Fast and Efficient Genome Analysis via New Algorithms and Architectures

Can Firtina <u>canfirtina@gmail.com</u> <u>https://canfirtina.com</u>

6 May 2025 Inria - GenScale & Symbiose

The Goal of Computing: Beyond Numbers

"The purpose of COMPUTING is [to gain] insight, not numbers"

Richard Hamming

"<u>Numerical Methods for Scientists and Engineers</u>," Richard Hamming, 1962. ²

Computing is Bottlenecked by Data

Large recommender systems

Graph/Tree Processing

Large Language Models

Genomics

Computing is Bottlenecked by Data

Data movement → Performance & Energy Bottleneck

Graph/Tree Processing

Genomics

Problems with Data Analysis Today

Special-Purpose Machine for **Data Generation**

General-Purpose Machine for **Data Analysis**

FAST

SLOW

Processing capabilities oblivious to data analysis requirements Large amounts of data movement

Data Movement Dominates Performance

 Data movement dominates performance and is a major system energy bottleneck (accounting for 40%-62%)

Boroumand et al., "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS 2018
Kestor et al., "Quantifying the Energy Cost of Data Movement in Scientific Applications," IISWC 2013
Pandiyan and Wu, "Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms," IISWC 2014

We need to **co-design algorithms** and **architecture** to handle data well

Pushing Towards New Architectures

Pushing Towards New Architectures

9

Algorithm-Architecture Co-design is Critical

Computer Architecture (expanded view)

Problem

Algorithm

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Devices

Electrons

Accelerating Genome Analysis [DAC '23]

 Onur Mutlu and <u>Can Firtina</u>, <u>"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"</u> *Invited Special Session Paper in Proceedings of the <u>60th Design Automation</u> <u>Conference</u> (DAC), San Francisco, CA, USA, July 2023. [<u>Related Invited Paper</u>] [arXiv version] [<u>Slides (pptx) (pdf)</u>] [<u>Talk Video at DAC 2023</u>] (38 minutes, including Q&A)*

Accelerating Genome Analysis via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina ETH Zürich

Analyzing Genomes Reveals Key Insights

Personalized Medicine

Detecting **pathogens** in the environment

Altering genomes to solve fundamental challenges of life

Rapid surveillance of **disease outbreaks**

Generating the Entire Genomic Sequence

Genomic Data: Giant Jigsaw Puzzle to Solve

Human (Reference) Genome: 3.2 Billion bps (haploid)

CGAAATGCC...AGATTAAAÇĢÇT...TGCCCTAA...GAATGGCGT

Solving the Puzzle: The Naïve Way

 \cong Years

A Common Genome Analysis Pipeline

Genome Analysis is Energy Inefficient

Single memory request consumes >160× - 800× more energy compared to performing an addition operation

Boroumand et al., "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS 2018
Kestor et al., "Quantifying the Energy Cost of Data Movement in Scientific Applications," IISWC 2013
Pandiyan and Wu, "Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms," IISWC 2014

Genome Analysis is Computationally Costly

Limited Application Scope and Accuracy

Energy-efficient analysis for Resource-constrained devices

Urgent analysis within minutes

Large-scale analysis without sacrificing accuracy and performance

Enabling New Directions in Genome Analysis **via New Algorithms**

New Frontiers: Raw Signal Analysis [ISMB '23]

 <u>Can Firtina</u>, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu, <u>"RawHash: Enabling Fast and Accurate Real-Time Analysis</u> of Raw Nanopore Signals for Large Genomes" Proceedings of the <u>31st Annual Conference on Intelligent Systems for Molecular</u> *Biology (ISMB) and the 22nd European Conference on Computational Biology* (ECCB), July 2023 [Online link at Bioinformatics Journal] [arXiv version] [Slides (pptx) (pdf)] [Talk Video at ISMB/ECCB 2023] (19 minutes) [RawHash Source Code]

> Bioinformatics, 2023, **39**, i297–i307 https://doi.org/10.1093/bioinformatics/btad272 ISMB/ECCB 2023

> > OXFORD

RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes

Can Firtina ()^{1,*}, Nika Mansouri Ghiasi ()¹, Joel Lindegger ()¹, Gagandeep Singh ()¹, Meryem Banu Cavlak ()¹, Haiyu Mao ()¹, Onur Mutlu ()^{1,*}

¹Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland. E-mail: firtinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)

Real-Time Raw Signal Analysis [Bioinform. '24]

 <u>Can Firtina</u>, Melina Soysal, Joël Lindegger, and Onur Mutlu, <u>"RawHash2: Mapping Raw Nanopore Signals Using</u> <u>Hash-Based Seeding and Adaptive Quantization"</u> <u>Bioinformatics</u>, July 2024. [<u>Online link at Bioinformatics Journal</u>] [arXiv version] [RawHash Talk Video] (19 minutes) [RawHash2 Source Code]

Bioinformatics, 2024, **40(8)**, btae478 https://doi.org/10.1093/bioinformatics/btae478 Advance Access Publication Date: 30 July 2024 **Applications Note**

OXFORD

Sequence analysis

RawHash2: mapping raw nanopore signals using hash-based seeding and adaptive quantization

Can Firtina (^{1,*}, Melina Soysal (¹, Joël Lindegger (¹, Onur Mutlu (^{1,*})

¹Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland

*Corresponding authors. Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland. E-mail: firtinac@ethz.ch (C.F.); omutlu@ethz.ch (0.M.)

New Directions: Assembling Raw Signals

 <u>Can Firtina</u>, Maximilian Mordig, Harun Mustafa, Sayan Goswami, Nika Mansouri Ghiasi, Stefano Mercogliano, Furkan Eris, Joël Lindegger, Andre Kahles, and Onur Mutlu
<u>"Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a</u> <u>Hash-based Seeding Mechanism"</u> *arXiv*, October 2024 [arXiv version]
[Talk Video at CSHL Data Science 2024] (16 minutes)
[Source Code]

Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a Hash-based Seeding Mechanism

Can Firtina¹ Maximilian Mordig^{1,2} Harun Mustafa^{1,3,4} Sayan Goswami¹ Nika Mansouri Ghiasi¹ Stefano Mercogliano¹ Furkan Eris¹ Joël Lindegger¹ Andre Kahles^{1,3,4} Onur Mutlu¹ ¹ETH Zurich ²Max Planck Institute for Intelligent Systems ³University Hospital Zurich ⁴Swiss Institute of Bioinformatics

Quickly Aligning Raw Signals

 Joel Lindegger, <u>Can Firtina</u>, Nika Mansouri Ghiasi, Mohammad Sadrosadati, Mohammed Alser, and Onur Mutlu, <u>"RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal Mapping</u> <u>via Combining Seeding and Alignment"</u> <u>IEEE Access</u>, December 2024. [<u>Online link at IEEE Access Journal</u>] [<u>arXiv version</u>] [<u>RawAlign Source Code</u>]

RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Combining Seeding and Alignment

JOËL LINDEGGER[®], CAN FIRTINA[®], NIKA MANSOURI GHIASI, MOHAMMAD SADROSADATI[®], MOHAMMED ALSER[®], AND ONUR MUTLU[®], (Fellow, IEEE)

Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland

Corresponding authors: Joël Lindegger (jmlindegger@gmail.com), Can Firtina (firtinac@ethz.ch), and Onur Mutlu (omutlu@ethz.ch)

This work was supported in part by the Semiconductor Research Corporation (SRC), in part by the ETH Future Computing Laboratory, in part by European Union's Horizon Programme for Research and Innovation under Grant 101047160-BioPIM, and in part by the Swiss National Science Foundation (SNSF) under Grant 200021_213084.

Tolerating Noise in String Matching [NARGAB '23]

 <u>Can Firtina</u>, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, and Onur Mutlu,
<u>"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism</u> <u>to Find Fuzzy Seed Matches in Genome Analysis"</u> *NAR Genomics and Bioinformatics*, March 2023.
[Online link at NAR Genomics and Bioinformatics Journal]
[arXiv version]
[bioRxiv version]
[Talk Video at RECOMB 2023] (23 minutes)
[BLEND Source Code]

Volume 5, Issue 1 March 2023 JOURNAL ARTICLE

BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis 👌

Can Firtina ⊠, Jisung Park, Mohammed Alser, Jeremie S Kim, Damla Senol Cali, Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, Onur Mutlu ⊠

NAR Genomics and Bioinformatics, Volume 5, Issue 1, March 2023, lqad004,

Mitigating Useless Computations [TCBB '24]

Jeremie S. Kim*, <u>Can Firtina*</u>, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu, <u>"AirLift: A Fast and Comprehensive Technique</u> <u>for Remapping Alignments between Reference Genomes"</u> <u>IEEE/ACM TCBB</u>, August 2024. [Online link at IEEE/ACM TCBB Journal] [arXiv version] Presented at the <u>21st Asia Pacific Bioinformatics Conference (APBC)</u>, Changsha, China, April 2023. [Slides (pptx) (pdf)] [Talk Video at BIO-Arch 2023 Workshop] (22 minutes) [AirLift Source Code]

AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

Jeremie S. Kim^{1,†} Can Firtina^{1,†} Meryem Banu Cavlak¹ Damla Senol Cali² Nastaran Hajinazar^{1,3} Mohammed Alser¹ Can Alkan⁴ Onur Mutlu^{1,2,4} ¹ETH Zurich ²Carnegie Mellon University ³Simon Fraser University ⁴Bilkent University

Mitigating Useless Computations [Bioinform. '22]

 Jeremie S. Kim, <u>Can Firtina</u>, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan, and Onur Mutlu, "FastRemap: A Tool for Quickly Remapping Reads <u>between Genome Assemblies"</u> *Bioinformatics*, October 2022.
[Online link at Bioinformatics Journal]
[arXiv preprint]
[FastRemap Source Code]

> Bioinformatics, 38(19), 2022, 4633–4635 https://doi.org/10.1093/bioinformatics/btac554 Advance Access Publication Date: 17 August 2022 Applications Note

OXFORD

Genome analysis

FastRemap: a tool for quickly remapping reads between genome assemblies

Jeremie S. Kim ()^{1,*}, Can Firtina ()¹, Meryem Banu Cavlak¹, Damla Senol Cali ()², Can Alkan ()³ and Onur Mutlu ()^{1,3}

¹Department of Computer Engineering, ETH Zurich, D-ITET, Zurich 8006, Switzerland, ²Department of Computer Engineering, Bionano Genomics, San Diego, CA 92121, USA and ³Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

Utilizing Al/ML in Genome Analysis via New Algorithms and Architectures

Error Correction using ML [Bioinform. '20]

 <u>Can Firtina</u>, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument Cicek, Can Alkan, and Onur Mutlu, <u>"Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate</u> <u>Assembly Polishing Algorithm"</u> <u>Bioinformatics</u>, June 2020. [Online link at Bioinformatics Journal] [arXiv version] [Slides (pptx)][(pdf)] [Source Code]

Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm

Can Firtina, Jeremie S Kim, Mohammed Alser, Damla Senol Cali, A Ercument Cicek,

Can Alkan 🖾, Onur Mutlu 🖾

Bioinformatics, Volume 36, Issue 12, 15 June 2020, Pages 3669–3679,

https://doi.org/10.1093/bioinformatics/btaa179

Published: 13 March 2020 Article history ▼

Accelerating ML & Genome Graphs [TACO '24]

 <u>Can Firtina</u>, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, Mohammed Alser, Juan Gomez Luna, Sreenivas Subramoney and Onur Mutlu, <u>"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energyefficient Genome Analysis"</u> <u>ACM Transactions on Architecture and Code Optimization</u> (TACO), Feb 2024. [ACM Digital Library version] [arXiv version]
Presented at the <u>19th HiPEAC Conference</u>, Munich, Germany, January 2024. [Slides (pptx) (pdf)] [Talk Video HiPEAC 2024] (35 minutes) [ApHMM Source Code]

```
RESEARCH-ARTICLE | OPEN ACCESS | ⓒ (i)
```

X in **& f**

ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energyefficient Genome Analysis

<u>ACM Transactions on Architecture and Code Optimization, Volume 21, Issue 1</u> • Article No.: 19, Pages 1 - 29 <u>https://doi.org/10.1145/3632950</u>

Translating Raw Signals using ML [Genome. Biol. '24]

 Gagandeep Singh, Mohammed Alser, Kristof Denolf, <u>Can Firtina</u>, Alireza Khodamoradi, Meryem Banu Cavlak, Henk Corporaal and Onur Mutlu, "RUBICON: A Framework for Designing Efficient Deep Learning-Based <u>Genomic Basecallers"</u> <u>Genome Biology</u>, February 2024. [arXiv version]
[Online link at Genome Biology Journal]
[RUBICON Source Code]

Method Open access Published: 16 February 2024

RUBICON: a framework for designing efficient deep learning-based genomic basecallers

<u>Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina</u> [™], <u>Alireza Khodamoradi, Meryem Banu</u> <u>Cavlak, Henk Corporaal</u> & <u>Onur Mutlu</u> [™]

Genome Biology 25, Article number: 49 (2024) | Cite this article

Eliminating Useless Basecalling [Front. In Genetics '24]

 M. Banu Cavlak, Gagandeep Singh, Mohammed Alser, <u>Can Firtina</u>, Joel Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, and Onur Mutlu,
"TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering"
Frontiers in Genetics, October 2024.
[Online link at Frontiers in Genetics Journal]
[arXiv Version]
[Talk Video at BIO-Arch 2023 Workshop]
[TargetCall Source Code]

TargetCall: eliminating the wasted computation in basecalling via pre-basecalling filtering

Meryem Banu Cavlak¹*, Gagandeep Singh¹, Mohammed Alser¹, Can Firtina¹*, Joël Lindegger¹, Mohammad Sadrosadati¹, Nika Mansouri Ghiasi¹, Can Alkan² and Onur Mutlu¹*

¹SAFARI Research Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland, ²Department of Computer Engineering, Bilkent University, Ankara, Türkiye

ML-based Genome Analysis via PIM [MICRO '22]

 Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, <u>Can Firtina</u>, Akanksha Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping"

Proceedings of the <u>55th International Symposium on Microarchitecture</u> (**MICRO**), Chicago, IL, USA, October 2022. [<u>Slides (pptx) (pdf)</u>] [<u>Longer Lecture Slides (pptx) (pdf)</u>] [<u>Lecture Video</u> (25 minutes)] [<u>arXiv version</u>]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

Haiyu Mao¹ Mohammed Alser¹ Mohammad Sadrosadati¹ Can Firtina¹ Akanksha Baranwal¹ Damla Senol Cali² Aditya Manglik¹ Nour Almadhoun Alserr¹ Onur Mutlu¹ ¹ETH Zürich ²Bionano Genomics

Basecalling using PIM [MICRO '23]

 Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, <u>Can Firtina</u>, Stephan Wong, Onur Mutlu, and Said Hamdioui,
"Swordfish: A Framework for Evaluating Deep Neural Network-based Basecalling using Computation-In-Memory with Non-Ideal Memristors" Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto, ON, Canada, November 2023.
[Slides (pptx) (pdf)] [arXiv version]

Swordfish: A Framework for Evaluating Deep Neural Network-based Basecalling using Computation-In-Memory with Non-Ideal Memristors

Taha Shahroodi¹ Gagandeep Singh^{2,3} Mahdi Zahedi¹ Haiyu Mao³ Joel Lindegger³ Can Firtina³ Stephan Wong¹ Onur Mutlu³ Said Hamdioui¹

¹TU Delft ²AMD Research ³ETH Zürich

Fast, Accurate, and Efficient Genome Analysis via Algorithm-Architecture co-design
Accelerating String Matching [MICRO '20]

 Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, <u>Can Firtina</u>, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, <u>"GenASM: A High-Performance, Low-Power Approximate String Matching</u> <u>Acceleration Framework for Genome Sequence Analysis"</u> *Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2020.
 [Lightning Talk Video (1.5 minutes)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (18 minutes)]
 [Slides (pptx) (pdf)]*

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali[†][™] Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[◊] Lavanya Subramanian[‡] Jeremie S. Kim^{◊†} Rachata Ausavarungnirun[⊙] Mohammed Alser[◊] Juan Gomez-Luna[◊] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{◊†▽}
 [†]Carnegie Mellon University [™]Processor Architecture Research Lab, Intel Labs [¬]Bilkent University [◊]ETH Zürich
 [‡]Facebook [⊙]King Mongkut's University of Technology North Bangkok ^{*}University of Illinois at Urbana–Champaign

Accelerating Genome Graphs [ISCA '22]

 Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, <u>Can Firtina</u>, Meryem Banu Cavlak, Jeremie Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, <u>"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"</u> *Proceedings of the <u>49th International Symposium on Computer</u> <u>Architecture (ISCA)</u>, New York, June 2022. [Slides (pptx) (pdf)] [arXiv version] [SeGraM Source Code and Datasets] [Talk Video (22 minutes)]*

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

In-Storage Filtering for Genomics [ASPLOS '22]

 Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, <u>Can Firtina</u>, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu, <u>"GenStore: A High-Performance and Energy-Efficient In-Storage Computing</u> <u>System for Genome Sequence Analysis"</u> Proceedings of the <u>27th International Conference on Architectural Support for</u> <u>Programming Languages and Operating Systems</u> (ASPLOS), Virtual, Feb 2022. [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

In-Storage Metagenomics [ISCA '24]

 Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, <u>Can Firtina</u>, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, Mohammed Alser, Jisung Park, and Onur Mutlu,
 "MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-Storage Processing"
 Proceedings of the <u>51st Annual International Symposium on Computer</u> <u>Architecture (ISCA</u>), Buenos Aires, Argentina, July 2024.
 [Slides (pptx) (pdf)]
 [arXiv version]

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

Accelerating Genome Analysis [DAC '23]

 Onur Mutlu and <u>Can Firtina</u>, <u>"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"</u> *Invited Special Session Paper in Proceedings of the <u>60th Design Automation</u> <u>Conference</u> (DAC), San Francisco, CA, USA, July 2023. [<u>Related Invited Paper</u>] [arXiv version] [<u>Slides (pptx) (pdf)</u>] [<u>Talk Video at DAC 2023</u>] (38 minutes, including Q&A)*

Accelerating Genome Analysis via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina ETH Zürich

My Involvements During my Ph.D.

Goal: Enable **Fast, Energy-Efficient, Accurate, and Scalable Genome Analysis** by Designing Algorithms and Architectures

Today's Talk

Real-Time and Raw Sequencing Data Analysis

[ISMB/ECCB'23]

[Bioinformatics'24]

[IEEE Access'24]

[arXiv'24 & HiTSeq'24]

Algorithm & Hardware Design for Al in Genome Analysis

[Bioinformatics'20] [ACM TACO'24] [Genome Biology'24]

[Front. in Genetics'24]

Accurate and Fast Algorithm Design for Read Mapping

[Bioinformatics'22] [NARGAB'23 & RECOMB'23] [arXiv'23] [arXiv'23]

[IEEE/ACM TCBB'24]

Data-Centric Architectures for Genome Analysis

> [MICRO'20] [MICRO'22] [ISCA'22] [ASPLOS'22] [IEEE Access'22] [MICRO'23] [ISCA'24]

First/Co-First Author Publications

Reviews: [CSBJ'22] [DAC'23] [Nature Protocols'24]

Today's Talk

Significant computation and energy overhead

Limited accuracy and application scope

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 & HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

ApHMM (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Today's Talk

(1,1) Significant computation and energy overhead

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 &

HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

Aprillin (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Basecalling is Accurate yet Costly

How to make this pipeline cheaper?

RawHash	Rawsamble	\geq	АрНММ	Future Research

Can We Survive Without Translation?

Can We Survive With Noisy Signal Analysis?

Noise in Raw Electrical Signals

Observation: Identical molecules generate similar raw signals

Sequencing CTGCGTAGCA

Scalability Issues Limit Real-Time Analysis

No Real-Time Analysis for Larger Genomes:

Searching mechanism does not scale well

Benefits of Real-Time Analysis

Reducing latency by overlapping analysis with sequencing

Reducing sequencing time and cost by stopping sequencing early

50

Goal

Enable Fast, Accurate, and Scalable Real-Time Analysis for Larger Genomes

Challenge: How to generate the same hash value for similar enough signals with various noise types?

samble
w

RawHash Key Idea – Quantization

Solution Enables matching raw signals by eliminating slight differences

Adaptive Quantization

 Key Idea: Quantizing raw signals with non-equal bucket widths by leveraging raw signal distribution

RawHash Key Idea – Hash-based Matching

Sequencing CTGCGTAGCA

Key Contribution: The first hash-based search (and indexing) mechanism for raw signals

RawHash

Real-Time Analysis Benefits from Fast Search

Real-time Analysis for Human Genomes:

Fast search instead of costly neighbor search

Fast Search Leads to Accurate Search

Best accuracy for all genomes:

Hash values span longer sequences than vectors -> More unique and informative matches

(Almost) Identical accuracy to basecalled analysis: Is the small difference because RawHash is even better?

RawHash

Rawsamble

АрНММ

RawHash is Open Source

RawHash Public	S Edit Pins ◄	⊙ Unwatch 8 ▼	♀ Fork 5 ▼ ★ Starred 51 ▼
main 👻 양 9 Branches 🛇 3 Tags	Q Go to file T Add file -	<> Code •	About
canfirtina updating README	d3956ea - 3 months ago	0 🕚 46 Commits	RawHash can accurately and efficiently map raw nanopore signals to reference
extern	Rawsamble: overlapping signals and some fixes in RawHa	8 months ago	genomes of varying sizes (e.g., from viral to a human genomes) in real-time
gitfigures	rawsamble info in README	3 months ago	without basecalling. Described by Firtin
src	Experimental options 3 months ago		https://academic.oup.com/bioinformatic
test	Rawsamble new preset parameters	4 months ago	/article/39/Supplement_1/i297/7210440
) .gitignore	Rawsamble new preset parameters	4 months ago	academic.oup.com/bioinformatics/arti.
) .gitmodules	ules ZSTD sobmodule for POD5		segmentation event-detection
) LICENSE	R10 k-mer models can be parsed now as well.	2 years ago	genome-analysis hash-tables
) Makefile	A minor fix in Makefile	2 years ago	relative-abundances
) README.md	updating README	3 months ago	nanopore-sequencing
code_of_conduct.md Moving to multiple headers than a single one to improve a		2 years ago	nanopore-analysis-pipeline nanopore-reads nanopore-data
따 README 영 Code of conduct 회 GPL-3.0 license		∅ :≡	nanopore-minion raw-signal rawhash raw-nanopore-signal-analysis
	RawHash		 □ Readme ▲ GPL-3.0 license ⊘ Code of conduct Activity □ Custom properties ☆ 51 stars

RawHash's Impact

Several works building on RawHash:

Alignment without basecalling [IEEE Access'24]

Assembly without basecalling [arXiv'24]

In-storage processing [Accepted to ICS'25]

In-memory processing [Unpublished work] Collaboration with Industry to Accelerate Genome Analysis

[Ongoing]

Collaboration with Medical Centers to Accelerate

Sequence-to-Answer

Today's Talk

(1,1) Significant computation and energy overhead

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 &

HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

Aprimin (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Today's Talk

(1,1) Significant computation and energy overhead

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 &

HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

Aprilia (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs Pushing the Boundaries of Application Scope **via New Algorithms**

Challenges with Overlapping Raw Signals

Challenge: Identifying hash matches when both signals are noisy

Challenge: Finding **many** useful overlapping pairs (all-vs-all overlapping)

Challenge: Generating long paths from useful overlaps

The first mechanism that can perform all-vs-all overlapping from raw signals

RawHash	
---------	--

Rawsamble

Future Research

for performance improvements

Average speedup of **2**× than the **GPU-based basecalling**: GPU vs. GPU comparison is likely to provide even better results

RawHash

ApHMM

Key Results – First Ever Assemblies

It is time to rethink if we want to translate individual reads separately

Today's Talk

(1,1) Significant computation and energy overhead

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 &

HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

Aprimin (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Today's Talk

Significant computation and energy overhead

Limited accuracy and application scope

Real-Time and Raw Sequencing Data Analysis

Demokratic RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 & HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

ApHMM (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Algorithm Design Demands General-Purpose Computing Capabilities

Algorithm Design Demand General-Purpose Computing Capabilities

RawHash

Rawsamble
Great Algorithms Demand Specialization

Application-Specific Architecture

Function

Function

Function

Goal: Avoid wasting computation & energy

Opportunities:

Better data flow with minimal latency & power Efficient processors customized for the task Better parallelism

2

3

Paid Costs for Specialization:

Poor programmability High manufacturing and engineering costs

Acceleration Efforts for AI and Genomics

Cerebras WSE-3

The largest ML accelerator chip

Google's TPUs:

NVIDIA H100

Scale your studies with ease

Process high-throughput data quickly with hardware acceleration

Process biob-throughout data quickly with hardware acceleration. With four field-programmable gate arrays FPGAs) onboard you have the most powerful DRAGEN analysis ever anabling you to process NovaSeq x system data easily. Perform up to four simultaneous applications per flow cell in a single run.

Reduce data footprint, manage and store data easily with lower costs and lower energy consumption, with built-in compression that reduces FASTQ file sizes by up to 80%.2

Stream data directly to Illumina Connected Analytics or BaseSpace Sequence Hub on the cloud for scalable data management, analysis, and aggregation.

Absci and AMD Announce Collaboration and Strategic Investment to Accelerate the Future of AI Drug Discovery

01/08/2025

→ PDF Version

NVIDIA Partners With Industry Leaders to Advance Genomics, Drug Discovery and Healthcare

IQVIA, Illumina, Mayo Clinic and Arc Institute Harness NVIDIA AI and Accelerated Computing to Transform \$10 Trillion Healthcare and Life Sciences Industry

January 13, 2025

Important and Commonly Used Applications Demand Specialization

Graphs in Genomics

Graphs are commonly used to identify variations between sequences

To avoid **redundant** comparisons and storage

To provide **rich information** on expected variations

Reference Genome Graph

Graph-Based Applications in Genomics

A Common Graph Structure in Genomics Profile Hidden Markov Models (PHMMs): A probabilistic graph structure

Underlying ML Technique in Genomic Graphs

Underlying ML Technique in Genomic Graphs

Costly Use of ML in Genomic Graphs

Cost of Using Machine Learning (ML) in pHMMs:

Goal

Enable **rapid and power-efficient** use of the underlying ML technique in genome graphs

Key Approach: HW-SW Co-Design

- **Reduce redundant data storage** by utilizing the fixed data pattern
- Reduce unnecessary computations with quick filtering
 SW
- Avoid repeated operations by utilizing lookup tables

Reduce data movement by processing data where it makes sense

HW

• Flexible and efficient hardware design

RawHash

Rawsamble

HW: Simple Data Pattern in DP Calculations

Simple Pattern

Store and access data where it makes sense

SW: Reducing Unnecessary Computations

Challenge: Sorting is costly in hardware

SW: Reducing Unnecessary Computations

Software co-design:

Replace sorting with a cheaper filtering

State IDs	Range
8, 9	1.00 - 0.94
10, 14	0.94 - 0.88
15, 16, 18	0.88 - 0.82
11, 20, 21,	0.82 - 0.76
Histogram Filter	

Putting the Optimizations Together

Effectively implementing the hardware and software optimizations

to improve performance and reduce power requirements

RawHash Rawsamble ApHMM

Integrating ApHMM in a Complete System

The specialized task can be **offloaded**

to an accelerator whenever needed

Key Results: Performance

Specialized design enables computation **up to two orders of magnitude faster:**

Better data flow with reduced latency and improved parallelism

RawHash

Key Results: Energy Consumption

...and a significant reduction in energy consumption **by up to three orders of magnitude:**

simpler hardware with a minimized off-chip memory accesses and data movement

RawHash

Specialization Provides Significant Performance and Energy Benefits

Today's Talk

Significant computation and energy overhead

Limited accuracy and application scope

Real-Time and Raw Sequencing Data Analysis

RawHash (ISMB/ECCB'23) Enabling real-time and accurate read mapping without basecalling Rawsamble (arXiv'24 & HiTSeq'24) Enabling new applications by assembling raw sequencing data

Algorithm & Hardware Design for AI in Genome Analysis

ApHMM (TACO'24 & HiPEAC'24) Accelerating ML operations in Genome Graphs

Acknowledgements

- **Collaborators:** SAFARI ETHzürich AMD UNIVERSITY OF ORONTO intel OF SCIENCE san Doğramac OHANG UNIVERSIT **I** ISC Carnegie TECHNOLOGY Bilkent Mellon **T**UDelft J**niversity** 1986
- Funding agencies and industry sponsors:
 - BioPIM, SNSF, Intel, Google, Huawei, Microsoft, VMware, and SRC

Fast and Efficient Genome Analysis via New Algorithms and Architectures

Can Firtina <u>canfirtina@gmail.com</u> <u>https://canfirtina.com</u>

6 May 2025 Inria - GenScale & Symbiose

Sequencing Data Analysis

Data Movement Overhead

William Dally, HiPEAC 2015

A memory access consumes ~100-1000X the energy of a complex addition

Minimizer Sketching

Spaced Seeding

Strobemer Sketches

Hash-Based Sketching and Seed Matching

Chaining (Two Points)

Chaining (Multiple Points)

- Exact hash value matches: Needed for finding matching regions between a reference genome and a read
- What if there are mutations or errors?
 - No hash (seed) match will occur in such positions
- The chaining algorithm links **exact matches in a proximity** even though there are gaps (no seed matches) between them

Sequence Alignment

Nanopore Sequencing

Source of Noise in Nanopore Sequencing

Stochastic thermal fluctuations in the ionic current

• Random ionic movement due to inherent thermal energy (Brownian motion)

Variations in the translocation speed

• Mainly due to the motor protein

Environmental factors

- **Temperature:** Affecting enzymes including the motor protein
- **pH levels:** Affecting charge and the shape of molecules

Maybe: Aging & material-related noise between nanopores

• Their effects potentially can be minimized with normalization techniques

R9 vs. R10 Chemistries

Dual reader head

• Motor protein with more consistent translocation speed in R10

• **Duplex sequencing** in R10

Proteomics with Nanopores

Motone+, "Multi-pass, single-molecule nanopore reading of long protein strands", Nature 2024.

Processing Raw Nanopore Signals

- K many nucleotides (k-mers) sequenced at a time
- **Observation:** Abrupt change in the signal as DNA moves inside a nanopore (e.g., when sequencing a new k-mer)
- Goal: Identify raw signal segments corresponding each sequenced k-mer
 - Statistical tests (segmentation) to identify abrupt changes
 - Event: A raw signal segment corresponding to a particular k-mer

Reference-to-Signal Conversion

- **Goal:** Enable direct comparison to raw signals by converting reference genome into its synthetic signal (one-time task)
- K-mer model: Provides expected signal values for every possible k-mer
 - A lookup table preconstructed based on nanopore's characteristics
- Use the **k-mer model** to convert **all k-mers** of a reference genome to their **expected** signal values **Reference** Genome

... CTGCGTAGCAGCGTAATAG ...

Reference Signals

Challenges in Real-Time Analysis

Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

Accurate analysis from noisy raw signal data

Power-efficient computation for scalability and portability

Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected

- Microbiome studies by removing host DNA
- Eliminating known residual DNA or RNA (e.g., mitochondrial DNA)
- High abundance genome removal

Enrichment: Reads **not** mapping to a particular reference genome is ejected

- Removing contaminated organisms
- Targeted sequencing (e.g., to a particular region of interest in the genome)
- Low abundance genome enrichment

Applications of Run Until & Sequence Until

Run Until: Stopping the entire sequencing run

- Stopping when reads reach to a particular depth of coverage
- Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Run Until with accuracy-aware decision making

- Stopping when relative abundance estimations do not change substantially (for high-abundance genomes)
- Stopping when finding that the sample is contaminated with a particular set of genomes

In Vitro (e.g., PCR) vs. In Silico

• Polymerase Chain Reaction (PCR) as a way of in vitro "analysis"

- Can increase the quantity of DNA in a sample
- **Non-dynamic** targeted sequencing (e.g., low abundance *known* targets)
- Requires additional resources: Time and money for preparation and execution of PCR
- Adaptive sampling as a way of in silico (i.e., computational) analysis
 - Cannot increase the existing quantity of DNA in a sample
 - **Dynamic targeted sequencing:** Decisions can be made based on real-time analysis (e.g., Sequence Until)
 - Minimal additional resources
 - Almost no additional resources for preparation and execution
 - Simultaneous enrichment and depletion is possible
 - Better suited for rapid whole genome sequencing
 - *Beauty* of computational analysis (e.g., high flexibility no need for primers)
- PCR and adaptive sampling can be combined depending on the analysis type

Finding Mapping Positions

- Useful for **any application** that requires exact genomic position
 - Variant calling in downstream analysis
 - Specifically: Identifying rare variants in cancer genomics
 - Methylation profiling
- Accurate and flexible depth of coverage estimation
 - Alternative: DNA quantification (without computational analysis)
 - DNA quantification is challenging for metagenomics analysis
 - **Computational method:** We can map to almost entire set of known reference genomes to accurately estimate the coverage of a metagenomics sample
- Transcriptome analysis
 - Accurately quantifying expression levels & alternative splicing
- **Better resolution** (i.e., more sensitive analysis) for any other application that does not specifically require mapping positions

Analyzing Raw Nanopore Signals

Traditional: Translating (**basecalling**) signals to bases **before** analysis

Basecalled sequences are less noisy than raw signals

Many analysis tools use basecalled sequences

Costly and power-hungry computational requirements **Recent Work:** Directly analyzing signals **without basecalling**

Efficient analysis with better scalability and portability

Raw signals retain more information than just bases

RawHash – Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Challenge #1: Generating the **same** hash value for **similar enough** signals

Challenge #2: Accurately finding as few similar regions as possible

Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
 - Preconstructed based on nanopore sequencer characteristics
- Use the k-mer model to convert all k-mers of a reference genome to their expected event values

Enabling Analysis From Electrical Signals

- K many nucleotides (k-mers) sequenced at a time
- Event: A segment of the raw signal
 - Corresponds to a **particular** k-mer

 Observation: Event values generated after sequencing the same k-mer are similar in value (not necessarily the same)

Quantization -- RawHash

Packing and Hashing

The Sequence Until Mechanism

• Problem:

• Unnecessary sequencing waste time, power and money

• Key Idea:

- **Dynamically** decide if further sequencing of the entire sample is necessary to achieve high accuracy
- Stop sequencing early without sacrificing accuracy

Potential Benefits:

- Significant reduction in sequencing time and cost
- Example real-time genome analysis use case:
 - Relative abundance estimation

The Sequence Until Mechanism

• Key Steps:

- 1. Continuously generate relative abundance estimation after every n reads
- 2. Keep the last *t* estimation results
- 3. Detect outliers in the results via cross-correlation of the recent t results
- 4. Absence of outliers indicates **consistent results**
 - Further sequencing is likely to generate consistent results → Stop the sequencing

Sequence Until – RawHash & UNCALLED

		Estimat	ed Relati	ve Abundance F	Ratios	
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance
Ground Truth	0.0929	0.4365	0.0698	0.1179	0.2828	N/A
UNCALLED (25%)	0.0026	0.5890	0.0613	0.1332	0.2139	0.1910
RawHash (25%)	0.0271	0.4853	0.0920	0.0786	0.3170	0.0995
UNCALLED (10%)	0.0026	0.5906	0.0611	0.1316	0.2141	0.1920
RawHash (10%)	0.0273	0.4869	0.0963	0.0772	0.3124	0.1004
UNCALLED (1%)	0.0026	0.5750	0.0616	0.1506	0.2103	0.1836
RawHash (1%)	0.0259	0.4783	0.0987	0.0882	0.3088	0.0928
UNCALLED (0.1%)	0.0040	0.4565	0.0380	0.1910	0.3105	0.1242
RawHash (0.1%)	0.0212	0.5045	0.1120	0.0810	0.2814	0.1136
UNCALLED (0.01%)	0.0000	0.5551	0.0000	0.0000	0.4449	0.2602
RawHash (0.01%)	0.0906	0.6122	0.0000	0.0000	0.2972	0.2232

Sequence Until – RawHash

	Estimated I	Relative A	bundanc	ce Ratios in 50,0	00 Random	n Reads
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance
RawHash (100%)	0.0270	0.3636	0.3062	0.1951	0.1081	N/A
RawHash + <i>Sequence Until</i> (7%)	0.0283	0.3539	0.3100	0.1946	0.1133	0.0118

Presets

Preset (-x)	Corresponding parameters	Usage
viral	-e 5 -q 9 -l 3	Viral genomes
sensitive	-e 6 -q 9 -l 3	Small genomes (i.e., < 50 <i>M</i> bases)
fast	-e 7 -q 9 -l 3	Large genomes (i.e., > 50 <i>M</i> bases)

Versions – RawHash

Tool	Version
RawHash	0.9
UNCALLED	2.2
Sigmap	0.1
Minimap2	2.24

Related Works

Basecalled real-time analysis

- ReadFish, ReadBouncer, RUBRIC: Basecalled read mapping
- SPUMONI, SPUMONI 2: Basecalled binary classification using r-index
- Coriolis: Basecalled metagenomics classification
- baseLess: k-mer calling for classification

Raw signal analysis without basecalling

- SquiggleNet, DeepSelectNet, RawMap: Target/non-target classification
- Sigmoni: Target/non-target classification using r-index
- UNCALLED, Sigmap, RawHash: Read mapping

Adaptive Quantization

$$q(s) = \begin{cases} \lfloor n \times (f_r \times \frac{(s - f_{min})}{f_{max} - f_{min}}) & \text{if } f_{min} \le s \le f_{max} \\ \lfloor n \times (f_r + c_r \times s) & \text{if } s < f_{min} \\ \lfloor n \times (f_r + c_r + c_r \times s) & \text{if } s > f_{max} \end{cases} \end{cases}$$

Chaining Scores – RawHash vs RawHash2

RawHash Chaining

$$f(i) = \max \left\{ \max_{i > j \ge 1} \{ f(j) + \alpha(j, i) \}, w_i \right\}$$

$$\alpha(j, i) = \min\left\{\min\{y_i - y_j, x_i - x_j\}, w_i\right\}$$

RawHash2 Chaining

$$f(i) = \max \left\{ \max_{i>j\geq 1} \{f(j) + \alpha(j, i) - \beta(j, i)\}, w_i \right\}$$
$$\beta(j, i) = \gamma_c \left((y_i - y_j) - (x_i - x_j) \right)$$
$$\gamma_c(l) = \left\{ \begin{array}{ll} 0.01 \cdot \bar{w} \cdot |l| + 0.5 \log_2 |l| & (l \neq 0) \\ 0 & (l = 0) \end{array} \right.$$

Datasets

	Organism	Device Type	Flow Cell Type	Transloc. Speed	Sampling Frequency	Basecaller Model	Reads (#)	Bases (#)	SRA Accession	Reference Genome	Genome Size
					Rea	ad Mapping					
D1	SARS-CoV-2	MinION	R9.4.1 e8 (FLO-MIN106)	450	4000	Guppy HAC v3.2.6	1,382,016	594M	CADDE Centre	GCF_009858895.2	29,903
D2	E. coli	GridION	R9.4.1 e8 (FLO-MIN106)	450	4000	Guppy HAC v5.0.12	353,317	2,365M	ERR9127551	GCA_000007445.1	5M
D3	Yeast	MinION	R9.4.1 e8 (FLO-MIN106)	450	4000	Albacore v2.1.7	49,989	380M	SRR8648503	GCA_000146045.2	12M
D4	Green Algae	PromethION	R9.4.1 e8 (FLO-PRO002)	450	4000	Albacore v2.3.1	29,933	609M	ERR3237140	GCF_000002595.2	111M
D5	Human	MinION	R9.4.1 e8 (FLO-MIN106)	450	4000	Guppy Flip-Flop v2.3.8	269,507	1,584M	FAB42260	T2T-CHM13 (v2)	3,117M
D6	E. coli	GridION	R10.4 e8.1 (FLO-MIN112)	450	4000	Guppy HAC v5.0.16	1,172,775	6,123M	ERR9127552	GCA_000007445.1	5M
D7	S. aureus	GridION	R10.4 e8.1 (FLO-MIN112)	450	4000	Dorado SUP v0.5.3	407,727	1,281M	SRR21386013	GCF_000144955.2	2.8M
					Contam	ination Analysis					
			D1 and D	5			1,651,523	2,178M	D1 and D5	D1	29,903
					Relative Ab	undance Estimation					
			D1-D5				2,084,762	5,531M	D1-D5	D1-D5	3,246M

Accuracy

Dataset	Metric	RH2	RH2-Min.	RH	UNCALLED	Sigmap
SARS-CoV-2	F1	0.9867	0.9691	0.9252	0.9725	0.7112
E. coli	F1	0.9748	0.9631	0.9280	0.9731	0.9670
Yeast	F1	0.9602	0.9472	0.9060	0.9407	0.9469
Green Algae	F1	0.9351	0.9191	0.8114	0.8277	0.9350
Human	F1	0.7599	0.6699	0.5574	0.3197	0.3269
Contamination	Precision	0.9595	0.9424	0.8702	0.9378	0.7856
Rel. Abundance	Distance	0.2678	0.4243	0.4385	0.6812	0.5430

Mapping Accuracy – Radar

Mapping Accuracy – All Metrics

Dataset	Metric	RH2	RH2-Min.	RH	UNCALLED	Sigmap
	F1	0.9867	0.9691	0.9252	0.9725	0.7112
SARS-CoV-2	Precision	0.9939	0.9868	0.9832	0.9547	0.9929
	Recall	0.9796	0.9521	0.8736	0.9910	0.5540
	F1	0.9748	0.9631	0.9280	0.9731	0.9670
E. coli	Precision	0.9904	0.9865	0.9563	0.9817	0.9842
	Recall	0.9597	0.9408	0.9014	0.9647	0.9504
	F1	0.9602	0.9472	0.9060	0.9407	0.9469
Yeast	Precision	0.9553	0.9561	0.9852	0.9442	0.9857
	Recall	0.9652	0.9385	0.8387	0.9372	0.9111
	F1	0.9351	0.9191	0.8114	0.8277	0.9350
Green Algae	Precision	0.9284	0.9280	0.9652	0.8843	0.9743
	Recall	0.9418	0.9104	0.6999	0.7779	0.8987
	F1	0.7599	0.6699	0.5574	0.3197	0.3269
Human	Precision	0.8675	0.8511	0.8943	0.4868	0.4288
	Recall	0.6760	0.5523	0.4049	0.2380	0.2642
	F1	0.9614	0.9317	0.8718	0.9637	0.6498
Contamination	Precision	0.9595	0.9424	0.8702	0.9378	0.7856
	Recall	0.9632	0.9212	0.8736	0.9910	0.5540
	F1	0.4659	0.3375	0.3045	0.1249	0.2443
Rel. Abundance	Precision	0.4623	0.3347	0.3018	0.1226	0.2366
	Recall	0.4695	0.3404	0.3071	0.1273	0.2525

Combined Benefits – Radar

Sequenced Length

Dataset	RH2	RH2-Min.	RH	UNCALLED	Sigmap
SARS-CoV-2	443.92	460.85	513.95	184.51	452.38
E. coli	851.31	1,030.74	1,376.14	580.52	950.03
Yeast	1,147.66	1,395.87	2,565.09	1,233.20	1,862.69
Green Algae	1,385.59	1,713.46	4,760.59	5,300.15	2,591.16
Human	2,130.59	2,455.99	4,773.58	6,060.23	4,680.50
Contamination	670.69	667.89	742.56	1,582.63	927.82
Rel. Abundance	1,024.28	1,182.04	1,669.46	2,158.50	1,533.04

Computational Resources #1

Dataset	RH2	RH2-Min.	RH	UNCALLED	Sigmap
		Indexing CF	'U Time (sec)		
SARS-CoV-2	0.12	0.06	0.16	8.40	0.02
E. coli	2.48	1.61	2.56	10.57	8.86
Yeast	4.56	3.02	4.44	16.40	25.29
Green Algae	27.60	17.73	24.51	213.13	420.25
Human	1,093.56	588.30	809.08	3,496.76	41,993.26
Contamination	0.13	0.06	0.15	8.38	0.03
Rel. Abundance	747.74	468.14	751.67	3,666.14	36,216.87
		Indexing Peak	x Memory (GB)	
SARS-CoV-2	0.01	0.01	0.01	0.06	0.01
E. coli	0.35	0.19	0.35	0.11	0.40
Yeast	0.75	0.39	0.76	0.30	1.04
Green Algae	5.11	2.60	5.33	11.94	8.63
Human	80.75	40.59	83.09	48.43	227.77
Contamination	0.01	0.01	0.01	0.06	0.01
Rel. Abundance	152.59	75.62	152.84	47.80	238.32
		Mapping CI	PU Time (sec)		
SARS-CoV-2	1,705.43	1,227.05	1,539.64	29,282.90	1,413.32
E. coli	1,296.34	787.49	7,453.21	28,767.58	22,923.09
Yeast	545.77	246.37	4,145.38	7,181.44	7,146.32
Green Algae	2,135.83	657.63	22,103.03	12,593.01	26,778.44
Human	100,947.58	21,860.05	1,825,061.23	245,128.15	6,101,179.89
Contamination	3,783.69	2,332.28	3,480.43	234,199.60	3,011.78
Rel. Abundance	250,076.90	62,477.76	4,551,349.79	569,824.13	15,178,633.11

Computational Resources #2

		Mapping Peak	c Memory (GB)	
SARS-CoV-2	4.15	4.16	4.20	0.17	28.26
E. coli	4.13	4.03	4.18	0.50	111.12
Yeast	4.38	4.12	4.37	0.36	14.66
Green Algae	6.11	4.98	11.77	0.78	29.18
Human	48.75	25.04	52.43	10.62	311.94
Contamination	4.16	4.14	4.17	0.62	111.70
Rel. Abundance	49.14	25.82	54.89	8.99	486.63
	Ν	Mapping Thro	ughput (bp/see	c)	
SARS-CoV-2	552,561.25	885,263.48	694,274.92	9,260.31	602,380.96
E. coli	303,382.45	659,013.57	72,281.32	7,515.76	13,750.97
Yeast	150,547.61	394,766.80	28,757.15	7,471.48	11,624.82
Green Algae	28,742.46	98,323.70	9,488.79	10,069.41	2,569.89
Human	8,968.78	37,086.38	2,099.35	7,225.67	236.45
Contamination	563,129.81	884,929.30	696,873.20	9,343.95	601,936.49
Rel. Abundance	9,501.37	36,919.79	962.79	8,437.70	196.48

CPU Threads Needed for the entire MinION Flowcell (512 pores)

SARS-CoV-2	1	1	1	25	1
E. coli	1	1	4	31	17
Yeast	2	1	9	31	20
Green Algae	9	3	25	23	90
Human	26	7	110	32	975
Contamination	1	1	1	25	1
Rel. Abundance	25	7	240	28	1173

Average Time Spent per Read

FAST5 vs. POD5. vs S/BLOW5

E. coli	Yeast						
Elapsed Time (mm:ss)							
19:27	08:35						
16:55	07:33						
17:32	07:38						
12:13	03:56						
09:42	02:56						
10:16	03:02						
	<i>E. coli</i> (mm:ss) 19:27 16:55 17:32 12:13 09:42 10:16						

Flow Cell Types R9 vs R10.4

Flow Cell		RH2	RH2-Min.
	Read Mapping Accura	cy (E. coli)	
	F1	0.9748	0.9631
R9.4	Precision	0.9904	0.9865
	Recall	0.9597	0.9408
	F1	0.8960	0.8389
R10.4	Precision	0.9506	0.9325
	Recall	0.8473	0.7623
	Read Mapping Accuracy	y (S. aureus)	
	F1	0.7749	0.6778
R10.4	Precision	0.8649	0.8167
	Recall	0.7018	0.5793
	Performance (E.	coli)	
R9.4	Throughput [bp/sec]	303,382.45	659,013.57
	Mean time per read [ms]	2.161	1.099
R10.4	Throughput [bp/sec]	175,351.94	480,471.75
	Mean time per read [ms]	6.598	2.505
	Performance (S. a	ureus)	
R10.4	Throughput [bp/sec]	256,680.4	617,308.7
	Mean time per read [ms]	5.478	2.243

Ratio of Filtered Seed Hits

Dataset	Average Filtered Ratio
SARS-CoV-2	0.0627
E. coli	0.5505
Yeast	0.5356
Green Algae	0.8106
Human	0.5104
E. coli (R10.4)	0.6895
S. aureus (R10.4)	0.6003

Presets

Preset	Corresponding parameters	Usage
viral	-e 6 -q 4 –max-chunks 5 –bw 100 –max-target-gap 500 –max-target-gap 500 –min-score 10 –chain-gap-scale 1.2 –chain-skip-scale 0.3	Viral genomes
sensitive	-e 8 -q 4 –fine-range 0.4	Small genomes (i.e., < 500 <i>M</i> bases)
fast	-e 8 -q 4 –max-chunks 20	Large genomes (i.e., > 500M bases)
	Other helper parameters	
depletion	–best-chains 5 –min-mapq 10 –w-threshold 0.5 –min-anchors 2 –min-score 15 –chain-skip-scale 0	Contamination analysis
r10	-k9 –seg-window-length1 3 –seg-window-length2 6 –seg-threshold1 6.5 –seg-threshold2 4 –seg-peak-height 0.2 –chain-gap-scale 1.2	For R10.4 Flow Cells
Versions

Tool	Version
RawHash2	2.1
RawHash	1.0
UNCALLED	2.3
Sigmap	0.1
Minimap2	2.24
FAST5 (HDF5)	1.10

FAST5 (HDF5)	1.10
POD5	0.2.2
S/BLOW5	1.2.0-beta

Indexing using Raw Signals

- 1. Constructing the hash table index **from raw nanopore signals**
 - Reference-to-signal conversion is mainly free from noise (e.g., stay errors)
 - Indexed raw nanopore signals are not free from noise

2. Aggressively filtering consecutive and similar signals to substantially reduce noise at the cost of data loss

Chaining and Outputting Overlaps

3. Adjusting the minimum chaining score to avoid false chains

- All-vs-all overlapping tends to find a larger number of seed hits than mapping to a reference genome
- Minimum score for a chain during overlapping is set to be ~5× larger than mapping
- All such chains are reported (instead of a single best mapping)

4. Avoid cyclic overlaps with deterministic comparisons

Low-Coverage Human Genome Assembly

- Results are shown relative to the best result from each metric
 - Metrics: auN, longest unitig, largest connected unitigs (component)
 - Coverage: 0.6x

Rawsamble leads to **better contiguity** than using basecalled reads **at a low coverage dataset**

Can **the richer information in raw signals improve assembly quality** where basecalled analysis falls short?

Datasets

	Organism	Device Type	Reads (#)	Bases (#)	Avg. Read Length	Estimated Coverage (×)	SRA Accession
D1	SARS-CoV-2	MinION	10,001	4.02M	402	135×	CADDE Centre
D2	E. coli	GridION	353,948	2,332M	6,588	445×	ERR9127551
D3	Yeast	MinION	50,023	385M	7,698	32×	SRR8648503
D4	Green Algae	PromethION	30,012	622M	20,731	5.6×	ERR3237140
D5	Human	MinION	270,006	1,773M	6,567	0.6×	FAB42260

Throughput

	D1	D2	D3	D4	D5
	SARS-CoV-2	E. coli	Yeast	Green Algae	Human
Throughput	2,065,764	2,720,702	2,128,800	1,668,065	3,579,472

Performance

Organism	Tool	Elapsed time	CPU time	Peak
		(hh:mm:ss)	(sec)	Mem. (GB)
D1	Rawsamble	0:00:03	33	1.07
SARS-CoV-2	Minimap2	0:00:01 (0.33×)	19 (0.58×)	0.16 (0.15×)
	Minimap2 + Dorado CPU (Fast)	0:01:45 (35.00×)	3,227 (97.79×)	44.93 (41.99×)
	Minimap2 + Dorado CPU (HAC)	0:05:45 (115.00×)	5,457 (165.36×)	57.98 (54.19×)
	Minimap2 + Dorado GPU (HAC)	0:01:41 (33.67×)	NA	0.8 (0.75×)
	Minimap2 + Dorado GPU (SUP)	0:25:47 (515.67×)	NA	1.23 (1.15×)
D2	Rawsamble	1:12:44	132,758	6.72
E. coli	Minimap2	0:14:25 (0.20×)	25,721 (0.19×)	26.73 (3.98×)
	Minimap2 + Dorado CPU (Fast)	7:17:05 (6.01×)	583,358 (4.39×)	50.43 (7.50×)
	Minimap2 + Dorado CPU (HAC)	32:26:12 (26.76×)	1,335,697 (10.06×)	38.0 (5.65×)
	Minimap2 + Dorado GPU (HAC)	0:36:14 (0.50×)	NA	26.73 (3.98×)
	Minimap2 + Dorado GPU (SUP)	1:30:30 (1.24×)	NA	26.73 (3.98×)
D3	Rawsamble	0:01:18	2,241	6.39
Yeast	Minimap2	0:00:21 (0.27×)	290 (0.13×)	5.25 (0.82×)
	Minimap2 + Dorado CPU (Fast)	0:54:04 (41.59×)	71,796 (32.04×)	56.13 (8.78×)
	Minimap2 + Dorado CPU (HAC)	3:13:56 (149.18×)	193,640 (86.41×)	65.43 (10.24×)
	Minimap2 + Dorado GPU (HAC)	0:04:33 (3.50×)	NA	5.25 (0.82×)
	Minimap2 + Dorado GPU (SUP)	0:10:33 (8.12×)	NA	5.92 (0.93×)
D4	Rawsamble	0:07:57	14,064	8.67
Green Algae	Minimap2	0:00:47 (0.10×)	882 (0.06×)	8.7 (1.00×)
	Minimap2 + Dorado CPU (Fast)	1:16:35 (9.63×)	79,606 (5.66×)	50.88 (5.87×)
	Minimap2 + Dorado CPU (HAC)	4:30:07 (33.98×)	286,362 (20.36×)	64.07 (7.39×)
	Minimap2 + Dorado GPU (HAC)	0:06:01 (0.76×)	NA	8.7 (1.00×)
	Minimap2 + Dorado GPU (SUP)	0:14:54 (1.87×)	NA	8.7 (1.00×)
D5	Rawsamble	0:28:56	51,975	6.0
Human	Minimap2	0:01:52 (0.06×)	1,372 (0.03×)	20.21 (3.37×)
	Minimap2 + Dorado CPU (Fast)	6:42:24 (13.91×)	802,983 (15.45×)	81.98 (13.66×)
	Minimap2 + Dorado CPU (HAC)	23:27:18 (48.64×)	1,219,043 (23.45×)	46.12 (7.69×)
	Minimap2 + Dorado GPU (HAC)	0:20:24 (0.71×)	NA	20.31 (3.38×)
	Minimap2 + Dorado GPU (SUP)	1:05:48 (2.27×)	NA	20.21 (3.37×)

Overlapping Statistics

	Organism	Unique to Rawsamble (%)	Unique to Minimap2 (%)	Shared Overlaps (%)
D1	SARS-CoV-2	11.55	15.27	73.18
D2	E. coli	8.33	50.62	41.05
D3	Yeast	24.94	35.17	39.89
D4	Green Algae	3.76	78.64	17.61
D5	Human	32.69	56.18	11.13

Assembly Statistics

Dataset	Tool	Total Length (bp)	Largest Comp. (bp)	N50 (bp)	auN (bp)	Longest Unitig (bp)	Unitig Count
D2	Rawsamble	14,525,505	4,841,669	1,535,079	1,309,738	2,722,499	31
E. coli	minimap2	10,434,542	5,207,206	5,204,754	5,194,738	5,207,206	4
	Gold standard	5,235,343	5,235,343	5,235,343	5,235,343	5,235,343	1
D3	Rawsamble	13,898,208	362,050	41,118	48,106	161,883	396
Yeast	minimap2	23,755,455	1,611,876	134,050	150,908	464,054	282
	Gold standard	11,963,521	11,835,059	640,934	623,210	1,073,346	68
D4	Rawsamble	3,448,899	448,422	93,111	108,818	252,038	50
Green Algae	minimap2	2,117,190	198,709	63,310	88,906	198,709	55
	Gold standard	106,479,288	2,255,807	452,774	538,136	1,667,975	420
D5	Rawsamble	1,850,419	493,004	51,300	116,049	364,113	48
Human	minimap2	747,607	65,951	19,476	22,103	48,424	61
	Gold standard	8,365,210	367,305	19,329	29,697	150,470	592

Visualizing the E. coli Assembly Graph

Visualizing the Yeast Assembly Graph

Visualizing the Green Algae Assembly Graph

Visualizing the Human Assembly Graph

HERRO Correction Before and After

Dataset	Coverage Before Correction	Coverage After Correction
D2 E. coli	445×	240×
D3 Yeast	$32\times$	$12 \times$
D4 Green algae	5.6×	3.7×
D5 Human	0.6 imes	$0.002 \times$

Parameters

Tool	D1 SARS-CoV-2	D2 E. coli	D3 Yeast	D4 Green Algae	D5 Human			
Rawsamble	-x ava-viral -t 32	-x ava -t 32	-x ava -t 32	-x ava -t 32	-x ava –chain-gap-scale 0.6 -t 32			
Minimap2		-x ava-ont –for-only -t 32						
Dorado CPU (Fast)		basecaller -x cpu dna_r9.4.1_e8_fast@v3.4						
Dorado CPU (HAC)	basecaller -x cpu dna_r9.4.1_e8_hac@v3.3							
Dorado GPU (HAC)	basecaller dna_r9.4.1_e8_hac@v3.3							
Dorado GPU (SUP)	basecaller dna_r9.4.1_e8_sup@v3.3							
Miniasm								

Presets

Preset	Corresponding parameters	Usage
ava-viral	-e 6 -q 4 -w 0 –sig-diff 0.45 –fine-range 0.4 –min-score 20 –min-score2 30 –min-anchors 5	Viral genomes
	-min-mapq 5 -bw 1000 -max-target-gap 2500 -max-query-gap 2500 -chain-gap-scale 1.2 -chain-skip-scale 0.3	
ava	-e 8 -q 4 -w 3 –sig-diff 0.45 –fine-range 0.4 –min-score 40 –min-score2 75	Default case
	–min-anchors 5 –min-mapq 5 –bw 5000 –max-target-gap 2500 –max-query-gap 2500	

Versions

Tool	Version
Rawsamble	2.1
Minimap2	2.24
Dorado	0.7.3
Miniasm	0.3-r179
Rawasm	main
Flye	2.9.5
HERRO	0.1

Utilizing Probabilities in pHMMs

- The Baum-Welch algorithm is commonly used with pHMMs
 - For both **inference and training** by effectively utilizing the probabilities
- Inference: Identifying the variations between sequences
- **Training:** Maximizing parameters to observe certain variations

Forward & Backward Calculations

• A dynamic programming approach

- Calculate the 'possibility' of visiting each state in a pHMM
- Given an observed sequence (from both directions of the sequence)

Observed Sequence: ATGT

Backward Calculations

Inference using pHMMs

- **Goal:** Identifying the variations between sequences
 - Inference by using decoding algorithms (e.g., the Viterbi Algorithm)

Training using pHMMs

- **Goal:** Maximizing parameters to observe certain variations
 - Training using the parameter updating steps in the Baum-Welch algorithm

165

- Observation: Filling the entire Backward table is unnecessary
 - Pipelining opportunities to directly consume a Backward value

- **Observation:** Filling the entire Backward table is unnecessary
 - **Pipelining opportunities** to directly consume a Backward value
 - Partial compute approach: Only a single row should be fully stored

Observed Sequence: ATGT

- **Observation:** Filling the entire Backward table is unnecessary
 - **Pipelining opportunities** to directly consume a Backward value
 - Partial compute approach: Only a single row should be fully stored

Observed Sequence: ATGT

- Observation: Filling the entire Backward table is unnecessary
 - Pipelining opportunities to directly consume a Backward value
 - Partial compute approach: Only a single row should be fully stored
 - Reduces the storage requirements during training

Observed Sequence: ATGT

SW: Reducing Unnecessary Computations

- **Observation:** 'Negligible' cells can be ignored without significantly reducing overall accuracy
 - Filtering: Non-negligible states are identified by sorting
 - Sorting to find exactly n states with largest Forward or Backward values

- Sorting is complex to implement in hardware (and costly)
 - Can we filter without sorting?

SW: Reducing Unnecessary Computations

- **Observation:** 'Negligible' cells can be ignored without significantly reducing overall accuracy
 - Goal: Find at least n states with largest Forward and Backward values
 - **Histogram-based filtering:** Placing the states into buckets corresponding to a range of values
 - Filter is full as soon we find at least n states (e.g., n = 10)

SW: Avoiding Repeated Operations

- Observation: Same multiplications are redundantly performed
 - Same default values are used for each possible connection in pHMMs
 - Fixed connection patterns generate a fixed set of multiplication results

- **Goal:** Avoid redundant computations
 - By enabling efficient reuse of the common multiplications results

SW: Avoiding Repeated Operations

- **Observation:** Same multiplications are redundantly performed
 - Same default values are used for each possible connection in pHMMs
 - Fixed connection patterns generate a fixed set of multiplication results

- Goal: Avoid redundant computations
 - By enabling efficient reuse of the common multiplications results
 - Lookup tables (LUTs) to efficiently store and use these common results

Overview of ApHMM Design

Flexible and efficient control logic & hardware design

Evaluation Methodology

Comparison Points

- CPU: Apollo, HMMER
- GPU: ApHMM-GPU, HMM_cuda
- FPGA: FPGA D&C

Datasets

- Error correction: **Real 10,000 DNA sequences** from Escherichia coli (*E. coli*) with average 5,128 read length
- Protein family search: Entire Pfam database (19,632 pHMMs) and real 214,393 protein sequences from Mitochondrial carrier
- Multiple sequence alignment: Aligning over ~1 million protein sequences from Pfam database

Performance: Workload Acceleration

Up to 60× (CPU-1), 1.75× (GPU), and 1.95× (FPGA) faster

execution of the end-to-end applications

Error correction benefits most from the acceleration

due to frequent and costly training

More in the Paper

More results

- Detailed discussion on the results generated per use case
- Justification of the dataset and baseline choices
- Details of all mechanisms and configurations
 - Details of our design space exploration
 - Data distribution and memory layout
 - Control and execution flow of ApHMM cores
 - Related work discussion (e.g., Pair HMMs vs pHMMs)
 - Detailed background on the equations and algorithms

Filtering – Performance Benefits

• Filtering heuristics aim to reduce unnecessary computations

Motivational Study: ~2.5x performance improvements with filtering

Filtering – Accurate but Costly Sorting

- Software-based filtering heuristics aim to reduce unnecessary computations
 - High-accuracy can be achieved with filtering with correct setting

Filtering takes up ~8.5% of the overall execution time **due to sorting**

Choosing the Right Amount of Cores

- We analyze maximum number of cores that ApHMM can utilize
 - Before it is bottlenecked by memory bandwidth for genomics applications

ApHMM with 4 cores (ApHMM-4) provides the best overall speedup