Sequence analysis
Apollo: a sequencing-technology-independent, scalable

and accurate assembly polishing algorithm

Can Firtina ® !, Jeremie S. Kim"?, Mohammed Alser’, Damla Senol Cali?,
A. Ercument Cicek ® 3, Can Alkan®* and Onur Mutlu'?3*

'Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland, *Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Computer Engineering, Bilkent University, Ankara 06800,
Turkey

ExaBiome/PASSION/SAFARI Workshop on
Architectures and HPC for Genomics

Can Firtina
May 26, 2021

Executive Summary

Problem:
o Long read de-novo assembly is inherently erroneous

o Existing assembly polishing techniques cannot adapt to varying
sequencing technologies and do not scale well for large genomes

Goal: Propose a technolo?y-independent and scalable assembly
polishing algorithm -- Apollo

Key Ideas:

a Align reads to the erroneous contigs from the same sample

a Construct a profile hidden Markov model (pHMM) for each contig

a Use the read-to-contig alignments to update the parameters of pHMMs

o Decode the consensus string from the updated pHMM to generate the
corrected contig

Results/Observations

a Apollo is the onlx assembly polishing that is scalable to polish large
genomes given the limited memory constraints (e.g., 192GB)

o Apollo constructs the most reliable assemblies when hybrid set of
reads (e.qg., Illumina and PacBio) are used in a single run compared to
other polishing tools

o Apollo is ~25x slower on average (up to ~600x) than other polishers

Profile Hidden Markov Models (pHMMs)

Three components:

o States @ “M @
o Transitions (directed edges) ris s
o Emissions - oo

Modification roles and probabilities are assigned to states
o Substitution, insertion, deletion, or match (no modification)

A group of states to perform all probable modifications
on/after each character of a contig

ttttt

Original:

Apollo Worktlow

= Stepl: An assembler uses erroneous long reads to construct contigs
o Step2: We re-align the same reads (and additional reads) to contigs

= Steps 3-5: Apollo uses pHMMs to decode the consensus of alignments
for a contig, which potentially eliminates majority of errors

Input Preparation (External to Apollo) Assembly Polishing (Internal to Apollo)

Key Results

State-of-the-art polishing tools: Racon, Pilon, Quiver, Nanopolish

Scalability of polishing algorithms for a human genome
o PacBio (35x and 8.9x) and Illumina (22x)

o Racon, Pilon and Quiver exceeds memory requirements (192GB)
when using high/medium coverage PacBio/Illumina reads

a Apollo is the only algorithm that is scalable to polish large contigs
given the memory constraints
Pipeline to construct the most reliable contigs
o Canu assembler rather than Miniasm
o Polish using both long and Illumina reads (i.e., hybrid reads)
o Apollo to use hybrid reads
It can use multiple read sets in a single run

Apollo performs better than Nanopolish (~2-5x) but worse than
Racon, Pilon, and Quiver (up to 600x, on average ~20-25x)

Future Work

Apollo performs worse due to its computationally expensive
parameter update (training) and decoding (inference) steps

o Both training and inference steps are based on
embarrassingly parallel algorithms

o CPU cannot utilize all available parallelism

o We implemented the training step in GPU and observe that
we can achieve around 45x performance improvement
compared to the CPU

Can we do better? Hardware acceleration for training?

o Combining training and inference steps in an accelerator
would potentially provide even better performance
improvements

A generic pHMM accelerator rather than focusing only on Apollo

Parameter optimizations for different sequencing
technologies to improve sensitivity

Executive Summary

Problem:
o Long read de-novo assembly is inherently erroneous

o Existing assembly polishing techniques cannot adapt to varying
sequencing technologies and do not scale well for large genomes

Goal: Propose a technolo?y-independent and scalable assembly
polishing algorithm -- Apollo

Key Ideas:

a Align reads to the erroneous contigs from the same sample

a Construct a profile hidden Markov model (pHMM) for each contig

a Use the read-to-contig alignments to update the parameters of pHMMs

o Decode the consensus string from the updated pHMM to generate the
corrected contig

Results/Observations

a Apollo is the onlx assembly polishing that is scalable to polish large
genomes given the limited memory constraints (e.g., 192GB)

o Apollo constructs the most reliable assemblies when hybrid set of
reads (e.qg., Illumina and PacBio) are used in a single run compared to
other polishing tools

o Apollo is ~25x slower on average (up to ~600x) than other polishers

Backup Slides

Resolving deletion errors

Insertion states to insert at
most /many bases between
two bases in a contig

To insert “"GC"” between “CT”
o Visit match state at position t

I}

o033y
cooo
wWwwow
wwow

(09

and emit C

a Visit first /nsertion state after Coas
position t and emit G with 7:0.00 o
deletion error probability c10.33

o Visit second insertion state s
and emit C with deletion error
probability

o From second insertion state

visit match state at position
t+1and emit T @

o Resulting sequence “"CGCT”
Maximum number of

insertions is a parameter to
Apollo

W o w

O3y
oo oo
wwow

0O 03y
4 n O,

Resolving insertion errots

Deletion transitions to delete
one or many bases in a row

To delete the first A in "GAA”

o Visit match state at position t
and emit G

o Visit match state at position
t+2 and emit A with single
insertion error probability

o Resulting sequence: “"GA”

Having single or more deletions
in @ row may not be necessarily
equally likely

Maximum number of deletions
In @ row is a parameter to
Apollo

10

QQAap

QQAap

Training

Training data:
o Read aligned to the location t of a contig

Assume we have the read “"CGT" aligned to location t

After training the corresponding region of the graph we would expect change in the
probabilities so that it will be likely to emit "CGT” somehow

0,33 A:0.20
o o0 T:0.00
. . t,2
0.33 Lt G:g.gg
0.33 C:0.
o
o o
o o
N prg
0.33 A:0.005
0.00 T:0.00
0.33 Lea G:0.99 | Lt
0.33 C:0.005
o o
R 8
@ @
o s A:0.01 A:0.00
B e T:0.01 T:0.99
G:0.01 G:0.01 o o1 TR
€:0.97 €:0.01 0. :0.
C:0.97 C:0.01

11

The Forward-Backward algorithm

Calculating the likelihood of visiting a state to emit a certain
character of a given sequence (i.e., aligned read)

Forward calculation (F)
f“l(= ;€ , [l] 3%, / = ‘s L’()J' e Fy

= Y Fi1(i)aije;(r[t]) jeVi, 1<t<m

1€V
Backward calculation (B)
B'”‘(Ii) = ”""(,’“- 1) L = "\ Lj‘i(m 1) = L:.s-

Bi(i) =) aijej(rft+ 1)Bia(j) je Vi, 1<t <m

JE€EV,

Backward calculation needs a starting point

12

Training: The Baum-Welch algorithm

= Expectation maximization step using the Baum-Welch
algorithm

me

Y~ Fi(3) B (3) (r[t] ==
H(X) =&

VX € ¥,Vi € Vi

e

tZ::I Fi (1) By (1

m—1

Z X 5€4 [t 1] Ft Bt+l()
Q= VE; $HE FE,

] m—1

2. 2 Qigex(r[t +1])Fi(i) By ()

t=1 xz€V,

= If there are multiple reads aligning to same region, we have multiple F(i)
for a position t
o Take the average and use it as F(i) for position t

13

Inference: The Viterbi algorithm

= Our original contig before polishing was: “"AGCACC...GCCT”

= After updating the probabilities, the most likely path from start to end reveals the
corrected contig: "AGATCC...GTAC”

Original:

00 Q O GO Q O O @

Polished: A GA T C C N GTA C

14

Data Sets

Data Set

Accession Number

Details

E.coli K-12 - ONT
E.coli K-12 - Ground Truth

Loman Lab*
GenBank NC_000913

164,472 reads (avg. 9,010bps, 319X coverage) via Metrichor
Strain MG1655 (4,641Kbps)

E.coli O157 - PacBio SRA SRR5413248 177,458 reads (avg. 4,724bps, 151X coverage)

E.coli O157 - Illumina SRA SRR5413247 11,856,506 paired-end reads (150bps each, 643X coverage)
E.coli O157 - Ground Truth GenBank NJEX02000001 Strain FDAARGOS_292 (5,566Kbps)

E.coli O157:H7 - PacBio SRA SRR1509640 76,279 reads (avg. 8,270bps, 112X coverage)

E.coli O157:H7 - lllumina SRA SRR1509643 2,978,835 paired-end reads (250bps each, 265X coverage)

E.coli O157:H7 - Ground Truth

GCA_000732965

Strain EDL933 (5,639Kbps)

Yeast S288C - PacBio
Yeast S288C - Illumina
Yeast S288C - Ground Truth

SRA ERR165511(8-9), ERR1655125
SRA ERR1938683
GCA_000146055.2

296,485 reads (avg. 5,735bps, 140X coverage)
3,318,467 paired-end reads (150bps each, 82X coverage)
Strain S288C (12,157Kbps)

Human CHM1 - PacBio
Human CHM1 - Ground Truth

SRA SRR130433(1-5)
GCA_000306695.2

912,421 reads (avg. 8,646bps, 2.6X coverage)
3.04Gbps

Human HGO0O2 - PacBio
Human HGO0O2 - Illumina
Human HGO0O2 - Ground Truth

SRA SRR2036(394-471), SRR203665(4-9)
SRA SRR17664(42-59)
GCA_001542345.1

15,892,517 reads (avg. 6,550bps, 35X coverage)
222,925,733 paired-end reads (148bps each, 22X coverage)
Ashkenazim trio - Son (2.99Gbps)

15

Experimental Setup

CPU: Intel®Xeon®Gold 5118 CPU @ 2.30GHz

a 24 cores (2 threads per core)

Max memory: 192GB

Assigned 45 threads to all tools

Apollo was compared with the state-of-the-art polishing

tools
a Racon, Pilon, Quiver, Nanopolish

16

