
• Methylation profiling

• Accurate and flexible depth of coverage estimation
• Alternative: DNA quantification (without computational analysis)

• DNA quantification is challenging for metagenomics analysis
• Computational method: We can map to almost entire set of known

reference genomes to accurately estimate the coverage of a metagenomics
sample

• Transcriptome analysis
• Accurately quantifying expression levels & alternative splicing

• Better resolution (i.e., more sensitive analysis) for any other application
that does not specifically require mapping positions

115

Finding Mapping Positions

Basecalling

G GA T

Read Mapping Raw Signal Mapping

Traditional: Translating (basecalling)
signals to bases before analysis

Recent Work: Directly analyzing
signals without basecalling

Raw Signal Raw Signal

Basecalled sequences are
less noisy than raw signals

Many analysis tools use
basecalled sequences

Costly and power-hungry
computational requirements

Efficient analysis with better
scalability and portability

Raw signals retain more
information than just bases

Analyzing Raw Nanopore Signals

116

The Problem – Mapping Raw Signals
Raw Signal

Small Reference Genome Large Reference Genome (Human)

Fewer candidate regions
in small genomes

Accurate mapping

High throughput

Substantially larger number of regions to
check per read as the genome size increases

Problem: Probabilistic mechanisms
on many regions è inaccurate mapping

Problem: Distance calculation
on many regions è reduced throughput

117

RawHash – Key Idea

Raw Signal #1

Hash

0x01 Fast
Match

Raw Signal #2

0x01

Hash

Distance
Calculation

Challenge #2: Accurately finding as few similar regions as possible

Challenge #1: Generating the same hash value for similar enough signals

Key Observation: Identical nucleotides generate similar raw signals

118

Reference-to-Event Conversion
• K-mer model: Provides expected event values for each k-mer

• Preconstructed based on nanopore sequencer characteristics

• Use the k-mer model to convert all k-mers
of a reference genome to their expected event values

K-mer
Model

(Lookup
Table)

Reference Genome
GCTATTACC

GCTATT

TATTAC
CTATTA

ATTACC

k-
m

er
s

(𝒌
=
𝟔) 105.757390

103.170091
81.740642

101.082485

N
orm

alize

2.21

1.15
-0.09

1.11

Expected
Event Values

Normalized
Event Values

119

Enabling Analysis From Electrical Signals
• K many nucleotides (k-mers) sequenced at a time
• Event: A segment of the raw signal

• Corresponds to a particular k-mer

• Observation: Event values generated after sequencing the same k-mer
are similar in value (not necessarily the same)

� �	� 	�� �	� ���� ��	� �	�� ��	� ����

	�

�

��

��

�

���

���

���

��
���

���
���

�

Raw Nanopore Signal

Calculate
Means

Event Value

2.21Normalize

A
C
T
T
G
G Segment

Event

� �	� 	�� �	� ���� ��	� �	�� ��	� ����

	�

�

��

��

�

���

���

���

��
���

���
���

�

pA
m
pe
re

Time
ACTTGGk-mer

120

121

Quantization -- RawHash

…
-0.091	in	Binary:

…
-0.084	in	Binary:

0 0 01 1 1 1 1 1 1 1 1 0 0 01 1 1 1 1 1 1 1 0

Most significant ! = 9 bits: Most significant ! = 9 bits:

0 01 1 1 1 1 1 1 0 01 1 1 1 1 1 1

Pruning	$ = 4 bits: Pruning	$ = 4 bits:

01 0 1 1 01 0 1 1Quantized	
Event	Values

122

Packing and Hashing

CTATTA -0.09 11 0 0 1

TATTAC

ATTACC

1.15

1.11

Consecutive
k-mers

Consecutive
events

00 1 1 0

00 1 0 1

… … … …Quantize

Quantize

Pack

11 0 0 1 00 1 1 0 … 10 0 0 1

Hash0x400D70A4Hash value of
consecutive events

Quantize

The Sequence Until Mechanism
• Problem:

• Unnecessary sequencing waste time, power and money

• Key Idea:
• Dynamically decide if further sequencing of the entire sample is necessary

to achieve high accuracy
• Stop sequencing early without sacrificing accuracy

• Potential Benefits:
• Significant reduction in sequencing time and cost

• Example real-time genome analysis use case:
• Relative abundance estimation

123

The Sequence Until Mechanism
• Key Steps:

1. Continuously generate relative abundance estimation after every 𝑛 reads
2. Keep the last 𝑡 estimation results
3. Detect outliers in the results via cross-correlation of the recent 𝑡 results
4. Absence of outliers indicates consistent results
• Further sequencing is likely to generate consistent results è Stop the

sequencing

𝑛 Reads Sequenced
Relative

Abundance
Estimation

Estimation #1

Relative
Abundance
Estimation

2𝑛 Reads Sequenced
Relative

Abundance
Estimation

Estimation #2

𝑡×𝑛 Reads Sequenced Estimation #𝑡

… ……

Outlier?

Ye
s

Keep
Sequencing

N
o

Stop
Sequencing

124

125

Sequence Until – RawHash & UNCALLED

126

Sequence Until – RawHash

127

Presets

128

Versions – RawHash

• Basecalled real-time analysis
• ReadFish, ReadBouncer, RUBRIC: Basecalled read mapping
• SPUMONI, SPUMONI 2: Basecalled binary classification using r-index
• Coriolis: Basecalled metagenomics classification
• baseLess: k-mer calling for classification

• Raw signal analysis without basecalling
• SquiggleNet, DeepSelectNet, RawMap: Target/non-target classification
• Sigmoni: Target/non-target classification using r-index
• UNCALLED, Sigmap, RawHash: Read mapping

129

Related Works

130

Adaptive Quantization

• RawHash Chaining

• RawHash2 Chaining

131

Chaining Scores – RawHash vs RawHash2

132

Datasets

133

Accuracy

RawHash UNCALLED SigmapRawHash2-MinimizerRawHash2

SARS-CoV-2 E.	coli Yeast Green	Algae

Human Contamination Relative	Abundance

134

Mapping Accuracy – Radar

135

Mapping Accuracy – All Metrics

RawHash UNCALLED SigmapRawHash2-MinimizerRawHash2

SARS-CoV-2

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput

Ideal

E.	coli

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput
Yeast

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput
Green	Algae

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput

Human

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput
Contamination

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput
Relative	Abundance

F-1
	Sc
ore

Avg.	Sequencing	Length

Throughput

136

Combined Benefits – Radar

137

Sequenced Length

138

Computational Resources #1

139

Computational Resources #2

ContaminationSARS-CoV-2 Green	Algae HumanE.	coli Yeast

Av
g.
	T
im
e	
Pe
r	
Re
ad
	(m

s) 104
103
102
101
100
10-1

RawHash UNCALLED SigmapRawHash2-MinimizerRawHash2

Relative	
Abundance

140

Average Time Spent per Read

141

FAST5 vs. POD5. vs S/BLOW5

142

Flow Cell Types R9 vs R10.4

143

Ratio of Filtered Seed Hits

144

Presets

145

Versions

1. Constructing the hash table index from raw nanopore signals
• Reference-to-signal conversion is mainly free from noise (e.g., stay errors)
• Indexed raw nanopore signals are not free from noise

2. Aggressively filtering consecutive and similar signals
to substantially reduce noise at the cost of data loss

146

Indexing using Raw Signals

Aggressive Filtering

2.21 2.12 2.35 -0.9 -1.05 -0.85 -0.89 -1.01 1.15 1.25 1.20

2.21 2.12 2.35 -0.9 -1.05 -0.85 -0.89 -1.01 1.15 1.25 1.20

Raw Nanopore Signals

3. Adjusting the minimum chaining score to avoid false chains
• All-vs-all overlapping tends to find a larger number of

seed hits than mapping to a reference genome
• Minimum score for a chain during overlapping is set to be

~5× larger than mapping
• All such chains are reported (instead of a single best mapping)

4. Avoid cyclic overlaps with deterministic comparisons

147

Chaining and Outputting Overlaps

Target

Query
Target
Query

• Results are shown relative to the best result from each metric
• Metrics: auN, longest unitig, largest connected unitigs (component)
• Coverage: 0.6x

148

Low-Coverage Human Genome Assembly

auN

Longest unitig

La
rg

es
t c

om
po

ne
nt

Minimap2Rawsamble Flye

Rawsamble leads to
better contiguity

than using basecalled reads
at a low coverage dataset

Can the richer information
in raw signals

improve assembly quality
where basecalled analysis falls short?

149

Datasets

150

Throughput

151

Performance

152

Overlapping Statistics

153

Assembly Statistics

2,722,499 bps

5,207,206 bps

Minimap2 (D2) Rawsamble (D2)

154

Visualizing the E. coli Assembly Graph

161,883 bps

464,054 bps

Minimap2 (D3) Rawsamble (D3)

155

Visualizing the Yeast Assembly Graph

252,038 bps
198,709 bps

Minimap2 (D4) Rawsamble (D4)

156

Visualizing the Green Algae Assembly Graph

364,113 bps

48,424 bps

Minimap2 (D5) Rawsamble (D5)

157

Visualizing the Human Assembly Graph

158

HERRO Correction Before and After

159

Parameters

160

Presets

161

Versions

• The Baum-Welch algorithm is commonly used with pHMMs
• For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

162

Utilizing Probabilities in pHMMs

Ft(i) =
∑

j→V Ft↑1(j)ωjieS[t](vi)

Forward Calculations
Bt(i) =

∑
j→V Bt+1(j)ωijeS[t+1](vj)

Backward Calculations

ω→
ij =

nS↑1∑
t=1

ωijeS[t+1](vj)Ft(i)Bt+1(j)

nS↑1∑
t=1

∑
x↓V

ωixeS[t+1](vx)Ft(i)Bt+1(x)

Updating
Transition Probabilities

e→X(vi) =

nS∑
t=1

Ft(i)Bt(i)[S[t] = X]

nS∑
t=1

Ft(i)Bt(i)

Updating
Emission Probabilities

Training Step

• A dynamic programming approach
• Calculate the ‘possibility’ of visiting each state in a pHMM
• Given an observed sequence (from both directions of the sequence)

Forward & Backward Calculations

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

163

• Goal: Identifying the variations between sequences
• Inference by using decoding algorithms (e.g., the Viterbi Algorithm)

Inference using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

A C T T

D

G

Inference:

164

• Goal: Maximizing parameters to observe certain variations
• Training using the parameter updating steps in the Baum-Welch algorithm

Training using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

Training

165

• Observation: Filling the entire Backward table is unnecessary
• Pipelining opportunities to directly consume a Backward value

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

Training

166

✓Needed No need

• Observation: Filling the entire Backward table is unnecessary
• Pipelining opportunities to directly consume a Backward value
• Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

Training

167

• Observation: Filling the entire Backward table is unnecessary
• Pipelining opportunities to directly consume a Backward value
• Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

168

Training

• Observation: Filling the entire Backward table is unnecessary
• Pipelining opportunities to directly consume a Backward value
• Partial compute approach: Only a single row should be fully stored
• Reduces the storage requirements during training

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A

T

G

T

169

Training

• Observation: ‘Negligible’ cells can be ignored
without significantly reducing overall accuracy
• Filtering: Non-negligible states are identified by sorting
• Sorting to find exactly 𝑛 states with largest Forward or Backward values

• Sorting is complex to implement in hardware (and costly)
• Can we filter without sorting?

SW: Reducing Unnecessary Computations

𝑭𝒕 𝒊 𝒊
𝑡
A

T

G

T

Forward Calculations

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Filtered Forward Calculations

A DI D C I D T I

A

T

G

T

Filter by
sorting

170

• Observation: ‘Negligible’ cells can be ignored
without significantly reducing overall accuracy
• Goal: Find at least 𝑛 states with largest Forward and Backward values
• Histogram-based filtering: Placing the states into buckets

corresponding to a range of values
• Filter is full as soon we find at least 𝒏 states (e.g., 𝒏	 = 	𝟏𝟎)

SW: Reducing Unnecessary Computations

Filter is full

Histogram Filter

.

.

.

8, 9
10, 14
15, 16, 18
11, 20, 21, …
13, 17, 19, …

States Range
1.00 – 0.94
0.94 – 0.88
0.88 – 0.82
0.82 – 0.76
0.76 – 0.70

0.06 – 0.00

.

.

.
The rest is ignored
from further calculation

Filter size = 2 < 10
Filter size = 4 < 10
Filter size = 7 < 10

Filter size = 13 > 10

171

• Observation: Same multiplications are redundantly performed
• Same default values are used for each possible connection in pHMMs
• Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
• By enabling efficient reuse of the common multiplications results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Costly FP
Operations

Same output

172

• Observation: Same multiplications are redundantly performed
• Same default values are used for each possible connection in pHMMs
• Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
• By enabling efficient reuse of the common multiplications results
• Lookup tables (LUTs) to efficiently store and use these common results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Cheap LUTs

Same output

173

Overview of ApHMM Design

ApHMM	Core

Compute	BlockControl	Block

LUT

Transition	
Scratchpad

Histogram
Filter

Data	Control

Parameters

Index	Control

Calculate	Backward	
(Step-by-Step)

Memory	(DRAM/L2/L1)CPU

Calculate	Forward	
(Full)

Flexible and efficient control logic & hardware design✓

Update	Emission	
Probabilities
(Step-by-Step)

Update	Transition	
Probabilities
(Step-by-Step)

174

• Comparison Points
• CPU: Apollo, HMMER
• GPU: ApHMM-GPU, HMM_cuda
• FPGA: FPGA D&C

• Datasets
• Error correction: Real 10,000 DNA sequences from Escherichia coli

(E. coli) with average 5,128 read length
• Protein family search: Entire Pfam database (19,632 pHMMs) and

real 214,393 protein sequences from Mitochondrial carrier
• Multiple sequence alignment: Aligning over ~1 million protein sequences

from Pfam database

Evaluation Methodology

175

Performance: Workload Acceleration

Error	Correction Protein	Family	Search

100

101

102

1	Thread Multiple	
Sequence
Alignment

Sp
ee
du
p	
ov
er
	C
PU
-1

12	Threads 32	Threads

CPU

FP
GA

Ap
H
M
MGPU

CP
U
-1

FP
GA

Ap
H
M
M

CP
U-
12

Ap
H
M
M

CP
U-
32

Ap
H
M
M

CP
U
-1

FP
GA

Ap
H
M
M

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Up to 60× (CPU-1), 1.75× (GPU), and 1.95× (FPGA) faster

execution of the end-to-end applications

Error correction benefits most from the acceleration

due to frequent and costly training

176

More in the Paper
• More results

• Detailed discussion on the results generated per use case
• Justification of the dataset and baseline choices

• Details of all mechanisms and configurations
• Details of our design space exploration
• Data distribution and memory layout
• Control and execution flow of ApHMM cores
• Related work discussion (e.g., Pair HMMs vs pHMMs)
• Detailed background on the equations and algorithms

177

• Filtering heuristics aim to reduce unnecessary computations

Filtering – Performance Benefits

N
or
m
al
iz
ed
	R
un
ti
m
e

(O
ve
r	
15
0-
ba
se
	R
ea
ds
)

4

10.9

2.4 1

25

6.5

150-base	Reads 650-base	Reads 1000-base	Reads

ApHMM (w/o	Filtering) ApHMM (with	Filtering)

0
5
10
15
20
25

Histogram	Filter

.

.

.

!, #
$%, $&

$', $(, $!
$$,)%,)$,…
$+, $,, $#,…

State	IDs	(-) Max.	Value

$. %%
0. #&
0. !!
0. !)
0. ,(

0. %(

Same	Memory
Block

/! $' = %. !'

Ignore	rest	
when	the	
filter	is	full

Filter	is	full

.

.

.

(a) (b)

Motivational Study: ~2.5x performance improvements with filtering

178

• Software-based filtering heuristics aim to reduce unnecessary
computations
• High-accuracy can be achieved with filtering with correct setting

Filtering – Accurate but Costly Sorting

88%
90%
92%
94%
96%
98%
100%

0

10

20

30

40

50 100 200 300 400 500 1000

Ac
cu
ra
cy
	(%

)

N
or
m
al
iz
ed
	R
un
ti
m
e	
of
	

th
e	
Ba
um

-W
el
ch
	E
xe
cu
ti
on

Filter	Size

Normalized	Runtime	(Over	Filter	Size	=	50) Accuracy

Filtering takes up ~8.5% of the overall execution time
due to sorting

179

• We analyze maximum number of cores that ApHMM can utilize
• Before it is bottlenecked by memory bandwidth for genomics applications

Choosing the Right Amount of Cores

ApHMM with 4 cores (ApHMM-4) provides the best overall speedup

CPU ApHMM-accelerated	Baum-Welch	Execution Overhead

0.2
0.4
0.6
0.8
1.0

Error	Correction Protein	Family
Search

Multiple	Sequence
Alignment	(MSA)

N
or
m
al
iz
ed
	R
un
ti
m
e

(A
pH

M
M
-1
) 1.00

0.75

1.00

0.80
0.85
0.90
0.95

0.95
0.96
0.97
0.98
0.99

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

180

