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Brief Self Introduction
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n Can Firtina
q Ph.D. Student in SAFARI Research Group led by Prof. Onur Mutlu

n Research interests: Bioinformatics & Computer Architecture
q Real-time genome analysis
q Similarity search in a large space of genomic data
q Hardware-Algorithm co-design to accelerate genome analysis
q Genome editing
q Error correction

n Get to know our group and our research
q Group website: https://safari.ethz.ch/
q Contact me: canfirtina@gmail.com
q Website: https://cfirtina.com
q Twitter (aka X): https://twitter.com/FirtinaC

https://safari.ethz.ch/
https://people.inf.ethz.ch/omutlu/
https://safari.ethz.ch/
mailto:canfirtina@gmail.com
https://cfirtina.com/
https://twitter.com/FirtinaC


Professor Mutlu
n Onur Mutlu

q Full Professor @ ETH Zurich ITET (INFK), since September 2015
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research and Teaching in:
q Computer architecture, computer systems, hardware security, bioinformatics
q Memory and storage systems
q Hardware security, safety, predictability
q Fault tolerance
q Hardware/software cooperation
q Architectures for bioinformatics, health, medicine
q … 
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https://safari.ethz.ch

SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

40+ Researchers

http://www.safari.ethz.ch/


Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better architectures

Current Research Mission



Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency and Predictable Architectures

n Architectures for AI/ML, Genomics, Medicine, Health
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n Cutting-edge in Accelerating Genome Analysis
q Intelligent genome analysis

n Enabling Fast and Accurate Real-time Analysis
q RawHash and RawHash2

n Graph & ML Acceleration in Genomics
q ApHMM

n Conclusion

Agenda for Today
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The Goal of Computing: Beyond Numbers

“The purpose of computing is [to gain] 

insight, not numbers” 
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Richard Hamming

"Numerical Methods for Scientists and Engineers," Richard Hamming, 1962.

https://safari.ethz.ch/digitaltechnik/lib/exe/fetch.php?media=numerical.methods.for.scientists.and.engineers_2ed_hamming_0486652416.pdf


We need to gain insights 
and observations 

much more efficiently 
than ever before
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Big Data is Everywhere
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Astronomy
25 zetta-bytes/year

Twitter (now X)
0.5-15 billion tweets/year

YouTube
500-900 million hours/year

Genomics
1 zetta-bases/year

“Big data: astronomical or genomical?”, PLoS biology, 2015.

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195


Problems with Data Analysis Today
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Special-Purpose Machine
for Data Generation

General-Purpose Machine
for Data Analysis

FAST                        SLOW
Slow and inefficient processing capability

Large amounts of data movement



Data Movement Dominates Performance
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MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

n Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



New Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


New Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf


We need intelligent algorithms 
and intelligent architectures

that handle data well
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Does intelligent genome 
analysis really matter?



Intelligent Genome Analysis
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Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for 
Intelligent Genome Analysis” 
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations


Pushing Towards New Architectures

18
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Pushing Towards New Architectures
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(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine

https://nanoporetech.com/products/smidgion 

https://nanoporetech.com/products/smidgion


Fast Genome Analysis
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Fast genome analysis 
in mere seconds 

using limited computational resources 
(e.g., a mobile device).



Accurate Genome Analysis
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Accurate genome analysis
to make life-critical decisions 
and improving the quality of life



Faster, Scalable & Accurate Genome Analysis

22And, many, many other applications …

Understanding genetic variations, 
species, and evolution

Surveillance of disease outbreaks

Predicting the presence of 
pathogens in an environment

Personalized medicine



Personalized Medicine in UK
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“From 2019, all seriously ill children in UK 

will be offered whole genome sequencing 
as part of their care”



24Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

Rapid Surveillance of Disease Outbreaks

https://www.nature.com/articles/nature16996


Scalable SARS-CoV-2 Testing
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Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", Nature Biomedical Engineering, 2021

https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2
https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2


Large Scale Analysis

26https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/
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• Genome sequencing machines can quickly convert 
biological molecules
- Into sequences of characters for analysis

Genome Analysis – How?

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG Sequences 

from DNABiological Molecule 
(e.g., DNA)
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• Analyze sequences by accurately and quickly comparing them
- To each other
- To a template sequence representative of a species, a certain group…

• Essential to understand functionality of a sequence, mutations, 
diseases…

Sequence Comparison is Essential

Biological Sequences
(e.g., DNA, proteins)



Applications
are only limited

by our imagination
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Genome Editing

30https://www.nobelprize.org/prizes/chemistry/2020/press-release/ 

https://www.nobelprize.org/prizes/chemistry/2020/press-release/


DNA Computing
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Massive parallelism to solve
(hard) problems!

https://electronicsforyou.in/seminar-report-on-dna-computing/ 

https://electronicsforyou.in/seminar-report-on-dna-computing/


Accelerating Genome Analysis [DAC 2023]

n Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation 
Conference (DAC), San Francisco, CA, USA, July 2023.
[Slides (pptx) (pdf)]
[Talk Video (38 minutes, including Q&A)]
[Related Invited Paper]
[arXiv version]

32https://ieeexplore.ieee.org/document/10247887 

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf


Algorithm-Arch-Device Co-Design is Critical

33

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture 
(expanded view)



We need intelligent algorithms 
and intelligent architectures

that handle data well
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New Frontiers: Raw Signal Analysis [ISMB 2023]
n Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, 

Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for 
Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular Biology (ISMB) and 
the 22nd European Conference on Computational Biology (ECCB), Jul 2023
[Bioinformatics Journal version]
[Slides (pptx) (pdf)]
[RawHash Source Code]
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://github.com/CMU-SAFARI/RawHash


Fast and Accurate Real-Time Genome Analysis
n Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,

"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals 
using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]
[RawHash2 Source Code]
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https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash


Accelerating ML & Genome Graphs [ACM TACO ‘23]
n Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh,

Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak,
Joël Lindegger, Mohammed Alser, Juan Gómez Luna,
Sreenivas Subramoney, and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and 
Energy-Efficient Genome Analysis”
ACM TACO, Dec 2023.
[Online link at ACM TACO]
[arXiv preprint]
[ApHMM Source Code]
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https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU


Genome Similarity Identification [NARGAB 2023]
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n Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha 
Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can 
Alkan, and Onur Mutlu,
"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy 
Seed Matches in Genome Analysis"
NAR Genomics and Bioinformatics, March 2023.
[Online link at NAR Genomics and Bioinformatics Journal]
[arXiv preprint]
[biorXiv preprint]
[BLEND Source Code]

https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://academic.oup.com/nargab
https://doi.org/10.1093/bioinformatics/btac554
https://arxiv.org/abs/2112.08687
https://doi.org/10.1101/2022.11.23.517691
https://github.com/CMU-SAFARI/BLEND


New Applications: Frequent Database Updates
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n Jeremie S. Kim*, Can Firtina*, M. Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,
"AirLift: A Fast and Comprehensive Technique for Remapping 
Alignments between Reference Genomes"
Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC), 
Changsha, China, April 2023.
[AirLift Source Code]
[arxiv.org Version (pdf)]
[Talk Video at BIO-Arch 2023 Workshop]

*Equal contribution

https://arxiv.org/pdf/1912.08735.pdf
https://arxiv.org/pdf/1912.08735.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf
https://www.youtube.com/watch?v=nJKJK15t5YM


Error Correction using ML [Bioinform. 2020]
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n Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument
Cicek, Can Alkan, and Onur Mutlu,
"Apollo: A Sequencing-Technology-Independent, Scalable, and 
Accurate Assembly Polishing Algorithm"
Bioinformatics, June 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Apollo
https://doi.org/10.1093/bioinformatics/btaa179


Accelerating String Matching [MICRO 2020]
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lightning Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Genome Graphs [ISCA 2022]
n Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]

42https://arxiv.org/pdf/2205.05883.pdf

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf


In-Storage Genome Filtering [ASPLOS 2022]

n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8


Genome Analysis via PIM [MICRO 2022]

n Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, 
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,
"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of 
Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (25 minutes)]
[arXiv version]

44https://arxiv.org/pdf/2209.08600.pdf 

https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600
https://arxiv.org/pdf/2209.08600.pdf


Food Microbiome Profiling using PIM
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Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, Said Hamdioui
“Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional 
Computing in Memory”
IEEE Access, 2022

https://arxiv.org/pdf/2206.01932.pdf
https://arxiv.org/pdf/2206.01932.pdf


Fast and Accurate Real-Time Genome Analysis
n Joel Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad Sadrosadati, 

Mohammed Alser, and Onur Mutlu,
"RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal 
Mapping via Combining Seeding and Alignment"
Preprint on arxiv, October 2023.
[arXiv version]
[RawAlign Source Code]
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https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/abs/2310.05037
https://github.com/CMU-SAFARI/RawAlign


Machine Learning in Genomics
n M. Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger, 

Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, and Onur Mutlu,
"TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-
Basecalling Filtering"
Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC), Changsha, 
China, April 2023.
[TargetCall Source Code]
[arxiv.org Version]
[Talk Video at BIO-Arch 2023 Workshop]

47https://arxiv.org/pdf/2301.09200.pdf 

https://arxiv.org/pdf/2212.04953.pdf
https://arxiv.org/pdf/2212.04953.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/cmu-safari/targetcall
https://arxiv.org/abs/2212.04953
https://www.youtube.com/watch?v=2rCsb4-nLmg&t=21973s
https://arxiv.org/pdf/2301.09200.pdf


n Cutting-edge in Accelerating Genome Analysis
q Intelligent genome analysis

n Enabling Fast and Accurate Real-time Analysis
q RawHash and RawHash2

n Graph & ML Acceleration in Genomics
q ApHMM

n Conclusion

Agenda for Today
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Nika Mansouri Ghiasi Joel Lindegger Gagandeep Singh

ISMB/ECCB 2023

Enabling Fast and Accurate Real-Time Analysis 
of  Raw Nanopore Signals for Large Genomes

RawHash

CodePaper

Can Firtina

Meryem Banu Cavlak Haiyu Mao Onur Mutlu

https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
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Nanopore Sequencing
Nanopore Sequencing: a widely used sequencing technology
•  Can sequence large fragments of nucleic acid molecules (up to >2Mbp)
•  Offers high throughput
•  Cost-effective
•  Enables real-time genome analysis
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Real-Time Analysis with Nanopore Sequencing

Nanopore Sequencing Raw Signals

Cu
rre
nt

Real-Time Analysis

Raw Signals: Ionic current measurements generated at a certain throughput

Real-Time Decisions: Stopping sequencing early based on real-time analysis

Real-Time Analysis: Analyzing all raw signals by matching the throughput
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Benefits of  Real-Time Genome Analysis
Reducing latency by overlapping the sequencing and analysis steps

Reducing sequencing time and cost by stopping sequencing early

Sequencing Analysis
Time

Sequencing & Real-Time Analysis
Reduced Latency

Completely Sequenced Read

Partially Sequenced Read

Sequencing is stopped early with a real-time decision

Reduced Sequencing Time (and Cost)
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Challenges in Real-Time Genome Analysis

Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

Accurate analysis from noisy raw signal data

Power-efficient computation for scalability and portability
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Executive Summary

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
– 25.8× and 3.4× better average throughput compared to two state-of-the-art works
– 1.14× – 2.13× more accurate mapping results for large genomes
– Sequence Until reduces the sequencing time and cost by 15×

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw 
nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

Goal: Enable fast and accurate real-time analysis of raw signals for large genomes

Problem: Real-time analysis of nanopore raw signals is inaccurate and inefficient for 
large genomes
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Existing Solutions

Costly and power-hungry 
computational requirements

Real-Time Analysis

Basecalling

G GA T

Read Mapping

Real-Time Analysis

Mapping Raw Signals

1. Deep neural networks (DNNs) 
for translating signals to bases

Less noisy analysis from 
basecalled sequences

2. Mapping signals to reference 
genomes without basecalling

Efficient analysis with better 
scalability and portability

Raw signals contain richer 
information than bases
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The Problem – Mapping Raw Signals
Raw Signal

Small Reference Genome Large Reference Genome (Human)

Fewer candidate regions 
in small genomes

Accurate mapping

High throughput

Substantially larger number of regions to 
check per read as the genome size increases

Problem: Probabilistic mechanisms 
on many regions è inaccurate mapping

Problem: Distance calculation 
on many regions è reduced throughput
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The Problem – Mapping Raw Signals
Raw Signal

Small Reference Genome Large Reference Genome (Human)

Fewer candidate regions 
in small genomes

Accurate mapping

High throughput

Substantially larger number of regions to 
check per read as the genome size increases

Problem: Probabilistic mechanisms 
on many regions è inaccurate mapping

Problem: Distance calculation 
on many regions è reduced throughput

Existing solutions are 
inaccurate or inefficient

for large genomes
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Conclusion

Background

Evaluation

Outline

RawHash
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Goal

Enable fast and accurate real-time analysis 
of raw nanopore signals for large genomes
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The first hash-based search mechanism 
to quickly and accurately map raw nanopore signals 

to reference genomes

Sequence Until can accurately and dynamically stop 
the entire sequencing run at once 
if further sequencing is unnecessary

RawHash
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The first hash-based search mechanism 
to quickly and accurately map raw nanopore signals 

to reference genomes

Sequence Until can accurately and dynamically stop 
the entire sequencing run at once 
if further sequencing is unnecessary

RawHash
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RawHash – Key Idea

Raw Signal #1

Hash

0x01 Fast 
Match

Raw Signal #2

0x01

Hash

Distance 
Calculation

Challenge #2: Accurately finding similar regions as few as possible

Challenge #1: Generating the same hash value for similar enough signals

Key Observation: Identical nucleotides generate similar raw signals
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RawHash Overview
Reference Genome

…GCTATTACCTTAATGTG…

Raw Nanopore Signal
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Events in Raw Nanopore Signals
• Event: A segment of the raw signal
- Corresponds to a particular k-mer

• Event detection finds these segments to identify k-mers
- Start and end positions are marked by abrupt signal changes
- Statistical methods identify these abrupt changes
- Event value: average of signals within an event
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Signal-to-Event Conversion
• Event detection: Identifies signal regions corresponding to 
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

• Consecutive events è consecutive k-mers
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Signal-to-Event Conversion
• Event detection: Identifies signal regions corresponding to 
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

• Consecutive events è consecutive k-mers
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Can we directly match signals to each other?
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Hashing for Fast Similarity Search
• Each event usually represents a very small k-mer (6 to 9 characters)
- Challenge: Short k-mers are likely to appear in many locations

• Key Idea: Create longer k-mers from many consecutive events
• Key Benefit: Directly match hash values to quickly identify similarities

CTATTA Quantize-0.09 11 0 0 1

TATTAC

ATTACC

Quantize

Quantize

1.15

1.11

Consecutive 
k-mers

Consecutive 
events

00 1 1 0

00 1 0 1

… … … … Pack

11 0 0 1 00 1 1 0 … 10 0 0 1

Hash0x400D70A4Hash value of 
consecutive events



74

Real-Time Mapping using Hash-based Indexing
Indexing (Offline)

0x01
Store Hash

Table

Reference-to-Event 
Conversion

Quantization

Reference Genome

…GCTATTACCTTAATGTG…

Hashing

Mapping (Real-time)

0x01

Quantization

Signal-to-Event 
Conversion

Raw Nanopore Signal

Hashing

Query

Matching Positions Chaining & 
Mapping

Yes: Process the next chunkRead Until
or

Run Until

No: Stop mapping Continue
Mapping?
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The first hash-based search mechanism 
to quickly and accurately map raw nanopore signals 

to reference genomes

Sequence Until can accurately and dynamically stop 
the entire sequencing run at once 
if further sequencing is unnecessary

RawHash
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The first hash-based search mechanism 
to quickly and accurately map raw nanopore signals 

to reference genomes

Sequence Until can accurately and dynamically stop 
the entire sequencing run at once 
if further sequencing is unnecessary

RawHash



77

The Sequence Until Mechanism
• Problem:
- Unnecessary sequencing waste time, power and money

• Key Idea:
- Dynamically decide if further sequencing of the entire sample is 

necessary to achieve high accuracy
- Stop sequencing early without sacrificing accuracy

• Potential Benefits:
- Significant reduction in sequencing time and cost

• Example real-time genome analysis use case: 
- Relative abundance estimation
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Evaluation Methodology
•Compared to UNCALLED [Kovaka+, Nat. Biotech. 2021]
and Sigmap [Zhang+, ISMB/ECCB 2021]
- CPU baseline: AMD EPYC 7742 @2.26GHz
- 32 threads for each tool

•Use cases for real-time genome analysis:
1. Read mapping
2. Relative abundance estimation
• Benefits of Sequence Until

3. Contamination analysis
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Evaluation Methodology
• Evaluation metrics:
- Throughput (bases processed per second)
- Potential reduction in sequencing time and cost
- Accuracy

• Baseline: Mapping basecalled reads using minimap2
• Precision, recall, and F1 scores
• Relative abundance estimation distance to ground truth

• Datasets:
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Throughput

25.8× and 3.4× better average throughput compared to 
UNCALLED and Sigmap, respectively

• Real-time analysis requires faster throughput than sequencer
- Throughput of a nanopore sequencer: ~450 bp/sec (data generation speed)
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Analysis



83

Sequencing Time
• Fewer bases to sequence è
- Reduction in sequencing time and cost

RawHash reduces sequencing time and cost

for large genomes up to 1.3× compared to UNCALLED
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SARS-CoV-2

D4
Green	Algae

D5
Human

D2
E.	coli

D3
Yeast

Av
er
ag
e	
Se
qu
en
ce
d	
Ba
se
s	

pe
r	
Re
ad
	b
ef
or
e	
St
op
pi
ng
	

th
e	
Se
qu
en
ci
ng
	(#
)

1000

RawHash UNCALLED

2000
3000
4000
5000
6000
7000 Low

er is better



84

Mapping Accuracy

For Large Genomes: RawHash provides the best accuracy 
in all metrics, resulting in 1.14× - 2.13× improvement in 𝐹" score

• Read mapping accuracy of each tool and each use case
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Relative Abundance Estimation Accuracy
• Estimating the ratio of genomes in a sample in real-time
- Distance: Euclidean distance compared to the ground truth distance
- The dataset includes a large reference genome

RawHash provides the best relative abundance estimation 

closest to the ground truth estimation
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Simulating Sequence Until
• Real relative abundance results using the entire set of reads

• Simulating the benefits of Sequence Until by
- Using a random portion (25%, 10%, 1%, …) of the sample

UNCALLED and RawHash benefit from Sequence Until 

significantly by up to 100× reductions in 
sequencing time and costs
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More in the Paper
•More Results
- Mapping time per read
- Overall computational resources required by each tool
• Peak memory usage, CPU time and real time in the 
indexing and mapping steps

- Performance breakdown of the steps in RawHash

•Details of all mechanisms and configurations
- Details of the quantization and hashing mechanism
- Details of the parameter configurations
- Trade-offs between the DNN-based approaches and raw 
signal mapping approaches
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RawHash
• Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, 

Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw 
Nanopore Signals for Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular 
Biology (ISMB) and the 22nd European Conference on Computational Biology 
(ECCB), Jul 2023
[arXiv preprint]
[Source Code]

https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://arxiv.org/abs/2301.09200
https://github.com/CMU-SAFARI/RawHash
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RawHash Source Code
• Supports all major 

raw signal file formats 
and flow cell versions
- FAST5, POD5, S/BLOW5 file formats

• Easy-to-use scripts
- To download all the datasets
- To reproduce all of our results

• You can write your outlier 
function for Sequence Until
- Easily integrate Sequence Until

• Upcoming Feature:
- Integrating the MinKNOW API

https://github.com/CMU-SAFARI/RawHash

https://github.com/CMU-SAFARI/RawHash
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Conclusion

Many opportunities for analyzing raw nanopore signals in real-time:
– Many hash-based sketching techniques can now be used for raw signals
– Indexing is very cheap: Many future use cases with the on-the-fly index construction
– We should rethink the algorithms to perform downstream analysis fully using raw signals

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
– 25.8× and 3.4× better average throughput compared to two state-of-the-art works
– 1.14× – 2.13× more accurate mapping results for large genomes
– Sequence Until reduces the sequencing time and cost by 15×

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw 
nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary



Nika Mansouri Ghiasi Joel Lindegger Gagandeep Singh

ISMB/ECCB 2023

Enabling Fast and Accurate Real-Time Analysis 
of  Raw Nanopore Signals for Large Genomes

RawHash

CodePaper

Can Firtina

Meryem Banu Cavlak Haiyu Mao Onur Mutlu

https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440


Fast and Accurate Real-Time Genome Analysis
n Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,

"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals 
using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]
[RawHash2 Source Code]
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https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash


Optimizations in RawHash2 (1)
n More sensitive chaining implementation with penalty scores

q Benefits: Enables filtering dissimilar regions quickly
q Downside: Additional computations with costly log operations

n Weighted mapping decisions
q Benefit #1: ‘Learned’ mapping decisions based on the weights 

chosen from empirical analysis
q Benefit #2: Faster and more accurate decisions

n Frequency filters
q Filters the seeds that frequently appear before chaining
q Benefits: Reduced workload on chaining without significantly 

affecting accuracy
q Downside: Less sensitive mapping due to removed seeds
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Optimizations in RawHash2 (2)
n New sketching techniques such as minimizers and 

BLEND
q Enables integration of widely studied sketching techniques
q Benefits: Can take advantage of these techniques (e.g., reduced 

storage requirements)

n Support for the recent improvements in the technology
q Support for new data formats: POD5 and S/BLOW5
q Support for newer nanopore chemistry versions: 

R10.4
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Results – Throughput
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2.3× better average throughput RawHash

n Real-time analysis requires faster throughput than sequencer
q Throughput of a nanopore sequencer: ~450 bp/sec (data generation 

speed)
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Results – Accuracy
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RawHash2 is more accurate than RawHash in all cases



Results – Average Sequencing Length
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RawHash2 uses fewer bases to sequence than RawHash in all cases

RawHash2 uses the smallest number of bases to sequence for larger genomes



Fast and Accurate Real-Time Genome Analysis
n Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,

"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals 
using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]
[RawHash2 Source Code]
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https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash


n Enabling cost-effective, portable, fast, and accurate 
genome analysis has many implications
q What are the new applications we can enable with these new 

unique benefits?

n Can we do even better?
q Understanding and modifying the sequencing process for 

analyzing other types of biological data

n How about other sequencing technologies?

The Future is Bright for Genome Analysis
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n Cutting-edge in Accelerating Genome Analysis
q Intelligent genome analysis

n Enabling Fast and Accurate Real-time Analysis
q RawHash and RawHash2

n Graph & ML Acceleration in Genomics
q ApHMM

n Conclusion

Agenda for Today
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HiPEAC 2024

Accelerating Profile Hidden Markov Models 
for Fast and Energy-Efficient Genome Analysis

ApHMM Paper

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, 
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger, 

Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu

Can Firtina
canfirtina@gmail.com 
https://cfirtina.com 

https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/


106

Executive Summary

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines 
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance
– Up to 2622.94× reduction in energy consumption 

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by 
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

Problem: The parameters used in pHMMs are mainly trained and used with a 
computationally intensive Baum-Welch algorithm, causing major performance and 
energy overhead for many genomics workloads

Motivation: Graph structures such as profile Hidden Markov Models (pHMMs) are 
commonly used to accurately analyze biological sequences

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU
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• Fast and accurate genome analysis is important for:

Genome Analysis – Why?

Understanding genetic variations, 
species, and evolution

Surveillance of disease outbreaks

Predicting the presence of 
pathogens in an environment

Personalized medicine
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• Genome sequencing machines can quickly convert 
biological molecules
- Into sequences of characters for analysis

Genome Analysis – How?

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG Sequences 

from DNABiological Molecule 
(e.g., DNA)
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• Analyze sequences by accurately and quickly comparing them
- To each other
- To a template sequence representative of a species, a certain group…

• Essential to understand functionality of a sequence, mutations, 
diseases…

Sequence Comparison is Essential

Biological Sequences
(e.g., DNA, proteins)
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• Graphs are commonly used in sequence comparisons
- Can avoid redundant comparisons and storage
- Provides rich information on expected variations between sequences

Graphs for Sequence Comparisons

Biological Sequences
(e.g., DNA, proteins)



112

• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation 

Profile Hidden Markov Models

A C T TObserved Sequence #1: ACTT
(No variation)

Expected sequence: ACTT
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• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions

Profile Hidden Markov Models

Observed Sequence #2: ACTG
(Substitutions)

A C T G

Expected sequence: ACTT
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• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions 

Profile Hidden Markov Models

Observed Sequence #3: AGGGCTT
(I: Insertions)

A C T T

I

3×

Expected sequence: ACTT
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• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions, Deletions

Profile Hidden Markov Models

Observed Sequence #4: ATT
(D: Deletions)

A C T T

D

Expected sequence: ACTT
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• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions, Deletions

Profile Hidden Markov Models

Observed Sequence #1: ACTT
Observed Sequence #2: ACTG
Observed Sequence #3: AGGGCTT
Observed Sequence #4: ATT
…

A C T T

D

I I I I

D D
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• Profile Hidden Markov Models (pHMMs) are powerful and 
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically

Probabilities in pHMMs

A C T T

D

I I I I

D D

A: 0.1
T: 0.2
G: 0.6
C: 0.1

A: 0.9
T: 0.1
G: 0.0
C: 0.0

A: 0.1
T: 0.1
G: 0.1
C: 0.7

A: 0.2
T: 0.2
G: 0.2
C: 0.4

0.2

0.4

0.7

0.6

0.3

0.1
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• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
P

j2V Ft�1(j)↵jieS[t](vi)

Forward Calculations
Bt(i) =

P
j2V Bt+1(j)↵ijeS[t+1](vj)

Backward Calculations

↵⇤
ij =

nS�1P
t=1

↵ijeS[t+1](vj)Ft(i)Bt+1(j)

nS�1P
t=1

P
x2V

↵ixeS[t+1](vx)Ft(i)Bt+1(x)

Updating 
Transition Probabilities

e⇤X(vi) =

nSP
t=1

Ft(i)Bt(i)[S[t] = X]

nSP
t=1

Ft(i)Bt(i)

Updating 
Emission Probabilities
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• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
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• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
P

j2V Ft�1(j)↵jieS[t](vi)

Forward Calculations
Bt(i) =

P
j2V Bt+1(j)↵ijeS[t+1](vj)

Backward Calculations

↵⇤
ij =

nS�1P
t=1

↵ijeS[t+1](vj)Ft(i)Bt+1(j)

nS�1P
t=1

P
x2V

↵ixeS[t+1](vx)Ft(i)Bt+1(x)

Updating 
Transition Probabilities

e⇤X(vi) =

nSP
t=1

Ft(i)Bt(i)[S[t] = X]

nSP
t=1

Ft(i)Bt(i)

Updating 
Emission Probabilities

Training Step
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• A dynamic programming approach
- Calculate the ‘possibility’ of visiting each state in a pHMM
- Given an observed sequence (from both directions of the sequence)

Forward & Backward Calculations

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T
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• Goal: Identifying the variations between sequences
- Inference by using decoding algorithms (e.g., the Viterbi Algorithm)

Inference using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

A C T T

D

G
Inference:
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• Goal: Maximizing parameters to observe certain variations
- Training using the parameter updating steps in the Baum-Welch algorithm

Training using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training
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• pHMMs are commonly used in many genomics applications

pHMMs in Genomics Workloads

1. Error 
Correction

GCCCATATGGTTAAGCTT

CCCT TGCT GCTA

CCTA GCTT

ATGC AAGC

CCCT GCTT

GCCCTTATGCTTAAGCTA

2. Protein Family 
Search
Protein

Protein
Family #1

Protein
Family #2

3. Multiple Sequence 
Alignment

GCCC-TATGGTTAAGCTT

GCCCATATGATTAAGCTT

GCCCATATGGTTAAGCTT

GCCCATATGGTTAAGCTT

GCCCGTATGGTT---GCTT

GCCCATATGCTTAAGCTT

GCCC---TGGTTAAGCT--T

GCCCATATCCTTAAGCTT
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• The Baum-Welch algorithm causes a major 
computational overhead in genomics workloads
- Taking up from 46% to 99% of the overall execution time
- Computationally complex dynamic programming calculations
- Compute intensive many floating-point operations

The Baum-Welch Algorithm is Costly

Error
Correction

80604020
Percentage	of	Total	Execution	Time	(%)

0

Forward	Calculation Backward	Calculation Parameter	Updates

100

Protein
Family	Search

Multiple
Sequence
Alignment

24.11% 21.65%

26.48% 24.96%

75.63%10.47%12.47%

21.65%24.11%

26.48% 24.96%

45.76%

51.44%

98.57%
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• pHMMs are specialized version of Hidden Markov Models 
(HMMs) with fixed patterns on states and transitions

Existing Solutions are Ineffective

Generic HMM accelerators cannot exploit 
the fixed data dependency pattern of pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations in pHMMs

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Forward Calculations in HMMs

A DI D C I D T I

A
T
G
T
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• pHMM requirements can change based on the application
- Different pHMM designs:

- Different alphabet sizes: DNA (4 letters), protein (20 letters)

Existing Solutions are Inflexible

A C T T

D

I I I I

D D

A C T T

I I I I

Lack of flexible mechanisms 
to handle different design choices
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• Suboptimal vectorization of SIMD-based solutions 
on CPUs and GPUs
- High warp divergence, branching, low port utilization…

• A significant portion of the floating-point operations in dynamic 
programming is redundant
- Same multiplications results can redundantly be computed during training
- Unnecessary data movements

Existing Solutions are Inefficient

Existing solutions provide suboptimal solutions due to
inefficient hardware of software design
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• SIMD-based solutions on CPUs and GPUs provide suboptimal 
vectorization
- High warp divergence, branching, low port utilization…

• A significant portion of the floating-point operations in DP is 
redundant
- Same multiplications appear repeatedly due to constant values during 

training
- Unnecessary data movements

The Problem

Hardware- or software-only solutions 
are not sufficient 

for effectively accelerating pHMMs

The Baum-Welch algorithm causes 
major performance overhead in 
important genomics applications
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Conclusion

Background & Problem

Evaluation

Outline

ApHMM
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Goal

Enable rapid, power-efficient, and flexible 
use of pHMMs when using the Baum-Welch algorithm
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ApHMM
The first flexible hardware-software co-designed 

acceleration framework that can significantly reduce 
the computational overhead of the Baum-Welch algorithm 

for pHMMs 

ApHMM-GPU: The first GPU implementation 
of the Baum-Welch algorithm for pHMMs
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SW

HW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

• Reduce data movement by exploiting fixed data pattern

• Flexible and efficient control logic and hardware design

Key Software & Hardware Optimizations
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SW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

Key Software & Hardware Optimizations
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• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training
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• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

✓ Needed No need
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• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training
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• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training
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• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored
- Reduces the storage requirements during training

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training
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• Observation: ‘Negligible’ cells can be ignored 
without significantly reducing overall accuracy
- Filtering: Non-negligible states are identified by sorting
- Sorting to find exactly 𝑛 states with largest Forward or Backward values

• Sorting is complex to implement in hardware (and costly)
- Can we filter without sorting?

SW: Reducing Unnecessary Computations

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Filtered Forward Calculations

A DI D C I D T I

A
T
G
T

Filter by 
sorting
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• Observation: ‘Negligible’ cells can be ignored 
without significantly reducing overall accuracy
- Goal: Find at least 𝑛 states with largest Forward and Backward values
- Histogram-based filtering: Placing the states into buckets

corresponding to a range of values
- Filter is full as soon we find at least 𝒏 states (e.g., 𝒏 = 𝟏𝟎)

SW: Reducing Unnecessary Computations

Filter is full

Histogram Filter

.

.

.

8, 9
10, 14
15, 16, 18
11, 20, 21, …
13, 17, 19, …

States Range
1.00 – 0.94
0.94 – 0.88
0.88 – 0.82
0.82 – 0.76
0.76 – 0.70

0.06 – 0.00

.

.

.
The rest is ignored 
from further calculation

Filter size = 2 < 10
Filter size = 4 < 10
Filter size = 7 < 10

Filter size = 13 > 10
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• Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Costly FP 
Operations 

Same output
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• Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results
- Lookup tables (LUTs) to efficiently store and use these common results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Cheap LUTs

Same output
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SW

HW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

• Reduce data movement by exploiting fixed data pattern

• Flexible and efficient control logic and hardware design

Key Software & Hardware Optimizations
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Overview of  ApHMM Design

ApHMM	Core

Compute	BlockControl	Block

LUT

Transition	
Scratchpad

Histogram
Filter

Data	Control

Parameters

Index	Control

Calculate	Backward	
(Step-by-Step)

Memory	(DRAM/L2/L1)CPU

Calculate	Forward	
(Full)

Flexible and efficient control logic and hardware design
enables opting out from heuristics and supporting different pHMM designs
✓

Update	Emission	
Probabilities
(Step-by-Step)

Update	Transition	
Probabilities
(Step-by-Step)
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Computing the Baum-Welch in ApHMM

Compute	Block

Update	Emission	(UE)

Calculate	
Emission
Numerator

Calculate	
Emission

Denominator

Division	&	
Update	
Emission

Calculate	Forward/Backward	&	Update	Transition

Write	
Selector

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	Group	#1

PE	Engine	#1PE	Engine	#1PE	Engine	#1PE	#1

PE	#1

Index	Control

Efficiently exploiting data locality, broadcasting, memoization,  streaming, and 
pipelining with our SW optimizations for an effective HW-SW co-design ✓

Forward/
Backward	(PE)

Previous	Step	Coefficients	(L1):
𝑭𝒕 𝒊 	or	𝑩𝒕"𝟏(𝒋)	(Broadcasting)

𝑭𝒕 𝒊 	or	𝑩𝒕"𝟏(𝒋)

LUT
𝛼$%×𝑒&"'(𝑗)

Update	Transition	(UT)

Previous	Transition	Numerator
8KB	Transition	
Scratchpad

MUL ADD FP	DIV

𝛼$%×𝑒&"'(𝑗)

Dot	Product	Tree Accumulator

Reduction	Tree

𝑭𝒕"𝟏 𝒋 	or	
𝑩𝒕(𝒊)

𝑭𝒕 𝒊 ,	𝑩𝒕"𝟏 𝒋

TE	MUL
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Conclusion

Background & Problem

Evaluation

Outline

ApHMM
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Evaluation Methodology
• Performance, Area, and Power Analysis:
- Synthesized SystemVerilog Model in a 28nm process @1GHz
- CPU baseline: AMD EPYC 7742 @2.26GHz (1, 12, 32 threads)
- GPU baselines: Titan V & A100
- FPGA baseline: FPGA D&C

• Use cases and their software baseline:
1. Error Correction – Apollo
2. Protein Family Search – HMMER
3. Multiple Sequence Alignment – HMMER
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• Comparison Points
- CPU: Apollo, HMMER
- GPU: ApHMM-GPU, HMM_cuda
- FPGA: FPGA D&C

• Datasets
- Error correction: Real 10,000 DNA sequences from Escherichia coli 

(E. coli) with average 5,128 read length
- Protein family search: Entire Pfam database (19,632 pHMMs) and 

real 214,393 protein sequences from Mitochondrial carrier
- Multiple sequence alignment: Aligning over ~1 million 

protein sequences from Pfam database

Evaluation Methodology
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Performance: The Baum-Welch Algorithm
HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1

ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Forward	
Calculation

Backward	
Calculation

100
101
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Parameter
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Complete
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15.55×–260.03×, 1.83×–5.34×, and 27.97× faster than 
the CPU, GPU, and FPGA implementations of the Baum-Welch algorithm

GPUs provide better performance for Forward calculations
due to frequent off-chip memory accesses in ApHMM during Forward calculation
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Performance: Workload Acceleration

Error	Correction Protein	Family	Search

100

101

102

1	Thread Multiple	
Sequence
Alignment
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12	Threads 32	Threads
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HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

1.29×–59.94×, 1.03×–1.75×, and 1.03×–1.95× better performance 
compared to the CPU, GPU, and FPGA baselines 

Error correction benefits most from the acceleration 
due to frequent and costly training
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Energy: Overall Comparisons

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
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For the Baum-Welch algorithm: 2474.09× and 896.70×–2622.94× 
reduction in energy consumption compared to CPU-1 and GPU implementations

For the workloads: 64.24×, 1.75×, and 1.96× reduction compared to CPU-1
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•We analyze the speedup that each optimization provides over 
the CPU baseline

Speedup of  Each Optimization

Broadcasting and partial compute together is only possible 
with an efficient HW-SW co-design
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•We analyze the area and power for ApHMM-4 using the 
Synopsys Design Compiler with a 28nm process @1GHz:

Area and Power

UTs require the largest area due to several complex units
such as multiplexer, division pipeline, and local memory

ApHMM can significantly accelerate pHMMs 
with relatively small area and power requirements
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More in the Paper
•More Results
- Detailed discussion on the results generated per use case
- Justification of the dataset and baseline choices

•Details of all mechanisms and configurations
- Details of our design space exploration
- Data distribution and memory layout
- Control and execution flow of ApHMM cores
- Related work discussion (e.g., Pair HMMs vs pHMMs)
- Detailed background on the equations and algorithms
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ApHMM
• Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh,

Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak,
Joël Lindegger, Mohammed Alser, Juan Gómez Luna,
Sreenivas Subramoney, and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and 
Energy-Efficient Genome Analysis”
ACM TACO, Dec 2023.
[Online link at ACM TACO]
[arXiv preprint]
[ApHMM Source Code]

https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU
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ApHMM-GPU Source Code

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU
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Conclusion

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines 
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance
– Up to 2622.94× reduction in energy consumption 

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by 
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU


HiPEAC 2024

Accelerating Profile Hidden Markov Models 
for Fast and Energy-Efficient Genome Analysis

ApHMM Paper

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, 
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger, 

Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu

Can Firtina
canfirtina@gmail.com 
https://cfirtina.com 

https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/


n Cutting-edge in Accelerating Genome Analysis
q Intelligent genome analysis

n Enabling Fast and Accurate Real-time Analysis
q RawHash and RawHash2

n Graph & ML Acceleration in Genomics
q ApHMM

n Conclusion

Agenda for Today
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Things Are Happening In Industry



Illumina DRAGEN Bio-IT Platform (2018)
n Processes whole genome at 30x coverage in ~25 minutes 

with hardware support for data compression
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FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html 

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html


NextSeq 2000 with Analysis Capability
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NVIDIA Clara Parabricks (2020)

165https://developer.nvidia.com/clara-parabricks 

GPU board(s) A University of Michigan startup in 
2018 joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks


NVIDIA Hopper DPX Instructions (2022)

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-
dpx-instructions/ 

166

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/
https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/


FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Bionano & NVIDIA: 
Accelerating Analysis for Fast Time to Results

n We are accelerating the transformation 
in how we analyze the human genome!

New high-performance algorithms 
from Bionano

Analysis of highly complex cancer 
whole genomes in less than 2 hours

Technological solution to support 
higher throughput

Powered by NVIDIA RTX™ 6000 
Ada Generation GPUs

Workflow tailored for a small lab and 
IT footprint
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Cerebras’s Wafer Scale Engine (2021)

168

Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2   

Largest GPU               
54.2 Billion transistors

826 mm2   

n The largest ML 
    accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


NVIDIA H100 (2022)
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NVIDIA is claiming a 7x improvement in dynamic programming 
algorithm (DPX instructions) performance on a single H100 
versus naïve execution on an A100.

https://www.nvidia.com/en-us/data-center/h100/ 

https://www.nvidia.com/en-us/data-center/h100/


UPMEM Processing-in-DRAM Engine (2019)
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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


BioPIM (2022)
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The vision of BioPIM is the realization of cheap, ultra-fast and ultra-low energy mobile 
genomics that eliminates the current dependence of sequence analysis on large and power-
hungry computing clusters/data-centers. 



Fast Genome Analysis…
n Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hour 37 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

172

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Fast Genome Analysis…
n Onur Mutlu,

"Accelerating Genome Analysis"
Invited Talk at the Barcelona Supercomputing Center (BSC), Barcelona, Spain, 6 
September 2022.
[Slides (pptx) (pdf)]
[Talk Video (1 hour 35 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]
[Related Invited Paper (at Computational and Structural Biology Journal, 2022)]
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https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://www.bsc.es/research-and-development/research-seminars/bsc-rs-accelerating-genome-analysis
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pdf
https://www.youtube.com/watch?v=tVpg0XqU_c4
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://arxiv.org/abs/2205.07957


More on Accelerating Genome Analysis

174

n Can Firtina,
"Enabling Accurate, Fast, and Memory-Efficient Genome Analysis via Efficient 
and Intelligent Algorithms"
Talk at UC Berkeley, Berkeley, CA, United States, May 27, 2022.
[Slides (pptx) (pdf)]
[Talk Video (1 hour 6 minutes)]

https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pptx
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://www.youtube.com/watch?v=5C3FdBXrSlg


More on Real-Time Genome Analysis
n Can Firtina,

"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore 
Signals for Large Genomes"
Proceedings Talk at ISMB-ECCB, Lyon, France, 25 July 2023.
[Slides (pptx) (pdf)]
[Talk Video (18 minutes]
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://www.youtube.com/watch?v=ti0M6TvRkTs&t=5s


Accelerating Genome Analysis [DAC 2023]

n Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation 
Conference (DAC), San Francisco, CA, USA, July 2023.
[Slides (pptx) (pdf)]
[Talk Video (38 minutes, including Q&A)]
[Related Invited Paper]
[arXiv version]

176https://ieeexplore.ieee.org/document/10247887 

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf


BIO-Arch Workshop at RECOMB 2023
n April 14, 2023

177https://safari.ethz.ch/recomb23-arch-workshop/ 
https://www.youtube.com/watch?v=2rCsb4-nLmg 

https://safari.ethz.ch/recomb23-arch-workshop/
https://www.youtube.com/watch?v=2rCsb4-nLmg


Genomics Course (Fall 2023)
n Fall 2023 Edition: 

q https://safari.ethz.ch/projects_and_seminars/fall2023/do
ku.php?id=bioinformatics

n Spring 2023 Edition: 
q https://safari.ethz.ch/projects_and_seminars/spring2023

/doku.php?id=bioinformatics

n Youtube Livestream (Fall 2023):
q https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyO

jiMShG4t2QPZoeE3

n Project course
q Taken by Bachelor’s/Master’s students
q Genomics lectures
q Hands-on research exploration
q Many research readings
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https://www.youtube.com/onurmutlulectures 

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://www.youtube.com/onurmutlulectures


Conclusion
n System design for bioinformatics is a critical problem

q It has large scientific, medical, societal, personal implications

n We covered various recent ideas to 
q Accelerate genome analysis
q Analyze genomes in ways that were not possible before

n Many future opportunities exist
q Especially with new sequencing technologies
q Especially with new applications and use cases
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Can Firtina
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Challenges in Read Mapping
n Need to find many mappings of each read

n Need to tolerate variances/sequencing errors in each read

n Need to map each read very fast (i.e., performance is 
important, life critical in some cases)

n Need to map reads to both forward and reverse strands

181https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1



GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGA 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

Analysis is Bottlenecked in Read Mapping!!
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Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48 
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM 
bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603


A Tsunami of Sequencing Data
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A Tera-scale increase in sequencing production in the past 25 years



Solving the Puzzle
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/ 

Reads

Reference 
genome

.FASTA file .FASTQ file

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Obtaining the Human Reference Genome
n GRCh38.p13
n Description: Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13)
n Organism name: Homo sapiens (human)
n Date: 2019/02/28
n 3,099,706,404 bases
n Compressed .fna file (964.9 MB)
n https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
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>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
….

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39


Obtaining .FASTQ Files
n https://www.ncbi.nlm.nih.gov/sra/ERR240727
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https://www.ncbi.nlm.nih.gov/sra/ERR240727


Today’s Computing Systems
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Storage (SSD/HDD) MicroprocessorMain Memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 
design of an electronic computing instrument,” 1946.

von Neumann model, 1945
where the CPU can access data stored in an off-chip 
main memory only through power-hungry bus



The Problem

Data analysis 
is performed 

far away from the data
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Read Mapping

189

Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Read Mapping Algorithms: Two Styles

n Hash based seed-and-extend (hash table, suffix array, suffix tree)
q Index the “k-mers” in the genome into a hash table (pre-processing)
q When searching a read, find the location of a k-mer in the read; then 

extend through alignment
q More sensitive (can find all mapping locations), but slow
q Requires large memory; this can be reduced with cost to run time

n Burrows-Wheeler Transform & Ferragina-Manzini Index based 
aligners
q BWT is a compression method used to compress the genome index
q Perfect matches can be found very quickly, memory lookup costs 

increase for imperfect matches
q Reduced sensitivity



An Example of Hash Table Based Mappers

n + Guaranteed to find all mappings à very sensitive
n + Can tolerate up to e errors
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https://github.com/BilkentCompGen/mrfast

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Performance of Read Mapping
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Mapper

Mapper

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


The Need for Speed
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Mapper

Did we realize the need for 
faster genome analysis?

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Sequence Alignment in Unavoidable

n Quadratic-time dynamic-
programming algorithm

etc

Processing row (or column) after another
etc

n Data dependencies limit the 
computation parallelism

etc

WHY?!

NETHERLANDS x SWITZERLAND
NETHERLANDS x S
NETHERLANDS x SW
NETHERLANDS x SWI
NETHERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 

Enumerating all possible prefixes
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N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Sequence Alignment in Unavoidable

n Quadratic-time dynamic-
programming algorithm

n Data dependencies limit the 
computation parallelism

n Entire matrix is computed 
even though strings can be 
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.
195



Metagenomics Analysis
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Reference 
Database

Reads
“text format”

genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes



Genomics vs. Metagenomics
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Genomics

Metagenomics
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GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400
… … … …

Practical Similarity Identification
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index (Hash Table)

K-mers Locations

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching regions (seeds) in the reference 
genome 

Prune some seeds in the reference genome

Determine the exact differences between the read and the 
reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…
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Existing Solutions – Real-time Basecalling

Nanopore sequencing Raw Signal

Cu
rr
en
t

Real-time Analysis

Basecalling

G GA T

Read mapping

Deep neural networks (DNNs) for translating signals to bases

DNNs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
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The Problem

Costly and energy-hungry 
computations to basecall 

each read:
Portable sequencing becomes 

challenging with 
resource-constrained devices

Real-time Analysis

Basecalling

G GA T

Read mapping

The existing solutions are ineffective for large genomes

Signal mapping

Real-time Analysis

Larger number of reference 
regions cannot be handled 

accurately or quickly, 
rendering existing solutions 

ineffective for large 
genomes
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Applications of  Read Until
Depletion: Reads mapping to a particular reference genome is ejected

Enrichment: Reads not mapping to a particular reference genome is ejected

• Removing contaminated reads from a sample

• Relative abundance estimation

• Controlling low/high-abundance genomes in a sample
• Controlling the sequencing of depth of a genome

• Purifying the sample to ensure it contains only the selected genomes

• Removing the host genome (e.g., human) in contamination analysis
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Applications of  Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

Sequence Until: Stopping the sequencing based on information decision

• Stopping when reads reach to a particular depth of coverage

• Stopping when the abundance of all genomes reach a particular threshold

• Stopping when relative abundance estimations do not change substantially 
(for high-abundance genomes)

• Stopping when finding that the sample is contaminated with a particular set 
of genomes
• …
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Details: Quantizing the Event Values
• Observation: Identical k-mers generate similar raw signals
- Challenge: Their corresponding event values can be slightly different

• Key Idea: Quantize the event values
- To enable assigning the same quantized value to the similar event values

…

-0.091 in binary:

…

-0.084 in binary:

0 0 01 1 1 1 1 1 1 1 1 0 0 01 1 1 1 1 1 1 1 0

Most significant 𝑄 = 9 bits: Most significant 𝑄 = 9 bits:

0 01 1 1 1 1 1 1 0 01 1 1 1 1 1 1

Matching 
Quantized 

Event Values

Pruning 𝑝 = 4 bits: Pruning 𝑝 = 4 bits:

01 0 1 1 01 0 1 1

Slightly Different 
(Normalized) 
Event Values
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Average Sequenced Bases and Chunks

RawHash reduces sequencing time and cost for large genomes 
up to 1.3× compared to UNCALLED

Although Sigmap processes less number of chunks than RawHash, it fails to 
provide real-time analysis capabilities for large genomes
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Breakdown Analysis of  the RawHash Steps

The entire runtime is bottlenecked by the chaining step
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Required Computation Resources in Indexing

The indexing step of RawHash is orders of magnitude faster than 
the indexing steps of UNCALLED and Sigmap, especially for large genomes

RawHash requires larger memory space than UNCALLED
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Required Computation Resources in Mapping

The mapping step of RawHash is significantly faster than Sigmap 
for all genomes, and faster than UNCALLED for small genomes

RawHash requires larger memory space than UNCALLED
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Average Mapping Time per Read

The mapping step of RawHash is significantly faster than Sigmap 
for all genomes, and faster than UNCALLED for small genomes
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Parameter Configurations
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Versions
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• Accurate comparison requires identifying changes (insertions, 
deletions, substitutions) between sequences due to
- Variations between individuals and template sequences
- Errors in sequences

• How to avoid unnecessary (and costly) comparisons?

Why Graphs are Useful

Variants?

Which 
variant?

Erroneous 
analysis?

Errors?
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• Filtering heuristics aim to reduce unnecessary computations

Filtering – Performance Benefits
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Motivational Study: ~2.5x performance improvements with filtering
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• Software-based filtering heuristics aim to reduce unnecessary 
computations
- High-accuracy can be achieved with filtering with correct setting

Filtering – Accurate but Costly Sorting
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Filtering takes up ~8.5% of the overall execution time 
due to sorting
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•We analyze maximum number of cores that ApHMM can utilize
- Before it is bottlenecked by memory bandwidth for genomics applications

Choosing the Right Amount of  Cores

ApHMM with 4 cores (ApHMM-4) provides the best overall speedup

CPU ApHMM-accelerated	Baum-Welch	Execution Overhead
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