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Brief Self Introduction

= Can Firtina
o Ph.D. Student in SAFARI Research Group led by Prof. Onur Mutlu |

= Research interests: Bioinformatics & Computer Architecture
o Real-time genome analysis

Similarity search in a large space of genomic data

Hardware-Algorithm co-design to accelerate genome analysis

Genome editing

Error correction
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= Get to know our group and our research
o  Group website: https://safari.ethz.ch/
o Contact me: canfirtina@gmail.com
o Website: https://cfirtina.com
o Twitter (aka X): https://twitter.com/FirtinaC
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Professor Mutlu

Onur Mutlu

Full Professor @ ETH Zurich ITET (INFK), since September 2015
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach)
https://people.inf.ethz.ch/omutlu/projects.htm

o 0o 0o 0 o0 O

Research and Teaching in:

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

o 0o 0o 0 o O
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SAFARI Research Group

Computer architecture, HW/SW, systems, blomformatlcs securlty, memory

SAFARI httDs://safarl.ethz.ch
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Current Research Mission

Computer architecture, HW/SW, systems, bioinformatics, security

f— Hybrld Maln Memory —

Hterogenous Persistent Memory/Storage

Processors and

Accelerators

Graphics and Vision Processing

Build fundamentally better architectures
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Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Architectures for AI/ML, Genomics, Medicine, Health

SAFARI
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Agenda for Today

Cutting-edge in Accelerating Genome Analysis
o Intelligent genome analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Graph & ML Acceleration in Genomics
o ApHMM

Conclusion

SAFARI



The Goal of Computing: Beyond Numbers

“The purpose of COIT) putlng is [to gain]
insig ht, not numbers”

Richard Hamming

SAFARI "Numerical Methods for Scientists and Engineers," Richard Hamming, 1962. 8



https://safari.ethz.ch/digitaltechnik/lib/exe/fetch.php?media=numerical.methods.for.scientists.and.engineers_2ed_hamming_0486652416.pdf

We need to gain insights
and observations
much more efficiently
than ever before

SAFARI



Big Data 1s Everywhere

£ W

Astronomy Twitter (now X)
25 zetta-bytes/year 0.5-15 billion tweets/year

\

YouTube Genomics
500-900 million hours/year 1 zetta-bases/year

SAFARI  "Big data: astronomical or genomical?”, PLoS biology, 2015. 10



https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195

Problems with Data Analysis Today

\ J..\ %
/'

Special-Purpose Machine General-Purpose Machine
for Data Generation for Data Analysis

FAST SLOW

Slow and inefficient processing capability
Large amounts of data movement

SAFARI
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Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
o\

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version]
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali X, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck
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We need intelligent algorithms
and intelligent architectures
that handle data well

SAFARI



Does intelligent genome
analysis really matter?

SAFARI



Intelligent Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for
Intelligent Genome Analysis”

Computational and Structural Biotechnology Journal, 2022

[Source code]
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Review

From molecules to genomic variations: Accelerating genome analysis via | M)
intelligent algorithms and architectures e

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh,
Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Ziirich, Switzerland

SAFARI 17


https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations

Pushing Towards New Architectures
FPGAs _

Modern systems

i v -.‘:‘:: ? ‘t‘t

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage

SAFARI 18



Pushing Towards New Architectures

FPGAs

Modern systems

uencing
Machine

COEN Persistent Memory/Storage
(General Purpose) GPUs

SAFARI https://nanoporetech.com/products/smidgion 19
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Fast Genome Analysis

Fast genome analysis
in mere seconds
using limited computational resources

(e.g., @ mobile device).

SAFARI 20



Accurate Genome Analysis

Accurate genome analysis
to make life-critical decisions

and improving the quality of life

SAFARI
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Faster, Scalable & Accurate Genome Analysis

' L1
A wh!

Understanding genetic variations, Predicting the presence of
species, and evolution pathogens in an environment

Surveillance of disease outbreaks Personalized medicine

SAFARI And, many, many other applications ... 22



Personalized Medicine in UK

“From 2019, all seriously ill children in uk
will be offered WhOle genome sequencing

as part of their care”

NHS|

National Institute for
Health Research

SAFARI
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Rapid Surveillance of Disease Outbreaks

Real-time, portable genome sequencing for Ebola surveillance

Figure 1: Deployment of the portable genome surveillance system in Guinea.

tracking the global spread of coronavirus

SAFAR]/ Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016 24



https://www.nature.com/articles/nature16996

Scalable SARS-CoV-2 Testing

nature biomedical engineering

Explore content v  About the journal v  Publish with us v

nature > nature biomedical engineering > articles > article

Article | Published: 01 July 2021
Massively scaled-up testing for SARS-CoV-2 RNA via

next-generation sequencing of pooled and barcoded
nasal and saliva samples

Joshua S. Bloom &, Laila Sathe, [...] Valerie A. Arboleda

Nature Biomedical Engineering 5, 657-665 (2021) | Cite this article

4675 Accesses | 110 Altmetric | Metrics

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", Nature Biomedical Engineering, 2021

SAFARI 25
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Large Scale Analysis
B8 T

>

SAFAR/ https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 26
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Genome Analysis — How?

« Genome sequencing machines can quickly convert

biological molecules
- Into sequences of characters for analysis

4

Sequences
from DNA

Biological Molecule
(e.g., DNA)

SAFARI 27



Sequence Comparison is Essential

» Analyze sequences by accurately and quickly comparing them
- To each other
- To a template sequence representative of a species, a certain group...

5)7
.mug
£ B

Uu

« Essential to understand functionality of a sequence, mutations,
diseases...

SAFARI 28



Applications
are only limited
by our imagination

SAFARI



Genome Editing

The Nobel Prize in Chemistry 2020

awarded "for the development of a
method of genome editing"

SAFARI nttps://www.nobelprize.org/prizes/chemistry/2020/press-release/

30
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DNA Computing

g \ G
Los Angeles / ,/ TR [__Miami__|[ New York |

York
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Massive parallelism to solve
(hard) problems!

SAFARI https://electronicsforyou.in/seminar-report-on-dna-computing/ ol
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Accelerating Genome Analysis [pac 2023

Onur Mutlu and Can Firtina,

"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.

[Slides (pptx) (pdf)]

[Talk Video (38 minutes, including Q&A)]

[Related Invited Paper]

[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https:/ /ieeexplore.ieee.org/document/10247887 32


https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf

Algorithm-Arch-Device Co-Design 1s Critical

Computer Architecture SW/HW Interface

(expanded view)

SAFARI 33



We need intelligent algorithms
and intelligent architectures
that handle data well

SAFARI



New Frontiers: Raw Signal Analysis [ISMB 2023]

= Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for
Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular Biology (ISMB) and
the 22nd European Conference on Computational Biology (ECCB), Jul 2023
[Bioinformatics Journal version]
[Slides (pptx) (pdf)]
[RawHash Source Code]

Bioinformatics, 2023, 39, i297-i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of

raw nanopore signals for large genomes

Can Firtina ® "*, Nika Mansouri Ghiasi ® ', Joel Lindegger ® ', Gagandeep Singh ® 7,
Meryem Banu Cavlak ® 7, Haiyu Mao ® ', Onur Mutlu ® **

'Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: firtinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://github.com/CMU-SAFARI/RawHash

Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]

[RawHash2 Source Code]

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism

Can Firtina Melina Soysal Joel Lindegger Onur Mutlu
ETH Ziirich

SAFARI 36
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Accelerating ML, & Genome Graphs [ACM TACO 23]

= Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh,
Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak,
Joél Lindegger, Mohammed Alser, Juan Gomez Luna,
Sreenivas Subramoney, and Onur Mutlu,

"ApHMM: Accelerating Profile Hidden Markov Models for Fast and

Energy-Efficient Genome Analysis”
ACM TACO, Dec 2023.

[Online link at ACM TACQO]
[arXiv preprint]
[ApHMM Source Code]

ApHMM: Accelerating Profile Hidden Markov Models for Fast
and Energy-Efficient Genome Analysis

Just Accepted

Authors: Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joél Lindegger, Mohammed Alser,
Juan Goémez Luna, Sreenivas Subramoney, Onur Mutlu (Less) Authors Info & Claims

ACM Transactions on Architecture and Code Optimization « Accepted on October 2023 « https://doi.org/10.1145/3632950

Published: 28 December 2023 Publication History, M) Check for updates
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https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
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https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

Genome Similarity Identification [NARGAB 2023]

= Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha
Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can

Alkan, and Onur Mutlu,

"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy

Seed Matches in Genome Analysis"
NAR Genomics and Bioinformatics, March 2023.

[Online link at NAR Genomics and Bioinformatics Journal]

[arXiv preprint]

[biorXiv preprint]

[BLEND Source Code]

AR,

Volume 5, Issue 1
March 2023

JOURNAL ARTICLE

BLEND: a fast, memory-efficient and accurate
mechanism to find fuzzy seed matches in genome
analysis d

Can Firtina ™, Jisung Park, Mohammed Alser, Jeremie S Kim, Damla Senol Cali,

Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos,
Can Alkan, Onur Mutlu

NAR Genomics and Bioinformatics, Volume 5, Issue 1, March 2023, l[qad004,

SAFARI
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https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://academic.oup.com/nargab
https://doi.org/10.1093/bioinformatics/btac554
https://arxiv.org/abs/2112.08687
https://doi.org/10.1101/2022.11.23.517691
https://github.com/CMU-SAFARI/BLEND

New Applications: Frequent Database Updates

Jeremie S. Kim*, Can Firtina*, M. Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,

"AirLift: A Fast and Comprehensive Technique for Remapping
Alignments between Reference Genomes"

Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC),
Changsha, China, April 2023.

[AirLift Source Code]

[arxiv.org Version (pdf)]

[Talk Video at BIO-Arch 2023 Workshop]

METHOD

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim1T, Can Firtinalf, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazarl#,
Mohammed Alser!, Can Alkan? and Onur Mutlu!23*

SAFARI *Equal contribution »


https://arxiv.org/pdf/1912.08735.pdf
https://arxiv.org/pdf/1912.08735.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf
https://www.youtube.com/watch?v=nJKJK15t5YM

Error Correction using ML [Bioinform. 2020}

= Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument
Cicek, Can Alkan, and Onur Mutlu,

'‘Apollo: A Sequencing-Technology-Independent, Scalable, and
Accurate Assembly Polishing Algorithm"”
Bioinformatics, June 2020.

[Source Code]
[Online link at Bioinformatics Journal]

Apollo: a sequencing-technology-independent,

scalable and accurate assembly polishing algorithm
@

Can Firtina, Jeremie S Kim, Mohammed Alser, Damla Senol Cali, A Ercument Cicek,
Can Alkan ™, Onur Mutlu =

Bioinformatics, Volume 36, Issue 12, 15 June 2020, Pages 3669-3679,
https://doi.org/10.1093/bioinformatics/btaal79
Published: 13 March 2020 Article history v
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https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Apollo
https://doi.org/10.1093/bioinformatics/btaa179

Accelerating String Matching [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal BingolY Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand' Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Accelerating Genome Graphs [ISCA 2022]

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali' Konstantinos Kanellopoulos?  Joél Lindegger? Ziilal Bingol®
Gurpreet S. Kalsi* Ziyi Zuo®> Can Firtina?® Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi* Gagandeep Singh® Juan Gémez-Luna® Nour Almadhoun Alserr?
Mohammed Alser® Sreenivas Subramoney* Can Alkan® Saugata Ghose® Onur Mutlu?

1Bionano Genomics 2ETH Ziirich 3Bilkent University — “Intel Labs
>Carnegie Mellon University ~ ®University of Illinois Urbana-Champaign

SAFARI https://arxiv.org/pdf/2205.05883.pdf 42



https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

In-Storage Genome Filtering [ASPLOS 2022]

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim! Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto

SAFARI 3


https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

Genome Analysis via PIM [MICRO 2022]

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal,
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of
Basecalling and Read Mapping"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (25 minutes)]

[arXiv version]

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping

Haiyu Mao! Mohammed Alser! Mohammad Sadrosadati* Can Firtina! Akanksha Baranwal!
Damla Senol Cali? Aditya Manglik! Nour Almadhoun Alserr! Onur Mutlu!

LETH Ziirich 2Bionano Genomics
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https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600
https://arxiv.org/pdf/2209.08600.pdf

Food Microbiome Profiling using PIM

Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,

Onur Mutlu, Said Hamdioui
“Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional

Computing in Memory”
IEEE Access, 2022

IEEE Access
=M RESEARCH ARTICLE e o S

Demeter: A Fast and Energy-Efficient Food
Profiler Using Hyperdimensional
Computing in Memory

TAHA SHAHROODI !, MAHDI ZAHEDI !, CAN FIRTINA2, MOHAMMED ALSER 2,
STEPHAN WONG!, (Senior Member, IEEE), ONUR MUTLU -2, (Fellow, IEEE),

AND SAID HAMDIOUI'!, (Senior Member, IEEE)

!Q&CE Department, EEMCS Faculty, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
2S AFARI Research Group, D-ITET, ETH Ziirich, 8092 Ziirich, Switzerland
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https://arxiv.org/pdf/2206.01932.pdf
https://arxiv.org/pdf/2206.01932.pdf

Fast and Accurate Real-Time Genome Analysis

Joel Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad Sadrosadati,
Mohammed Alser, and Onur Mutly,

'RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal

Mapping via Combining Seeding and Alignment"
Preprint on arxiv, October 2023.

[arXiv version]
[RawAlign Source Code]

RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal
Mapping via Combining Seeding and Alignment

Joél Lindegger® Can Firtina’ Nika Mansouri Ghiasi®
Mohammad Sadrosadati® Mohammed Alser® Onur Mutlu$
SETH Ziirich
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https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/abs/2310.05037
https://github.com/CMU-SAFARI/RawAlign

Machine Learning in Genomics

M. Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger,
Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, and Onur Mutlu,

'TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-

Basecalling Filtering"
Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC), Changsha,

China, April 2023.

[TargetCall Source Code]

[arxiv.org Version]

[Talk Video at BIO-Arch 2023 Workshop]

TargetCall: Eliminating the Wasted Computation in Basecalling
via Pre-Basecalling Filtering

Meryem Banu Cavlak! Gagandeep Singh! Mohammed Alser! Can Firtina! Joél Lindegger!
Mohammad Sadrosadati! Nika Mansouri Ghiasi! Can Alkan? Onur Mutlu!
LETH Ziirich 2Bilkent University
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https://arxiv.org/pdf/2212.04953.pdf
https://arxiv.org/pdf/2212.04953.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/cmu-safari/targetcall
https://arxiv.org/abs/2212.04953
https://www.youtube.com/watch?v=2rCsb4-nLmg&t=21973s
https://arxiv.org/pdf/2301.09200.pdf

Agenda for Today

Cutting-edge in Accelerating Genome Analysis
o Intelligent genome analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Graph & ML Acceleration in Genomics
o ApHMM

Conclusion

SAFARI
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i RawHash

Enabling Fast and Accurate Real-Time Analysis
of Raw Nanopore Signals for Large Genomes

Can Firtina
Nika Mansouri Ghiasi  Joel Lindegger Gagandeep Singh
Meryem Banu Cavlak Haiyu Mao Onur Mutlu

Pape;:.

SAFARI - ETHziirich


https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440

Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology
Can sequence large fragments of nucleic acid molecules (up to >2Mbp)
Offers high throughput

Cost-effective

Enables real-time genome analysis
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Real-Time Analysis with Nanopore Sequencing

Raw Signals Real-Time Analysis

Nanopore Sequencing

Raw Signals: Ionic current measurements generated at a certain throughput

Real-Time Analysis: Analyzing all raw signals by matching the throughput

Real-Time Decisions: Stopping sequencing early based on real-time analysis

SAFARI 51



Benefits of Real-Time Genome Analysis

/. Reducing latency by overlapping the sequencing and analysis steps

Time

Sequencing | Analysis

!

Sequencing & Real-Time Analysis

:‘ Reduced Latency

~ Reducing sequencing time and cost by stopping sequencing early

!

Partially Sequenced Read -

Completely Sequenced Read

Reduced Sequencing Time (and Cost)

Sequencing is stopped early with a real-time decision

SAFARI 52



Challenges in Real-Time Genome Analysis

71 Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

@ Accurate analysis from noisy raw signal data

42

Power-efficient computation for scalability and portability
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Executive Summary

r

.

Problem: Real-time analysis of nanopore raw signals is inaccurate and inefficient for
large genomes

7

\

Goal: Enable fast and accurate real-time analysis of raw signals for large genomes

7

\

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw
nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

\

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x
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Existing Solutions

1.

Deep neural networks (DNNSs)

for translating signals to bases

Real-Time Analysis
Basecalling Read Mapping

- =

Less noisy analysis from
basecalled sequences

Mapping signals to reference
genomes without basecalling

Real-Time Analysis

Mapping Raw Signals

\. J

7

\

Costly and power-hungry
computational requirements

~

Raw signals contain richer
information than bases

SAFARI

Efficient analysis with better
scalability and portability
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The Problem — Mapping Raw Signals

Raw Signal

N\

l

Small Reference Genome

Large Reference Genome (Human)

Fewer candidate regions
in small genomes

Substantially larger number of regions to
check per read as the genome size increases

Accurate mapping

Problem: Probabilistic mechanisms
Oon many regions =» inaccurate mapping

High throughput

SAFARI

Problem: Distance calculation
on many regions = reduced throughput
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The Problem — Mapping Raw Signals

Existing solutions are
inaccurate or inefficient
for large genomes

SAFARI
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Goal

Enable fast and accurate real-time analysis
of raw nanopore signals for large genomes

SAFARI
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w RawHash

The first hash-based search mechanism
to quickly and accurately map raw nanopore signals
to reference genomes

.

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

SAFARI 60




W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Raw Signal #1 Raw Signal #2
A A

Fast
0x01 >[ Match ]4 0x01

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding similar regions as few as possible
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RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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Events in Raw Nanopore Signals

- Event: A segment of the raw signal
- Corresponds to a particular k-mer

« Event detection finds these segments to identify k-mers
- Start and end positions are marked by abrupt signal changes
- Statistical methods identify these abrupt changes
- Event value: average of signals within an event

Event

k many
nucleotides

Event Value

(picoampere)
SAFARI
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Signal-to-Event Conversion

- Event detection: Identifies signal regions corresponding to
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

Raw Nanopore Signal Event Value
1 . 11 1
T ' = » 2.21
=i 1 | (@]
Hwnmm . | Calculate | _Ji105.7101 1. 3 » 0.08
»l Segment > > i\ ‘ 3
Means | 11 Lo %. » 1.18
— ® o 1.14 )

» Consecutive events = consecutive k-mers
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Signal-to-Event Conversion

Can we directly match signals to each other?
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Hashing for Fast Similarity Search

« Each event usually represents a very small k-mer (6 to 9 characters)
- Challenge: Short k-mers are likely to appear in many locations

- Key Idea: Create longer k-mers from many consecutive events
- Key Benefit: Directly match hash values to quickly identify similarities

Consecutive Consecutive

k-mers events
_AL _A
' N\ ' Y \
CTATTA » -0.09 » Quantize m*1]1]o]o]1
TATTA > : > ' »0joj1]1]0
. C 1 _15 Qua.ntlze \ ( Pack
. . . - l
ATTACC > 1.11 :Quantlze :00101J 1l1lololilololil1lo --- ol1lolo

Hash value of { 0x400D70A4 |+— Hash

consecutive events
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Real-Time Mapping using Hash-based Indexing

SAFARI

Indexing (Offline)
Reference Genome

llllllllllll v,
[
[

: Read Until : “No: Stop mapping

. or 1<
;, Run Until :

4pEEEEEEEEEEESR

...GCTATTACCTTAATGTG... —4—
v
Reference-to-Event Signal-to-Event
Conversion Conversion
A\ 4 \ 4
Quantization Quantization
v v
Hashing Hashing
y__ Store( ... . Query Y
0x01 Table I 1.0x01 |
; Chaining &
- - _ aining
Matching Positions " Mapping

Continue
Mapping?

Mapping (Real-time)
Raw Nanopore Signal

JUNYD 1XaU 3] SS320.d :SOA

\_
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W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

.
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The Sequence Until Mechanism

* Problem:
- Unnecessary sequencing waste time, power and money

* Key Idea:

- Dynamically decide if further sequencing of the entire sample is
necessary to achieve high accuracy

- Stop sequencing early without sacrificing accuracy

* Potential Benefits:
- Significant reduction in sequencing time and cost

« Example real-time genome analysis use case:
- Relative abundance estimation
SAFARI
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Outline

Evaluation
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Evaluation Methodology

« Compared to UNCALLED
and Sigmap
- CPU baseline: AMD EPYC 7742 @2.26GHz
- 32 threads for each tool

« Use cases for real-time genome analysis:

1. Read mapping

2. Relative abundance estimation
* Benefits of Sequence Until

3. Contamination analysis

SAFARI
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Evaluation Methodology

e Evaluation metrics:

- Throughput (bases processed per second)
- Potential reduction in sequencing time and cost

- Accuracy

- Baseline: Mapping basecalled reads using minimap2
 Precision, recall, and F1 scores

« Relative abundance estimation distance to ground truth

 Datasets:

SAFARI

Organism

Reads (#) Bases (#) Genome Size

Read Mapping

Relative Abundance Estimation

DI SARS-CoV-2 1382016  594M 29,903
D2 E. coli 353317 2,365M 5M|
D3 Yeast 49,989 380M 12M|
D4  Green Algae 29,933 609M 111M|
D5 Human HGOOI 269,507  1,584M 3,117

D1-D5 2,084,762 5,531M 3,246 Ml
ontamination Analysis

D1 and D5

1,651,523 2,178M 29,903

31



Throughput

- Real-time analysis requires faster throughput than sequencer
- Throughput of a nanopore sequencer: ~450 bp/sec (data generation speed)

M RawHash [ UNCALLED M Sigmap

106k
10|15
104
103t
102k
101}

Real-Time
Analysis

No Real-Time
Analysis

Throughput (bp/sec)

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

25.8x and 3.4 x better average throughput compared to
UNCALLED and Sigmap, respectively

Sigmap cannot perform real-time analysis for large genomes
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Sequencing Time

» Fewer bases to sequence =
- Reduction in sequencing time and cost

[MRawHash [ UNCALLED

1.3%x

the Sequencing (#)

0.5x%

19139q SI JOMO]

1000 0.4Xx

per Read before Stopping

Average Sequenced Bases

_ 0.4%

D1 D2 D3 D4 D5
SARS-CoV-2 E. coli Yeast Green Algae Human

RawHash reduces sequencing time and cost

for large genomes up to 1.3x compared to UNCALLED
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Mapping Accuracy

« Read mapping accuracy of each tool and each use case

Dataset UNCALLED Sigmap RawHash
Read Mapping
D1 Precision 0.9547  0.9929 0.9868
SARS-CoV-2 Recall 0.9910 0.5540 0.8735
Fq 09725 0.7112 0.9267
D2 Precision 0.9816  0.9842 0.9573
E. coli Recall 0.9647 0.9504 0.9009
Fq 09731 0.9670 0.9282
D3 Precision 0.9459  0.9856 0.9862
Yeast Recall 0.9366 0.9123 0.8412
Fq 09412  0.9475 0.9079
D4 Precision 0.8836  0.9741 0.9691
Green Algae Recall 0.7778  0.8987 0.7015
Fyq 0.8273  0.9349 0.8139
D5 Precision 0.4867  0.4287 0.8959
Human HGOOI  Recall 0.2379  0.2641 0.4054
Fq 0.3196  0.3268 0.5582

Dataset UNCALLED Sigmap RawHash
Relative Abundance Estimation
Precision 0.7683 0.7928 0.9484
D1-D5 Recall 0.1273 0.2739 0.3076
Fyq 0.2184  0.4072 0.4645
Contamination Analysis
Precision 0.9378 0.7856 0.8733
D1, D5 Recall 0.9910 0.5540 0.8735
Fq 0.9637 0.6498 0.8734

For Large Genomes: RawHash provides the best accuracy

in all metrics, resulting in 1.14x - 2.13x improvement in F; score

SAFARI
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Relative Abundance Estimation Accuracy

« Estimating the ratio of genomes in a sample in real-time
- Distance: Euclidean distance compared to the ground truth distance

- The dataset includes a large reference genome

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 04191 0.1038 0.0962  0.3390 0.0877
RawHash 0.1249 04701 0.0957 0.0629  0.2464 0.0847

RawHash provides the best relative abundance estimation

closest to the ground truth estimation

SAFARI



Simulating Sequence Until

* Real relative abundance results using the entire set of reads

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962  0.3390 0.0877

UNCALLED and RawHash benefit from Sequence Until
significantly by up to 100x reductions in

sequencing time and costs

1001 SAK>-COV-Z E.COl Yeast Greem Aigae HUmMan  DISTAnce
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED (25%) 0.0026  0.5890 0.0613 0.1332  0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786  0.3170 0.0995
UNCALLED (10%) 0.0026  0.5906 0.0611 0.1316  0.2141 0.1920
RawHash (10%) 0.0273  0.4869 0.0963 0.0772  0.3124 0.1004
UNCALLED (1%) 0.0026 0.5750 0.0616 0.1506  0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882  0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910  0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810  0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000  0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122  0.0000 0.0000  0.2972 0.2232
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More in the Paper

* More Results
- Mapping time per read
- Overall computational resources required by each tool

« Peak memory usage, CPU time and real time in the
indexing and mapping steps

- Performance breakdown of the steps in RawHash

 Details of all mechanisms and configurations
- Details of the quantization and hashing mechanism
- Details of the parameter configurations

- Trade-offs between the DNN-based approaches and raw
sighal mapping approaches
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RawHash

« Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw
Nanopore Signals for Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular
Biology (ISMB) and the 22nd European Conference on Computational Biology
(ECCB), ul 2023
[arXiv preprint]
[Source Code]

Bioinformatics, 2023, 39, i297—i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of

raw nanopore signals for large genomes

Can Firtina ® "*, Nika Mansouri Ghiasi ® 7, Joel Lindegger ® ', Gagandeep Singh ® 7,
Meryem Banu Cavlak ® !, Haiyu Mao ® !, Onur Mutlu ® 1-*

'Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: fitinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://arxiv.org/abs/2301.09200
https://github.com/CMU-SAFARI/RawHash

RawHash Source Code

» Supports all major
raw signal file formats
and flow cell versions

- FASTS5, PODS5, S/BLOWS file formats

» Easy-to-use scripts
- To download all the datasets
- To reproduce all of our results

 You can write your outlier
function for Sequence Until

- Easily integrate Sequence Until

» Upcoming Feature:
- Integrating the MinKNOW API

SAFARI
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RawHash ' pubiic

main ~

’ canfirtina Test README fixes

D DD DO DO DO

extern
gitfigures
src

test
.gitignore
.gitmodules
LICENSE
Makefile
README.md

code_of_conduct.md

README.md

Overview

¥ 1branch 0 tags

<% EditPins v

Go to file

(® Unwatch 5

e9a56fe last week O 19 commits

Decoupling HDF5/POD5/SLOWS5 compilations
Updating README

Adding the SLOWS5 support

Test README fixes

PODS5 support

ZSTD sobmodule for POD5

R10 k-mer models can be parsed now as well.
Decoupling HDF5/POD5/SLOWS5 compilations

Test README fixes

Moving to multiple headers than a single one to improve adaptability....

RawHash

last month
last month

3 weeks ago
last week

4 months ago
4 months ago
last month
last month
last week

6 months ago

7

% Fork 1 - Starred 13~

About &

RawHash is the first mechanism that can
accurately and efficiently map raw
nanopore signals to large reference
genomes (e.g., a human reference
genome) in real-time without using
powerful computational resources (e.g.,
GPUs). Described by Firtina et al.
(published at
https://academic.oup.com/bioinformatics
Jarticle/39/Supplement_1/i297/7210440)

& academic.oup. joinformatics/arti...

bioinformatics nanopore seeding

segmentation  event-detection
genome-analysis  hash-tables
contamination read-mapping
relative-abundances
nanopore-sequencing
nanopore-analysis-pipeline
nanopore-reads  nanopore-data

nanopore-minion  raw-signal  rawhash

raw-nanopore-signal-analysis

Readme
GPL-3.0 license
Code of conduct
Activity

13 stars

o2+ @r B

5 watching
% 1fork

https://github.com/CMU-SAFARI/RawHash
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Outline

Conclusion
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Conclusion

7

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw

nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x

\

p
Many opportunities for analyzing raw nanopore signals in real-time:

— Many hash-based sketching techniques can now be used for raw signals

— Indexing is very cheap: Many future use cases with the on-the-fly index construction

— We should rethink the algorithms to perform downstream analysis fully using raw signals

J

\.

SAFARI
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https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440

Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]

[RawHash2 Source Code]

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism

Can Firtina Melina Soysal Joel Lindegger Onur Mutlu
ETH Ziirich
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https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash

Optimizations in RawHash2 (1)

More sensitive chaining implementation with penalty scores
o Benefits: Enables filtering dissimilar regions quickly
o Downside: Additional computations with costly log operations

Weighted mapping decisions
o Benefit #1: ‘Learned’ mapping decisions based on the weights
chosen from empirical analysis

o Benefit #2: Faster and more accurate decisions

Frequency filters
o Filters the seeds that frequently appear before chaining

o Benefits: Reduced workload on chaining without significantly
affecting accuracy

o Downside: Less sensitive mapping due to removed seeds

SAFARI o7



Optimizations in RawHash2 (2)

New sketching techniques such as minimizers and
BLEND
o Enables integration of widely studied sketching techniques

o Benefits: Can take advantage of these techniques (e.g., reduced
storage requirements)

Support for the recent improvements in the technology
o Support for new data formats: POD5 and S/BLOWS

o Support for newer nanopore chemistry versions:
R10.4

SAFARI
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Results — Throughput

= Real-time analysis requires faster throughput than sequencer

o Throughput of a nanopore sequencer: ~450 bp/sec (data generation
speed)

[T Nanopore llRawHash2 [[] RawHash2-Minimizer [l RawHash [ll UNCALLED [ Sigmap

'S 106 ¢
7] X X 21(' X
g0 EHHE B .
2 REISHS x S IE |5l || Real-Time
= 10%¢ | | ~ o IS .
= o Analysis
g 103 ¢ 1k 5 -
2 T .
S 102 ] No
= ) -Ti
£ 10t Real Tll}‘le

A Analysis

D1 D2 D3 D4 D5 Contamination
SARS-CoV-2 E. coli Yeast Green Algae Human

2.3 X better average throughput RawHash
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Results — Accuracy

Dataset UNCALLED Sigmap | RawHash RawHash2 | RawHash2-
Minimizer
Read Mapping

D1 Precision 0.9547 0.9929 0.9868 0.9857 0.9602
SARS-CoV-2 Recall 0.9910 0.5540 0.8735 0.8842 0.7080
F 0.9725 0.7112 0.9267 0.9322 0.8150

D2 Precision 0.9816 0.9842 0.9573 0.9864 0.9761
E. coli Recall 0.9647 0.9504 0.9009 0.8934 0.7805
F 0.9731 0.9670 0.9282 0.9376 0.8674

D3 Precision 0.9459 0.9856 0.9862 0.9567 0.9547
Yeast Recall 0.9366 0.9123 0.8412 0.8942 0.7792
R 0.9412 0.9475 0.9079 0.9244 0.8581

D4 Precision 0.8836 0.9741 0.9691 0.9264 0.9198
Green Algae Recall 0.7778  0.8987 0.7015 0.8659 0.6711
F 0.8273 0.9349 0.8139 0.8951 0.7760

D5 Precision 0.4867 0.4287 0.8959 0.8830 0.8111
Human HG001 Recall 0.2379 0.2641 0.4054 0.4317 0.1862
F 0.3196 0.3268 0.5582 0.5799 0.3028

Contaminatiof
D1 and D5 Precision 0.9378 0.7856 0.8733 0.9393 0.9330

RawHash2 is more accurate than RawHash in all cases

SAFARI
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Results — Average Sequencing Length

Tool SARS-CoV-2  E. coli Yeast Green Algae Human Contamination
Average sequenced base length per read

UNCALLED 184.51 580.52 1,233.20 5,300.15  6,060.23 1,582.63

RawHash 513.95 1,376.14  2,565.09 4,760.59  4,773.58 742.56

RawHash2 488.46 1,234.39  1,715.31 2,077.39 3,441.43 681.94

RawHash2-Minimizer 566.42 1,763.76  2,339.41 2,891.55  4,090.68 787.82

Average sequenced number of chunks per read

Sigmap 1.01 2.11 4.14 5.76 10.40 2.06
RawHash 1.24 3.20 5.83 10.72 10.70 2.41
RawHash2 1.18 2.93 4.02 4.84 7.78 1.68
RawHash2-Minimizer 1.39 4.16 5.45 6.66 9.17 1.89

RawHash2 uses fewer bases to sequence than RawHash in all cases

RawHash2 uses the smallest humber of bases to sequence for larger genomes
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Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]

[RawHash2 Source Code]

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism

Can Firtina Melina Soysal Joel Lindegger Onur Mutlu
ETH Ziirich

SAFARI 10z


https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash

The Future 1s Bright for Genome Analysis

Enabling cost-effective, portable, fast, and accurate
genome analysis has many implications

o What are the new applications we can enable with these new
unique benefits?

Can we do even better?

o Understanding and modifying the sequencing process for
analyzing other types of biological data

How about other sequencing technologies?
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Agenda for Today

Cutting-edge in Accelerating Genome Analysis
o Intelligent genome analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Graph & ML Acceleration in Genomics
2 ApHMM

Conclusion
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HiPEAC 2024

ApHMM

Accelerating Profile Hidden Markov Models
for Fast and Energy-Efficient Genome Analysis

Can Firtina

canfirtina(@gmail.com
https://cfirtina.com

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joél Lindegger,
Mohammed Alser, Juan Gomez Luna, Sreenivas Subramoney, Onur Mutlu
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https://cfirtina.com/

Executive Summary

é Y

Motivation: Graph structures such as profile Hidden Markov Models (pHMMs) are
commonly used to accurately analyze biological sequences

\ J

Problem: The parameters used in pHMMs are mainly trained and used with a
computationally intensive Baum-Welch algorithm, causing major performance and

\energy overhead for many genomics workloads )

N\

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

é N

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines
across 3 workloads

— 15.55%-260.03%, 1.83%x—-5.34%, and 27.97 x better performance

— Up to 2622.94 x reduction in energy consumption

\ S
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https://github.com/CMU-SAFARI/ApHMM-GPU

Outline

Background & Problem
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Genome Analysis — Why?

« Fast and accurate genome analysis is important for:

S - Ny

{ <~/

)

\ <

Al \ I
4
= F'\‘]‘
X n
| [

Understanding genetic variations, Predicting the presence of
species, and evolution pathogens in an environment

Surveillance of disease outbreaks Personalized medicine
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Genome Analysis — How?

« Genome sequencing machines can quickly convert

biological molecules
- Into sequences of characters for analysis

4

Sequences
from DNA

Biological Molecule
(e.g., DNA)
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Sequence Comparison is Essential

» Analyze sequences by accurately and quickly comparing them
- To each other
- To a template sequence representative of a species, a certain group...

5)7
.mug
£ B

Uu

« Essential to understand functionality of a sequence, mutations,
diseases...
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Graphs for Sequence Comparisons

- Graphs are commonly used in sequence comparisons

- Can avoid redundant comparisons and storage
- Provides rich information on expected variations between sequences

r
== B
_ w|, — >
n =
@ﬂ
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Profile Hidden Markov Models

* Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations

- Variations:

ACTT

ACTT 8 (o £ o 3
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Profile Hidden Markov Models

* Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations

- Variations:

ACTT

ACT D (o i o (3
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Profile Hidden Markov Models

* Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations

- Variations:

B
ACTT
pccerr (&
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Profile Hidden Markov Models

* Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: Substitutions, Insertions, Deletions

ACTT

Observed Sequence #4: ATT
(D: Deletions)
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Profile Hidden Markov Models

* Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: Deletions

ACTT

ACT

A CTT
Observed Sequence #4: ATT
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Probabilities in pHMMs

* Profile Hidden Markov Models (pHMMs) are powerful and

common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
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Utilizing Probabilities in pHMMs

 The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

« Inference: Identifying the variations between sequences

* Training: Maximizing parameters to observe certain variations

Forward Calculations Backward Calculations
Fr (D)= D ey Ft—1<j;|ajies[t] (vi) 1= 2 jev B (dfevisesiir (vy)
1
Updating Updating
Transition Probabilities Emission Probabilities
"S> ijesiean (03)F () Busa () > Fi(i)B,(0)[5] = X]
o = ns_t1=1 ex (vi) = = ns
t; %:VQ’imeS[H—l](Ufﬂ)Ft(i)Bt-i-l(x) t; Fy(1)By(7)
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Utilizing Probabilities in pHMMs

 The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

« Inference: Identifying the variations between sequences

* Training: Maximizing parameters to observe certain variations

Forward Calculations Backward Calculations
)= ey Fr-1(d)jies (vi) )= 2jev Beri()aijesi (vy)

Updating
Emission Probabilities

ns

Z Fy i)Bt(iﬂ[S[t] — X]

Oé* —= t=1 * (U@) — t=1

nsil > Qiz€sti1] (Um)Ft(i)Bt—l—l(x) Fi (i) By (Z)I

t=1 z€V t=1
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Utilizing Probabilities in pHMMs

 The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

« Inference: Identifying the variations between sequences

* Training: Maximizing parameters to observe certain variations

Forward Calculations Backward Calculations
Fy(i) = ev Fio1(d)ajies (vi) Bi(i) = >_jcv Bey1(j)aujesra) (v)
Training Step

Updating Updating
Transition Probabilities Emission Probabilities

ng—1

21 aijesie+1)(v5) Fi (i) Bir1(4)
t=

ng—1

Y > qigespin](ve) Fi (i) Big1 ()
t=1 xz€Vv
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Forward & Backward Calculations

* A dynamic programming approach
- Calculate the ‘possibility’ of visiting each state in a pHMM
- Given an observed sequence (from both directions of the sequence)
Observed Sequence:

tAIDCIDTID tAIDCIDTID
IS s S
Forward Calculations Backward Calculations

SAFARI 121



Inference using pHMMs

« Goal: Identifying the variations between sequences
- Inference by using decoding algorithms (e.g., the Viterbi Algorithm)

Observed Sequence: ATGT

A{IJDJCII)DJTJ\I)D

A{IJ]DJCII)D)TJ\I)D

- O - >

Forward Calculgtions Backv=vard Calculations

SAFARI 122



Training using pHMMs
» Goal: Maximizing parameters to observe certain variations

- Training using the parameter updating steps in the Baum-Welch algorithm

Observed Sequence: ATGT

A{IJDJCII)DJTJ\I)D

A{IJ]DJCII)D)TJ\I)D

- O - >
- O - >

Forward Calculgtions Backv=vard Calculations

b [_Training ] gl
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pHMMs in Genomics Workloads

 pPHMMs are commonly used in many genomics applications

1. Error 2. Protein Family 3. Multiple Sequence
Correction Search Alignhment

GCCAATATGGTTAAGCTT GCCC-TATGGTTAAGCTT
GCCCATATGATTAAGCTT
GCCCATATGGTTAAGCTT
CQIRl IGCTT GCCCGTATGGTT—-GCTT
ATGC] [RAGC amily # GCCCATATGCTTAAGCTT
Rl R GCCC-—-TGGTTAAGCT-T
"o s s | | [GCCCATATCCTTAAGCTT
TIATGCTTAAGCTAN | &% &%) %70 | | [cccaTaTaTTARGETT

CCAT| [TGCT| [GCTA

T |GCTT
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The Baum-Welch Algorithm is Costly

» The Baum-Welch algorithm causes a major
computational overhead in genomics workloads
- Taking up from 46% to 99% of the overall execution time
- Computationally complex dynamic programming calculations
- Compute intensive many floating-point operations

] B Forward Calculation [_1Backward Calculation ] Parameter Updates
Multiple 3
Sequence £ = 2648% 51.4490
Alignment
Protein [ or | o
Family Search 24:31%— 45.76%
Error ] f ]
-12.47%, TSl HHHHHH i (o)
Correction AT . 75'3% P8-57 /o
0 20 40 60 80 100

Percentage of Total Execution Time (%)

SAFARI 125



Existing Solutions are Ineffective

« pHMMs are specialized version of Hidden Markov Models
(HMMs) with fixed patterns on states and transitions

NaJup)c)ajp)(T)1)p NaJujojcjan)T)1)p
IATEANY
\ \¥ \¢
Forward Calculations in pHMMs Forward Calculations in HMMs

Generic HMM accelerators cannot exploit
the fixed data dependency pattern of pHMMs
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Existing Solutions are Inflexible

- pHMM requirements can change based on the application
- Different pHMM designs:

NN

T A C T T

- Different alphabet sizes: DNA (4 letters), protein (20 letters)

Lack of flexible mechanisms
to handle different design choices
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Existing Solutions are Inefficient

 Suboptimal vectorization of SIMD-based solutions
on CPUs and GPUs

- High warp divergence, branching, low port utilization...

« A significant portion of the floating-point operations in dynamic
programming is redundant
- Same multiplications results can redundantly be computed during training
- Unnecessary data movements

Existing solutions provide suboptimal solutions due to
inefficient hardware of software design
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The Problem

The Baum-Welch algorithm causes
major performance overhead In
iImportant genomics applications

Hardware- or software-only solutions
are not sufficient
for effectively accelerating pHMMs
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ApHMM
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Goal

Enable rapid, power-efficient, and flexible
use of pHMMs when using the Baum-Welch algorithm

\. J

SAFARI 131



ApHMM

The first flexible hardware-software co-designed
acceleration framework that can significantly reduce
the computational overhead of the Baum-Welch algorithm
for pHMMs

. J

(- )

ApHMM-GPU: The first GPU implementation
of the Baum-Welch algorithm for pHMMs

. J
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Key Software & Hardware Optimizations

« Minimize redundant data storage by efficient pipelining

 Reduce unnecessary computations with quick filtering

- Avoid repeated operations by utilizing lookup tables
SW

* Reduce data movement by exploiting fixed data pattern

* Flexible and efficient control logic and hardware design
HW
SAFARI



Key Software & Hardware Optimizations

« Minimize redundant data storage by efficient pipelining

 Reduce unnecessary computations with quick filtering

- Avoid repeated operations by utilizing lookup tables
SW
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SW: Minimizing Redundant Storage

« Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

Observed Sequence: ATGT

tAIDCIDTID tAIDCIDTID
B Al A
T P~ T
G G
T AT

Forward Calculf\tions Backv=vard Calculations

b [_Training ] gl
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SW: Minimizing Redundant Storage

« Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

Observed Sequence: ATGT

N A@DREEREEP t\‘
A \/‘Needed A
T T
G G
T 5T
Forward Calculations Backward Calculations

b [_Training ] gl
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SW: Minimizing Redundant Storage

« Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

Observed Sequence: ATGT

A{IJ]DJCII)D)TJ\I)D AIJDJCII)DJTJI)D

unn N R ean;

Forward Calculf\tions Backv=vard Calculations

b [_Training ] gl
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SW: Minimizing Redundant Storage

« Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

Observed Sequence: ATGT

A{IJ]DJCII)D)TJ\I)D AIJDJCII)DJTJI)D

. X

Forward Calculf\tions Backv=vard Calculations

b [_Training ] gl
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SW: Minimizing Redundant Storage

« Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

- Reduces the storage requirements during training
Observed Sequence: ATGT

I||D

AJ(1)p)(c]1)p)(T) 1)(D

|

Forward Calculf\tions Backv=vard Calculations

b [_Training ] gl
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SW: Reducing Unnecessary Computations

- Observation: 'Negligible’ cells can be ignored
without significantly reducing overall accuracy
- Filtering: Non-negligible states are identified by sorting
- Sorting to find exactly n states with largest Forward or Backward values

F.(i) . F. (i) .
tlAIDCIDTID t‘AIDCIDTID
Filter by
sorting
=
Forward Calculations Filtered Forward Calculations

 Sorting is complex to implement in hardware (and costly)

- Can we filter without sorting?
SAFARI 140



SW: Reducing Unnecessary Computations

- Observation: 'Negligible’ cells can be ignored
without significantly reducing overall accuracy
- Goal: Find at least n states with largest Forward and Backward values

- Histogram-based filtering: Placing the states into buckets
corresponding to a range of values

- Filter is full as soon we find at least n states (e.g., n = 10)

( States . Range )
Filter size =2 < 10 |—— 8,9 1.00 - 0.94
Filter size =4 < 10 —o 10, 14 0.94 - 0.88
Filter size = 7 < 10 |21 18 0.88 — 0.82
— 11, 20, 21, 0.82 — 0.76

Filter size = 13 > 10 %
The rest is ignored <
from further calculation
%
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SW: Avoiding Repeated Operations

- Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

‘A:0.1) (A:0.1) "A:0.1) 0.6x0.2
T: 0.2 T: 0.2 T: 0.2 "_,_’ [ Costly FP ]
G: 0.3 G:03| ™ |G:0.3 : Operations
 C:0.4  C:0.4 L C: 0.4 ) — i

0.6 0.6 0.6 S tout
ame outpu

« Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results
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SW: Avoiding Repeated Operations

- Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

'A:0.1) (A:0.1) (A:0.1) 0.6x0.2
I
T: 0-2 T: 0-2 T: 0-2 ||—
G: 0.3 G:0.3| "™ |G:0.3 : Cheap LUTs
 C:0.4  C:0.4 L C: 0.4 | m— l

0.6 0.6 0.6 S tout
ame outpu

« Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results
- Lookup tables (LUTs) to efficiently store and use these common results
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Key Software & Hardware Optimizations

« Minimize redundant data storage by efficient pipelining

 Reduce unnecessary computations with quick filtering

- Avoid repeated operations by utilizing lookup tables
SW

* Reduce data movement by exploiting fixed data pattern

* Flexible and efficient control logic and hardware design
HW
SAFARI



Overview of ApHMM Design

? CPU —> Memory (DRAM/L2/L1)
4 1 )
b
@ ) 9 ( )
Parameters - J Calculate Forward Update Emission
(Full) Probabilities
(Step-by-Step)
Data Control | 1 1 I
4>
i 1 Index Control || LUT Update Transition
1 I Probabilities
Histogram | (Step-by-Step)
Filter Calculate Backward {
(Step-by-Step) Transition
Scratchpad
_ Control Block | Compute Block )
\ApHMM Core y,

Flexible and efficient control logic and hardware design

enables opting out from heuristics and supporting different pHMM designs
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Com
-

puting the Baum-Welch in ApHM

r )

?ndex Control > ."-:
: '!E PE #1 .
Previous Step Coefficients (L1): { i t(l)orBHl(].) . :
F.(i) or B;,1(j) (Broadcasting) " :‘_
@ N © i :| |DotProduct Tree »| Accumulator
7 - - -
Calculate : 3 “ijxet+3(])| ¥ P
Emission : i [Forward/ | LUT Reduction Tree P
| Numerator | : i (Backward (PE) )
S , ~|Fea@or i
Calculate P1OF (D), Bra()  eriixers1 () Bt+;(] i

Emission i 10) CE N
| Denominator | @ (2K ] .
: = TE MUL [~ MUL |={ ApD | [FPDIV][}: i
Division & 8 3 [ P
Update } Write : | Previous Transition Numerator il
Emission N Selector 8KB Transition b Pl
Q J < ::
R T : 3 Scratchpad Pl
De L mllssmn( ) : : \Update Transition (UT) - ):
< % PE#1 i
“PE Group #1

\Calculate Forward/Backward & Update Transition )
\Compute Block )

Efficiently exploiting data locality, broadcasting, memoization, streaming, and

v pipelining with our SW optimizations for an effective HW-SW co-design
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Evaluation Methodology

- Performance, Area, and Power Analysis:
- Synthesized SystemVerilog Model in a 28nm process @1GHz
- CPU baseline: AMD EPYC 7742 @2.26GHz (1, 12, 32 threads)
- GPU baselines: Titan V & A100
- FPGA baseline: FPGA D&C

« Use cases and their software baseline:
1. Error Correction — Apollo
2. Protein Family Search — HMMER
3. Multiple Sequence Alignment — HMMER

SAFARI
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Evaluation Methodology

- Comparison Points
- CPU: Apollo, HMMER

- GPU: ApHMM-GPU, HMM_cuda
- FPGA: FPGA D&C

- Datasets
- Error correction: Real 10,000 DNA sequences from Escherichia coli
(E. coli) with average 5,128 read length

- Protein family search: Entire Pfam database (19,632 pHMMs) and
real 214,393 protein sequences from Mitochondrial carrier

- Multiple sequence alignment: Aligning over ~1 million
protein sequences from Pfam database
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Performance: The Baum-Welch Algorithm

®CPU-1 [ECPU-12 =CPU-32 ESHMM_cuda (TitanV) B HMM_cuda (A100)
NApHMM-GPU (TitanV) ZApHMM-GPU (A100) EFPGAD&C [ApHMM-4

103 —
o u =
= 10?% 1
Tz 10 Nz
SIS 1 = A
o = 10% R= 0 — R =000 £< — —] —
—_ 5 - =i Ng= — —
SO 100 o = BN =i NG = —
CPU GPU |S|= CPU GPU [S|= CPU GPU (S|Z S|=
== == 73] == B [
= = =% =
< < < <
Forward Backward Parameter Complete
Calculation Calculation Updates Baum-Welch

15.55%x-260.03%, 1.83x—-5.34%, and 27.97 x faster than
the CPU, GPU, and FPGA implementations of the Baum-Welch algorithm

GPUs provide better performance for Forward calculations

due to frequent off-chip memory accesses in ApHMM during Forward calculation

SAFARI



Performance: Workload Acceleration

KCPU-1  ECPU-12 ECPU-32 EIHMM_cuda (TitanV) HEHHMM_cuda (A100)
v NApHMM-GPU (Titan V) ©Z4ApHMM-GPU (A100) EFPGAD&C [[ApHMM-4
= 107
)
= g
I N e (Y'Y Y s DN 7 [ e R
g 10 B = [
a | rEeEeshE N |
T 100} ot ] [
o R =X R S RR&S
o CPU GPU <| = YIS E N = N = TS| 2
2 S| = S| 2| S - R S| 2| S
=12  B|E|E 5% 5% B|F%
< < © < © < <
1 Thread 12 Threads 32 Threads )
Multiple
Error Correction Protein Family Search Sequence
Alignment

1.29%x-59.94 %, 1.03x-1.75%, and 1.03x—1.95x% better performance
compared to the CPU, GPU, and FPGA baselines

Error correction benefits most from the acceleration

SAFARI
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Energy: Overall Comparisons

KCPU-1  [ECPU-12  HCPU-32 HMM _cuda (TitanV) B HMM_cuda (A100)

S NApHMM-GPU (Titan V) Z4ApHMM-GPU (A100) EFPGAD&C [[JApHMM-4
b=
_§ - 10 (o0
g g 107 P
> T 102} ]
8o s ..............
o 8 103} ]
5 104 ] s
= CPU GPU = CPU GPU = = CPU| =
= = = = =
z z z z
) ) & <
Complete Baum-Welch Error Correction Protein Multiple
Family Sequence

Search Alignment

For the Baum-Welch algorithm: 2474.09% and 896.70x—2622.94 x

reduction in energy consumption compared to CPU-1 and GPU implementations

For the workloads: 64.24x, 1.75x%, and 1.96 X reduction compared to CPU-1
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Speedup of Each Optimization

» We analyze the speedup that each optimization provides over
the CPU baseline

Optimization Speedup (X)

Histogram Filter 1.07
LUTs 2.48
Broadcasting and Partial Compute 3.39
Memoization 1.69
Overall 15.20

Broadcasting and partial compute together is only possible

with an efficient HW-SW co-design
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Area and Power

- We analyze the area and power for ApHMM-4 using the
Synopsys Design Compiler with a 28nm process @1GHz:

Module Name Area (mm?) Power (mW)
Control Block 0.011 134.4
64 Processing Engines (PEs) 1.333 304.2
64 Update Transitions (UTs) 5.097 0.8
4 Update Emissions (UEs) 0.094 70.4
Overall 6.536 509.8
128 KB L1-Memory 0.632 100

UTs require the largest area due to several complex units

such as multiplexer, division pipeline, and local memory

ApHMM can significantly accelerate pHMMs

with relatively small area and power requirements
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More in the Paper

« More Results
- Detailed discussion on the results generated per use case
- Justification of the dataset and baseline choices

 Details of all mechanisms and configurations
- Details of our design space exploration

- Data distribution and memory layout

- Control and execution flow of ApHMM cores

- Related work discussion (e.g., Pair HMMs vs pHMMs)

- Detailed background on the equations and algorithms
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ApHMM

 Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh,
Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak,
Joél Lindegger, Mohammed Alser, Juan Gomez Luna,
Sreenivas Subramoney, and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and

Energy-Efficient Genome Analysis”
ACM TACO, Dec 2023.

[Online link at ACM TACQO]
[arXiv preprint]
[ApHMM Source Code]

ApHMM: Accelerating Profile Hidden Markov Models for Fast
and Energy-Efficient Genome Analysis

Just Accepted

Authors: Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joél Lindegger, Mohammed Alser,
Juan Goémez Luna, Sreenivas Subramoney, Onur Mutlu (Less) Authors Info & Claims

ACM Transactions on Architecture and Code Optimization « Accepted on October 2023 « https://doi.org/10.1145/3632950

Published: 28 December 2023 Publication History M) Check for updates
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https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

ApHMM-GPU Source Code

w ADHMM-GPU  Pubiic

¥ main ~ ¥ 1Branch © 0 Tags

@ canfirtina Updating the BibTeX entry

M src

I test

utils
.gitignore
LICENSE
Makefile

README.md

0D 0ODoD DO .

code_of_conduct.md

[J README & Code of conduct

5P Edit Pins ~

Q Go tofile t Add file ~

€b22438 - 2 years ago

Initial GPU code for running Apollo using the ApHMM soft...
Initial GPU code for running Apollo using the ApHMM soft...
Initial GPU code for running Apollo using the ApHMM soft...
Improving README, Makefile, and adding gitignore

Initial GPU code for running Apollo using the ApHMM soft...
Improving README, Makefile, and adding gitignore
Updating the BibTeX entry

Initial GPU code for running Apollo using the ApHMM soft...

&8 GPL-3.0 license

® Unwatch 5 ~

<> Code ~

@ 7 Commits

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago

2 years ago

7

ApHMM: Accelerating Profile Hidden Markov Models for
Fast and Energy-Efficient Genome Analysis

% Fork 0 - Starred 8 -

About 3

ApHMM-GPU is the first GPU
implementation of the Baum-Welch
algorithm for profile Hidden Markov
Models (pHMMs). It includes many of
the software optimizations as proposed
in the ApHMM paper, which is described
by Firtina et al. (preliminary version at
https://arxiv.org/abs/2207.09765).

Readme

GPL-3.0 license
Code of conduct
Activity

Custom properties

8 stars

Ol <+ 3w B

5 watching
0 forks

Report repository

Releases

No releases published
Create a new release

https://github.com/CMU-SAFARI/ApHMM-GPU
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Conclusion

(Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads J

( )

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

\. J

[ )

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines

across 3 workloads
— 15.55%—-260.03x%, 1.83%x—5.34%, and 27.97 x better performance

— Up to 2622.94 x reduction in energy consumption

\. J
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HiPEAC 2024

ApHMM

Accelerating Profile Hidden Markov Models
for Fast and Energy-Efficient Genome Analysis

Can Firtina

canfirtina(@gmail.com
https://cfirtina.com

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joél Lindegger,
Mohammed Alser, Juan Gomez Luna, Sreenivas Subramoney, Onur Mutlu
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Intel. TUDelft CarnegieMellon



https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/

Agenda for Today

Cutting-edge in Accelerating Genome Analysis
o Intelligent genome analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Graph & ML Acceleration in Genomics
o ApHMM

Conclusion
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Things Are Happening In Industry




[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 30x coverage in ~25 minutes
with hardware support for data compression

. — b
. 4 ] '
4 e Y44
! -
: -

m'ﬂ Z .
‘ DL e LI LR R . LR TR RS LT

BLLELL R ll.“l»l» e ll!ll_lll ll.llll_l.lN

M BT (.
o

T i e : —
G ~ D

! o -
P

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html
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https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html

NextSeq 2000 with Analysis Capability

NextSeq 1000/2000 Integrates DRAGEN Bio-IT Platform On-Board

DRAGEN Bio-IT platform:

* Fast

» Accurate

* Industry standard pipelines

« For both novice and expert users

Pipelines available on-board:

* DRAGEN Enrichment pipeline

* DRAGEN RNA pipeline

* DRAGEN Germline

* DRAGEN Single Cell RNA

» Generate FASTQ via BCL Convert

» Additional pipelines available in
BaseSpace Sequence Hub

For Research Use Only.

II Iumlna. Not for use in diagnostic procedures.

= i
DRAGEN

SAFARI
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NVIDIA Clara Parabricks (2020)

A University of Michigan startup in
2018 joined NVIDIA in 2020

GPU board(s)

PERFORMANCE COMPARISON
Germline End-to-End Secondary Analysis

1,200 minutes

l \ 52 minutes 35 minutes 23 minutes

e
CPU/GATK 8X T4 8X V100 8X A100

SAFARI https://developer.nvidia.com/clara-parabricks 165
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NVIDIA Hopper DPX Instructions (2022)

NVIDIA Hopper GPU Architecture Accelerates Dynamic Programming
Up to 40x Using New DPX Instructions

Dynamic programming algorithms are used in healthcare, robotics, quantum computing, data science and more.

SAFARI SEM


https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/
https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/

= We are accelerating the transformation
in how we analyze the human genome!

DIONQNO  FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

@@a@'@@

Technological solution to support
higher throughput

New high-performance algorithms
from Bionano

Powered by NVIDIA RTX™ 6000
Ada Generation GPUs

Analysis of highly complex cancer
whole genomes in less than 2 hours

Workflow tailored for a small lab and
IT footprint
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Cerebras’s Wafer Scale Engine (2021)

.
?t = The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU
2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

ﬁéﬁM!erebras.net/cerebras-wafer-scale-engine-whv-we-need-big-chips-for-deeo-learning[



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

NVIDIA H100 (2022)

i -

rory HIRIININIRISIEIY
el (R ML)

NVIDIA is claiming a 7x improvement in dynamic programming

algorithm (DPX instructions) performance on a single H100
versus naive execution on an A100.

SAFAR]/| https://www.nvidia.com/en-us/data-center/h100

Up to 7X Higher Performance for HPC
Applications

3D Fast Fourier Transform (FFT) Genome Sequencing

H100 to A100 Comparison - Relative Performance
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM UPE M UPMER UPMEM LIPMEM UPMEM UPMEM
PIM PN PIM Pl P PIM PIN pIM
chip chip chip chip chip chip chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https: upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ 170
K1 Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

BioPIM (2022)

Alignment

and search

algorithms
(BU, IP)

Neuromorphic

computing
(IBM/ |
BioPIM[®'

Associative \
memory
processing
(TECHNION)

Bulk bitwise
operations
(ETH)

Data
structures
(BU, IP,
CNRS)

\J

TN Graph

theory
(IP, CNRS)

Genomics

(BU, IP,

CNRS)
3D Stacked

Memory
technologies

(ETH, UPMEM
CNRS)

The vision of BioPIM is the realization of cheap, ultra-fast and ultra-low energy mobile
genomics that eliminates the current dependence of sequence analysis on large and power-

hungry computing clusters/data-centers.

SAFARI
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Fast Genome Analysis...

Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A|IN U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey

566 views * Premiere d Feb 6, 2021 |. 31 0 SHARE SAVE
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Fast Genome Analysis...

Onur Mutlu,

'Accelerating Genome Analysis"

Invited Talk at the Barcelona Supercomputing Center (BSC), Barcelona, Spain, 6
September 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 35 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

[Related Invited Paper (at Computational and Structural Biology Journal, 2022)]

SAFARI

A Bright Future for Intelligent Genome Analysis

Mohammed Alsel ZIIBgIDmIS ICIerIeKmS thh CAIk , Onur Mutlu
“Accelerating Analysis: A Primer on an oing Journey” IEEEM Ag st 2020.

ing Genome is: A Primer on

an ne
FPGA-Based Nea MmoryA | : of
Modern Data-lntensive Applicatio

MinION from ONT

SmidglON from ONT

Accelerating Genome Analysis - Onur Mutlu's Invited Talk at the Barcelona Supercomputing Center

@ Onur Mutlu Lectures Editvideo /> Share =+ Save
«¥b>  36.6K subscribers
023

imer on an Ongoing Journey

nnnnnnnnnnnnnn (including Q8A)
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https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://www.bsc.es/research-and-development/research-seminars/bsc-rs-accelerating-genome-analysis
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pdf
https://www.youtube.com/watch?v=tVpg0XqU_c4
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://arxiv.org/abs/2205.07957

More on Accelerating Genome Analysis

Can Firtina,

"Enabling Accurate, Fast, and Memory-Efficient Genome Analysis via Efficient
and Intelligent Algorithms"

Talk at UC Berkeley, Berkeley, CA, United States, May 27, 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 6 minutes)]

Enabling Accurate, Fast, and Memory-
Efficient Genome Analysis via Efficient

and Intelligent Algorithms

Can Firtina
canfirtina@gmail.com

27 May 2022
Invited Seminar Talk at UC Berkeley

SAFARI ETH:zurich

QLim@0

> Pl ) 031/10633

Enabling Accurate, Fast, and Memory-Efficient Genome Analysis - Can Firtina (Talk at UC Berkeley)

Onur Mutlu Lectures

= 3 ) s =
SA FA RI & 313K subscribers g Subscribed v s 22 51 »~> Share & Clip =+ Save 174


https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pptx
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://www.youtube.com/watch?v=5C3FdBXrSlg

More on Real-Time Genome Analysis

Can Firtina,

"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore
Signals for Large Genomes"

Proceedings Talk at ISMB-ECCB, Lyon, France, 25 July 2023.

[Slides (pptx) (pdf)]

[Talk Video (18 minutes]

RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Fast
i—’ Match | iowl

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding similar regions as few as possible
SAFARI

RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals | ISMB-ECCB 2023
2 Onur Mutlu Lectures ) —
Q 261K subscribers Analytics @ A Share =+ Save
294 views Premiered Aug 15, 2023

Talk of "RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes" at ISMB-ECCB 2023
Presenter: Can Firtina

Duration: 18:58 minutes
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://www.youtube.com/watch?v=ti0M6TvRkTs&t=5s

Accelerating Genome Analysis [pac 2023

Onur Mutlu and Can Firtina,

"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.

[Slides (pptx) (pdf)]

[Talk Video (38 minutes, including Q&A)]

[Related Invited Paper]

[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https://ieeexplore.ieee.org/document/10247887 !¢


https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf

BIO-Arch Workshop at RECOMB 2023

April 14, 2023

BIO-Arch: Workshop on Hardware
Acceleration of Bioinformatics

Workloads ORI R~ T SN
2 Y N / v
' / Sar- N X of '%’ N
About Ny # KDL
. 4 . . . , A N BIO-Arch:
BIO-Arch is a new forum for presenting and discussing new ideas in accelerating Worksh Hardl A | i
bioinformatics workloads with the co-design of hardware & software and the use of Oorkshop on FHardware Acceleration
new computer architectures. Our goal is to discuss new system designs tailored for £ y Friday, April 14 2023
bioinformatics. BIO-Arch aims to bring together researchers in the bioinformatics, Sk i g Live in Istanbul & YouTuue

computational biology, and computer architecture communities to strengthen the
progress in accelerating bioinformatics analysis (e.g., genome analysis) with efficient
system designs that include hardware acceleration and software systems tailored fo
new hardware technologies.

Ve n u e BIO-Arch: Workshop on Hardware Acceleration of Bioinformatics Workloads

: 3 E crsme : : ¢ 5 3 ™ Onur Mutlu L ) e % (o _
BIO-Arch will be held in The Social Facilities of istanbul Technical University on April & it 8 | GP  Dshwe L Download SOl =+ save
14. Detailed information about how to arrive at the venue location with various 1,448 views Streamed live on Apr 14, 2023

transportation options can be found on the RECOMB website.

Our panel discussion will be held in conjunction with the main RECOMB conference.
The panel discussion will be held in Marriott Sisli on April 17 at 17:00. You can find

https://www.youtube.com/watch?v=2rCsb4-nLmg
SAFARI https://safari.ethz.ch/recomb23-arch-workshop/ b



https://safari.ethz.ch/recomb23-arch-workshop/
https://www.youtube.com/watch?v=2rCsb4-nLmg

4 Lecture Playlist (Fall 2023):

Y
g =
[]
| Fa I I 20 23 Ed Itl o n [ ] Understandlng genetlc variatiol redlctlng the presence and relative

o https://safari.ethz.ch/projects and seminars/fall2023/do *_ 20 . @
ku.php?id=bioinformatics T -4 -

= Spring 2023 Edition: "‘,:?'

o https://safari.ethz.ch/projects and seminars/spring2023 :
/doku.php?id=bioinformatics

And, many, many other applications ...

= Youtube Livestream (Fall 2023):

o https://youtube.com/playlist?list=PL5Q2s0XY2Zi O0wyO
iiMShG4t20QPZoeE3

= Project course

/ / Watch on @ YouTub
o Taken by Bachelor's/Master’s students B O —
o Genomics lectures Fall 2023 Schedule
H n d _ n h I t- n Week Date Livestream Meeting
Q a s 0 resea rC eXp o ra Io Wo 05.10 LO: Project Introductions and Q&A
. Thu.
a Ma ny resea rCh read I ng S w1 11.10 Yo Live = L1: P&S Course Introduction & Scope
Wed. az (PDF) i (PPT)
w2 25.10 L2: Introduction to Genome Analysis
Wed. (PDF) | |(PPT)
w3 01.11 L3: From Molecules to Data: An Overview of DNA Sequencing
Wed. Technologies
(PDF) (PPT)
w4 08.11 L4a: Fundamentals of Sequence Alignment: Algorithms and Applications
Wed. (PDF) | |(PPT)

https://www.youtube.com/onurmutlulectures #fﬁ)"‘(;i“ S e
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https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://www.youtube.com/onurmutlulectures

Conclusion

= System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

= We covered various recent ideas to
o Accelerate genome analysis
o Analyze genomes in ways that were not possible before

= Many future opportunities exist
o Especially with new sequencing technologies
o Especially with new applications and use cases
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Enabling Fast, Accurate & Efficient
Real-Time Genome Analysis
via New Algorithms and Architectures

Can Firtina
canfirtina@gmail.com
https://cfirtina.com

16 January 2024
Technical University of Munich (TUM)

SAFARI ETH:irich


mailto:canfirtina@gmail.com
https://cfirtina.com/

Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

SAFAR' https://www.bioinformaticsalgoriths.org/bioinformatics-chapter-1 s 7 181



Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SA FARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM 182
bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

A Tsunami of Sequencing Data

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons 1990 Kilo = 1,000

Bacterial genomes 1995  Mega = 1,000,000

Human genome 2000 Giga = 1,000,000,000

Human microbiome 2005  Tera=1,000,000,000,000

50K Microbiomes 2015  Peta=1,000,000,000,000,000

200K Microbiomes 2020 Exa= 1,000,000,000,000,000,000

1M Microbiomes 2025  Zetta = 1,000,000,000,000,000,000,000 s°:r:ei‘des

Earth Microbiome 2030  Yotta = 1,000,000,000,000,000,000,000,000 ’
Efficient indexing of k-mer presence and abundance in sequencing datasets Rayan Chikhi, VanBUG seminar 2020
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Solving the Puzzle

.FASTA file .FASTQ file

w
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Obtaining .FASTQ Files

= https://www.ncbi.nim.nih.gov/sra/ERR240727

« NCBI Resources (¥ How To (¥

SAFA

SRA |SRA vl

Advanced

0 COVID-19 is an emerging, rapidly evolving situation.
Public health information (CDC) | Research information (NIH) | SARS-CoV-2 data (NCBI) | Prevention and treatment information (HH

Full + Send to: =

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (lllumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: lllumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an
lllumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
PRJNA33847 « SRP000540 * All experiments * All runs

Sample: Coriell GM20754
SAMNO00001273 » SRS001721 « All experiments « All runs
Organism: Homo sapiens

Library:
Name: 6511095
Instrument: lllumina HiSeq 2000
Strategy: WGS
Source: GENOMIC
Selection: RANDOM
Layout: PAIRED
Construction protocol: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

Run # of Spots # of Bases Size Published
ERR240727 4,093,747 818.7M 387.2Mb 2013-03-22
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Today’s Computing Systems

von Neumann model, 1945

where the CPU can access data stored in an off-chip
main memory only through power-hungry bus
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The Problem

Data analysis
IS performed
far away from the data
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Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Referntejganame
“chemical format” “text format” “text grgmat”
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

a More sensitive (can find all mapping locations), but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI



An Example of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = very sensitive
= + Can tolerate up to eerrors

nature .
genetICS https://github.com/BilkentCompGen/mrfast

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,

Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu®, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!2

Alkan+, "Personalized copy number and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.
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https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Performance of Read Mapping
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Alser+, "Technology dictates algorithms: Recent developments in read alignment",
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https://arxiv.org/abs/2003.00110

The Need for Speed

Moore's Law

D
8 8

National Human Genome
Research Institute

genome.gov/sequencingcosts

me (hours)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 jurwer

CPU

(-

Did we realize the need for
faster genome analysis?

Mapper

e RMAP

e DBowtie
BWA

e GSNAP
SMALT

e LAST
SNAP

o Bowtie2
Subread

o HISAT2

® mnimap2

Before 2013

2013 and later

Year of publication

Alser+, "Technology dictates algorithms: Recent developments in read alignment",

SAFARI Genome Biology, 2021
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Sequence Alignment in Unavoidable

» Quadratic-time dynamic-
programming algorithm WHY?! INIEITIHIEIRILIAINIDISI

Enumerating all possible prefixes

S

W
NETHERLANDS x SWITZERLAND I

¥ NETHERLANDS x S L 1

NETHERLANDS x SW 11T ete
NETHERLANDS x SWI E| o o}
NETHERLANDS x SWIT S 1 |
NETHERLANDS x SWITZ L o of
NETHERLANDS x SWITZE A l 1
NETHERLANDS x SWITZER N ¥
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN

NETHERLANDS x SWITZERLAND
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Sequence Alignment in Unavoidable

» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes Sl 1121312151678 9 1010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
195
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Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s <
directly from environmental
samples Reads Reference
“text format” Database

SAFARI N 19



Genomics vs. Metagenomics
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Practical Similarity Identifica

t101._— Seeds
- ———— >3 piion characters
[ 1 NG v
Reference TTGCCEATATGGTTAAGCTTICINIGG

............. v APMEGGGCTTTCGCTTTG
- /@W —
W

K-mers Locations

| 1
Read [GCCCAAATGGTT] GCTYA 7
c| s
By
K-mers

AAA | 31 101
CCA | 25 230 | 400

Index (Hash Table)

. Determine potential matching regions (seeds) in the reference

Seed Filtering :
. . Prune some seeds in the reference genome
(e.g., Chaining)

Determine the exact differences between the read and the
reference genome

SAFARI
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Existing Solutions — Real-time Basecalling

Deep neural networks (DNNSs) for translating signals to bases

Nanopore sequencing Raw Signal Real-time Analysis
S Basecalling Read mapping

DNNSs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
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The Problem

Real-time Analysis
Basecalling Read mapping

-

(Costly and energy-hungry\
computations to basecall
each read:
Portable sequencing becomes
challenging with

The existing solutions are ineffective for large genomes

Real-time Analysis
Signal mapping

kresource-constrained devices )

SAFARI

Larger number of reference
regions cannot be handled
accurately or quickly,
rendering existing solutions
ineffective for large
genomes
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Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected
« Removing contaminated reads from a sample

» Relative abundance estimation

 Controlling low/high-abundance genomes in a sample

 Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected
« Purifying the sample to ensure it contains only the selected genomes

* Removing the host genome (e.g., human) in contamination analysis
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Applications of Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

 Stopping when reads reach to a particular depth of coverage

 Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Stopping the sequencing based on information decision

« Stopping when relative abundance estimations do not change substantially
(for high-abundance genomes)

 Stopping when finding that the sample is contaminated with a particular set
of genomes
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Details: Quantizing the Event Values

« Observation: Identical k-mers generate similar raw signals
- Challenge: Their corresponding event values can be slightly different

« Key Idea: Quantize the event values
- To enable assigning the same quantized value to the similar event values

Slightly Different

(Normalized)
/ Event Values

-0.091 in binary: -0.084 in binary:
1joj1p1jrjrjojryrjojayjry .. 1joj1j1§j1j1jo0y1j1jo0j11}o0
\ J \ & J
4 4
Most significant Q = 9 bits: Most significant Q = 9 bits:
110 o111 110 o111
N——rt N——rt
Pruning p = 4 bits: Pruning p = 4 bits:
Matching

1100111 p——> Quantized — 110]10]1]1
Event Values
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Average Sequenced Bases and Chunks

Tool SARS-CoV-2 E. coli Yeast Green Algae  Human
Average sequenced base length per read
UNCALLED 184.51 580.52 1,233.20 5,300.15 6,060.23
RawHash 51395 1,376.14 2,565.09 4,760.59 4,773.58
Average sequenced number of chunks per read
Sigmap 1.01 2.11 4.14 5.76 10.40
RawHash 1.24 3.20 5.83 10.72 10.70

RawHash reduces sequencing time and cost for large genomes
up to 1.3x compared to UNCALLED

Although Sigmap processes less number of chunks than RawHash, it fails to

provide real-time analysis capabilities for large genomes
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Breakdown Analysis of the RawHash Steps

Fraction of entire runtime (%)

Tool SARS-CoV-2 E.coli Yeast Green Algae Human
File I/O 0.00 0.00  0.00 0.00 0.00
Signal-to-Event 21.75 1.86  1.01 0.53 0.02
Sketching 0.74 0.06 0.04 0.03 0.00
Seeding 3.86 4.14  3.52 6.70 5.39
Chaining 73.50 9392 9542 92.43 94.46
Seeding + Chaining 7736  98.06 98.94 99.14 99.86

The entire runtime is bottlenecked by the chaining step
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Required Computation Resources in Indexing

Tool Contamination SARS-CoV-2 E.coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 8.72 9.00 11.08 18.62 285.88  4,148.10 4,382.38

Sigmap 0.02 0.04 8.66 24.57 449.29 36,765.24 40,926.76

RawHash 0.18 0.13 2.62 448 34.18 1,184.42 788.88
Real time (sec)

UNCALLED 1.01 1.04 2.67 7179 280.27  4,190.00 4,471.82

Sigmap 0.13 0.25 9.31 25.86 458.46 37,136.61 41,340.16

RawHash 0.14 0.10 1.70  2.06 15.82 278.69 154.68

Peak memory (GB)

UNCALLED 0.07 0.07 0.13 0.31 11.96 48.44 47.81

Sigmap 0.01 0.01 040 1.04 8.63 227.77 238.32

RawHash 0.01 0.01 0.35 0.76 5.33 83.09 152.80

The indexing step of RawHash is orders of magnitude faster than

the indexing steps of UNCALLED and Sigmap, especially for large genomes

RawHash requires larger memory space than UNCALLED
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Required Computation Resources in Mapping

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 265,902.26 36,667.26 35,821.14  8,933.52 16,769.09 262,597.83 586,561.54

Sigmap 4,573.18 1,997.84 23,894.70 11,168.96 31,544.55 4,837,058.90 11,027,652.91

RawHash 3,721.62 1,832.56  8,212.17  4,906.70 25,215.23  2,022,521.48 4,738,961.77
Real time (sec)

UNCALLED 20,628.57 2,794.76  1,544.68 285.42 2,138.91 8,794.30 19,409.71

Sigmap 6,725.26 3,222.32  2,067.02  1,167.08 2,398.83 158,904.69 361,443.88

RawHash 3,917.49 1,949.53 957.13 215.68 1,804.96 65,411.43 152,280.26

Peak memory (GB)

UNCALLED 0.65 0.19 0.52 0.37 0.81 9.46 9.10

Sigmap 111.69 28.26 111.11 14.65 29.18 311.89 489.89

RawHash 4.13 4.20 4.16 4.37 11.75 52.21 55.31

The mapping step of RawHash is significantly faster than Sigmap

for all genomes, and faster than UNCALLED for small genomes

RawHash requires larger memory space than UNCALLED

SAFARI

207



Average Mapping Time per Read

[MRawHash [ UNCALLED [ Sigmap

o
S

| | | |
| | | |
| | | |
| | | |
| l | I
| | | I
| | | |
| | | |
| | | |
| | | |
| | | |
| l l I
| | | I
| | | |
| | | |
| | | |
| l | I
| l | I
| | | I

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

The mapping step of RawHash is significantly faster than Sigmap
for all genomes, and faster than UNCALLED for small genomes
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Parameter Configurations

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
RawHash -x viral -t 32 -x viral -t 32 -x sensitive -t 32 -x sensitive -t 32  -x fast-t32  -x fast -t 32 -x fast -t 32
UNCALLED map -t 32
Sigmap -m -t 32
Minimap2 -X map-ont -t 32

Preset (-x) Corresponding parameters Usage

viral -5-q9-13 Viral genomes

sensitive -6-q9-13 Small genomes (i.e., < S0M bases)

fast -7-q9-13 Large genomes (i.e., > SOM bases)
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Versions

Tool Version Link to the Source Code

RawHash 0.9 https://github.com/CMU-SAFARI/RawHash/tree/8042b1728e352a28fcc79c2efd80c8b631fe7bac
UNCALLED 2.2 https://github.com/skovaka/UNCALLED/tree/74a5d4e5b5d02fb31d6e88926e8a0896dc3475ch
Sigmap 0.1 https://github.com/haowenz/sigmap/tree/c9a40483264c9514587a36555b5af48d3f054f6f
Minimap2 2.24 https://github.com/1h3/minimap2/releases/tag/v2.24
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Why Graphs are Usetul

« Accurate comparison requires identifying changes (insertions,
deletions, substitutions) between sequences due to
- Variations between individuals and template sequences
- Errors in sequences

Variants?
Errors?

Erroneous
analysis?

f'vi\
‘.'\'\ =
« How to avoid unnecessary (and costly) comparisons?
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Filtering — Performance Benefits

* Filtering heuristics aim to reduce unnecessary computations

B ApHMM (w/o Filtering) [] ApHMM (with Filtering)
25

= NN

o U1 © U1 © Ul

10.9

6.5

2.4 1
| ; ;
150-base Reads 650-base Reads 1000-base Reads

Normalized Runtime
(Over 150-base Reads)

Motivational Study: ~2.5x performance improvements with filtering
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Filtering — Accurate but Costly Sorting

 Software-based filtering heuristics aim to reduce unnecessary

computations
- High-accuracy can be achieved with filtering with correct setting

——Normalized Runtime (Over Filter Size = 50) ——Accuracy
100%

98%
96%
/ 94%
_ 92%
_—

_— — 90%
— 88%
50 100 200 300 400 500 1000
Filter Size

N W s
o o o
Accuracy (%)

(U
o

Normalized Runtime of
the Baum-Welch Execution
()

Filtering takes up ~8.5% of the overall execution time
due to sorting
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Choosing the Right Amount of Cores

« We analyze maximum number of cores that ApHMM can utilize
- Before it is bottlenecked by memory bandwidth for genomics applications

GEJ 1 CPU [ ApHMM-accelerated Baum-Welch Execution ] Overhead
= o P e et
R T L e et et BTt L bttty 1.00 1.00 — —
5 ; (1)3 i ninimin + il 10.95 |— 0.99 ||| ﬂ |
PREEEE et atats bt et o bl ol st TV Y 0.98

B = 0.6 | | | | L || oss ] o7} || || |
N T 0.4 ! | | | | |
= B | ] | | || |00 096 1 |1 L] ||
50 ] L) o [ 00 S
= Al I R co Al I R co B I T I -~
S =222 =222 AR

= |22 = = | 2| 2| = = |22 =

TIE|IE|E T|IT|Z| = T|Z| ==

| S & & Ul & & =
<! <! <1 <t <|<|<| < <|<|<|<

Error Correction ;. Protein Family ' Multiple Sequence
Search Alignment (MSA)

ApHMM with 4 cores (ApHMM-4) provides the best overall speedup
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