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Executive Summary

Problem:
o Long read de-novo assembly is inherently erroneous

o Existing assembly polishing techniques cannot adapt to varying
sequencing technologies and do not scale well for large genomes

Goal: Propose a technolo?y-independent and scalable assembly
polishing algorithm -- Apollo

Key Ideas:

a Align reads to the erroneous contigs from the same sample

a Construct a profile hidden Markov model (pHMM) for each contig

a Use the read-to-contig alignments to update the parameters of pHMMs

o Decode the consensus string from the updated pHMM to generate the
corrected contig

Results/Observations

a Apollo is the onlx assembly polishing that is scalable to polish large
genomes given the limited memory constraints (e.g., 192GB)

o Apollo constructs the most reliable assemblies when hybrid set of
reads (e.qg., Illumina and PacBio) are used in a single run compared to
other polishing tools

o Apollo is ~25x slower on average (up to ~600x) than other polishers




Profile Hidden Markov Models (pHMMs)

Three components:

o States @ “M @
o Transitions (directed edges) ris s
o Emissions - oo

Modification roles and probabilities are assigned to states
o Substitution, insertion, deletion, or match (no modification)

A group of states to perform all probable modifications
on/after each character of a contig
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Apollo Worktlow

= Stepl: An assembler uses erroneous long reads to construct contigs
o Step2: We re-align the same reads (and additional reads) to contigs

= Steps 3-5: Apollo uses pHMMs to decode the consensus of alignments
for a contig, which potentially eliminates majority of errors

Input Preparation (External to Apollo) Assembly Polishing (Internal to Apollo)




Key Results

State-of-the-art polishing tools: Racon, Pilon, Quiver, Nanopolish

Scalability of polishing algorithms for a human genome
o PacBio (35x and 8.9x) and Illumina (22x)

o Racon, Pilon and Quiver exceeds memory requirements (192GB)
when using high/medium coverage PacBio/Illumina reads

a Apollo is the only algorithm that is scalable to polish large contigs
given the memory constraints
Pipeline to construct the most reliable contigs
o Canu assembler rather than Miniasm
o Polish using both long and Illumina reads (i.e., hybrid reads)
o Apollo to use hybrid reads
It can use multiple read sets in a single run

Apollo performs better than Nanopolish (~2-5x) but worse than
Racon, Pilon, and Quiver (up to 600x, on average ~20-25x)



Future Work

Apollo performs worse due to its computationally expensive
parameter update (training) and decoding (inference) steps

o Both training and inference steps are based on
embarrassingly parallel algorithms

o CPU cannot utilize all available parallelism

o We implemented the training step in GPU and observe that
we can achieve around 45x performance improvement
compared to the CPU

Can we do better? Hardware acceleration for training?

o Combining training and inference steps in an accelerator
would potentially provide even better performance
improvements

A generic pHMM accelerator rather than focusing only on Apollo

Parameter optimizations for different sequencing
technologies to improve sensitivity
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Resolving deletion errors

Insertion states to insert at
most /many bases between
two bases in a contig

To insert “"GC"” between “CT”
o Visit match state at position t
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and emit C

a Visit first /nsertion state after Coas
position t and emit G with 7:0.00 o
deletion error probability c10.33

o Visit second insertion state s
and emit C with deletion error
probability

o From second insertion state

visit match state at position
t+1and emit T @

o Resulting sequence “"CGCT”
Maximum number of

insertions is a parameter to
Apollo
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Resolving insertion errots

Deletion transitions to delete
one or many bases in a row

To delete the first A in "GAA”

o Visit match state at position t
and emit G

o Visit match state at position
t+2 and emit A with single
insertion error probability

o Resulting sequence: “"GA”

Having single or more deletions
in @ row may not be necessarily
equally likely

Maximum number of deletions
In @ row is a parameter to
Apollo
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Training

Training data:
o Read aligned to the location t of a contig

Assume we have the read “"CGT" aligned to location t

After training the corresponding region of the graph we would expect change in the
probabilities so that it will be likely to emit "CGT” somehow
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The Forward-Backward algorithm

Calculating the likelihood of visiting a state to emit a certain
character of a given sequence (i.e., aligned read)

Forward calculation (F)
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Backward calculation (B)
B'”‘(Ii) = ”""(,’“- 1) L = "\ Lj‘i(m 1) = L:.s-

Bi(i) = )  aijej(rft+ 1)Bia(j) je Vi, 1<t <m

JE€EV,

Backward calculation needs a starting point
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Training: The Baum-Welch algorithm

= Expectation maximization step using the Baum-Welch
algorithm
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= If there are multiple reads aligning to same region, we have multiple F(i)
for a position t
o Take the average and use it as F(i) for position t
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Inference: The Viterbi algorithm

= Our original contig before polishing was: “"AGCACC...GCCT”

= After updating the probabilities, the most likely path from start to end reveals the
corrected contig: "AGATCC...GTAC”

Original:

00 Q O GO Q O O @

Polished: A GA T C C N GTA C
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Data Sets

Data Set

Accession Number

Details

E.coli K-12 - ONT
E.coli K-12 - Ground Truth

Loman Lab*
GenBank NC_000913

164,472 reads (avg. 9,010bps, 319X coverage) via Metrichor
Strain MG1655 (4,641Kbps)

E.coli O157 - PacBio SRA SRR5413248 177,458 reads (avg. 4,724bps, 151X coverage)

E.coli O157 - Illumina SRA SRR5413247 11,856,506 paired-end reads (150bps each, 643X coverage)
E.coli O157 - Ground Truth GenBank NJEX02000001 Strain FDAARGOS_292 (5,566Kbps)

E.coli O157:H7 - PacBio SRA SRR1509640 76,279 reads (avg. 8,270bps, 112X coverage)

E.coli O157:H7 - lllumina SRA SRR1509643 2,978,835 paired-end reads (250bps each, 265X coverage)

E.coli O157:H7 - Ground Truth

GCA_000732965

Strain EDL933 (5,639Kbps)

Yeast S288C - PacBio
Yeast S288C - Illumina
Yeast S288C - Ground Truth

SRA ERR165511(8-9), ERR1655125
SRA ERR1938683
GCA_000146055.2

296,485 reads (avg. 5,735bps, 140X coverage)
3,318,467 paired-end reads (150bps each, 82X coverage)
Strain S288C (12,157Kbps)

Human CHM1 - PacBio
Human CHM1 - Ground Truth

SRA SRR130433(1-5)
GCA_000306695.2

912,421 reads (avg. 8,646bps, 2.6X coverage)
3.04Gbps

Human HGO0O2 - PacBio
Human HGO0O2 - Illumina
Human HGO0O2 - Ground Truth

SRA SRR2036(394-471), SRR203665(4-9)
SRA SRR17664(42-59)
GCA_001542345.1

15,892,517 reads (avg. 6,550bps, 35X coverage)
222,925,733 paired-end reads (148bps each, 22X coverage)
Ashkenazim trio - Son (2.99Gbps)
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Experimental Setup

CPU: Intel®Xeon®Gold 5118 CPU @ 2.30GHz

a 24 cores (2 threads per core)

Max memory: 192GB

Assigned 45 threads to all tools

Apollo was compared with the state-of-the-art polishing

tools
a Racon, Pilon, Quiver, Nanopolish
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