
Can	Firtina
May	26th,	2021

ExaBiome/PASSION/SAFARI	Workshop	on	
Architectures	and	HPC	for	Genomics



Executive Summary
n Problem:

q Long read de-novo assembly is inherently erroneous
q Existing assembly polishing techniques cannot adapt to varying 

sequencing technologies and do not scale well for large genomes
n Goal: Propose a technology-independent and scalable assembly 

polishing algorithm -- Apollo
n Key Ideas:

q Align reads to the erroneous contigs from the same sample
q Construct a profile hidden Markov model (pHMM) for each contig
q Use the read-to-contig alignments to update the parameters of pHMMs
q Decode the consensus string from the updated pHMM to generate the 

corrected contig
n Results/Observations

q Apollo is the only assembly polishing that is scalable to polish large 
genomes given the limited memory constraints (e.g., 192GB)

q Apollo constructs the most reliable assemblies when hybrid set of 
reads (e.g., Illumina and PacBio) are used in a single run compared to 
other polishing tools

q Apollo is ~25x slower on average (up to ~600x) than other polishers

2



Profile Hidden Markov Models (pHMMs)
n Three components:

q States
q Transitions (directed edges)
q Emissions

n Modification roles and probabilities are assigned to states
q Substitution, insertion, deletion, or match (no modification)

n A group of states to perform all probable modifications 
on/after each character of a contig

3



Apollo Workflow
n Step1: An assembler uses erroneous long reads to construct contigs

q Step2: We re-align the same reads (and additional reads) to contigs
n Steps 3-5: Apollo uses pHMMs to decode the consensus of alignments 

for a contig, which potentially eliminates majority of errors

4



Key Results
n State-of-the-art polishing tools: Racon, Pilon, Quiver, Nanopolish
n Scalability of polishing algorithms for a human genome

q PacBio (35x and 8.9x) and Illumina (22x)
q Racon, Pilon and Quiver exceeds memory requirements (192GB) 

when using high/medium coverage PacBio/Illumina reads
q Apollo is the only algorithm that is scalable to polish large contigs 

given the memory constraints
n Pipeline to construct the most reliable contigs

q Canu assembler rather than Miniasm
q Polish using both long and Illumina reads (i.e., hybrid reads)
q Apollo to use hybrid reads

n It can use multiple read sets in a single run
n Apollo performs better than Nanopolish (~2-5x) but worse than 

Racon, Pilon, and Quiver (up to 600x, on average ~20-25x)

5



Future Work
n Apollo performs worse due to its computationally expensive

parameter update (training) and decoding (inference) steps
q Both training and inference steps are based on 

embarrassingly parallel algorithms
q CPU cannot utilize all available parallelism
q We implemented the training step in GPU and observe that 

we can achieve around 45x performance improvement
compared to the CPU
n Can we do better? Hardware acceleration for training?

q Combining training and inference steps in an accelerator 
would potentially provide even better performance 
improvements
n A generic pHMM accelerator rather than focusing only on Apollo

n Parameter optimizations for different sequencing 
technologies to improve sensitivity

6



Executive Summary
n Problem:

q Long read de-novo assembly is inherently erroneous
q Existing assembly polishing techniques cannot adapt to varying 

sequencing technologies and do not scale well for large genomes
n Goal: Propose a technology-independent and scalable assembly 

polishing algorithm -- Apollo
n Key Ideas:

q Align reads to the erroneous contigs from the same sample
q Construct a profile hidden Markov model (pHMM) for each contig
q Use the read-to-contig alignments to update the parameters of pHMMs
q Decode the consensus string from the updated pHMM to generate the 

corrected contig
n Results/Observations

q Apollo is the only assembly polishing that is scalable to polish large 
genomes given the limited memory constraints (e.g., 192GB)

q Apollo constructs the most reliable assemblies when hybrid set of 
reads (e.g., Illumina and PacBio) are used in a single run compared to 
other polishing tools

q Apollo is ~25x slower on average (up to ~600x) than other polishers

7



Backup Slides

8



Resolving deletion errors
n Insertion states to insert at 

most l many bases between 
two bases in a contig

n To insert “GC” between ”CT”
q Visit match state at position t 

and emit C
q Visit first insertion state after 

position t and emit G with 
deletion error probability

q Visit second insertion state 
and emit C with deletion error 
probability

q From second insertion state 
visit match state at position 
t+1 and emit T

q Resulting sequence “CGCT”
n Maximum number of 

insertions is a parameter to 
Apollo

9



Resolving insertion errors
n Deletion transitions to delete 

one or many bases in a row
n To delete the first A in “GAA”

q Visit match state at position t 
and emit G

q Visit match state at position 
t+2 and emit A with single
insertion error probability

q Resulting sequence: “GA”
n Having single or more deletions 

in a row may not be necessarily 
equally likely

n Maximum number of deletions 
in a row is a parameter to 
Apollo

10



Training
n Training data:

q Read aligned to the location t of a contig
n Assume we have the read “CGT” aligned to location t
n After training the corresponding region of the graph we would expect change in the 

probabilities so that it will be likely to emit “CGT” somehow

11

CGT



The Forward-Backward algorithm
n Calculating the likelihood of visiting a state to emit a certain 

character of a given sequence (i.e., aligned read)

12

n Forward calculation (F)

n Backward calculation (B)

n Backward calculation needs a starting point



Training: The Baum-Welch algorithm
n Expectation maximization step using the Baum-Welch 

algorithm

13

n If there are multiple reads aligning to same region, we have multiple F(i) 
for a position t
q Take the average and use it as F(i) for position t



Inference: The Viterbi algorithm
n Our original contig before polishing was: “AGCACC…GCCT”
n After updating the probabilities, the most likely path from start to end reveals the 

corrected contig: “AGATCC…GTAC”

14



Data Sets

15



Experimental Setup
n CPU: Intel®Xeon®Gold 5118 CPU @ 2.30GHz 

q 24 cores (2 threads per core)
n Max memory: 192GB
n Assigned 45 threads to all tools
n Apollo was compared with the state-of-the-art polishing 

tools
q Racon, Pilon, Quiver, Nanopolish

16


