
HiPEAC 2024

Accelerating Profile Hidden Markov Models
for Fast and Energy-Efficient Genome Analysis

ApHMM Paper

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger,

Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu

Can Firtina
canfirtina@gmail.com
https://cfirtina.com

https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/

2

Executive Summary

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance
– Up to 2622.94× reduction in energy consumption

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

Problem: The parameters used in pHMMs are mainly trained and used with a
computationally intensive Baum-Welch algorithm, causing major performance and
energy overhead for many genomics workloads

Motivation: Graph structures such as profile Hidden Markov Models (pHMMs) are
commonly used to accurately analyze biological sequences

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU

3

Conclusion

Background & Problem

Evaluation

Outline

ApHMM

4

• Fast and accurate genome analysis is important for:

Genome Analysis – Why?

Understanding genetic variations,
species, and evolution

Surveillance of disease outbreaks

Predicting the presence of
pathogens in an environment

Personalized medicine

5

• Genome sequencing machines can quickly convert
biological molecules
- Into sequences of characters for analysis

Background: Genome Analysis – How?

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG Sequences

from DNABiological Molecule
(e.g., DNA)

6

• Analyze sequences by accurately and quickly comparing them
- To each other
- To a template sequence representative of a species, a certain group…

• Essential to understand functionality of a sequence, mutations,
diseases…

Sequence Comparison is Essential

Biological Sequences
(e.g., DNA, proteins)

7

• Graphs are commonly used in sequence comparisons
- Can avoid redundant comparisons and storage
- Provides rich information on expected variations between sequences

Graphs for Sequence Comparisons

Biological Sequences
(e.g., DNA, proteins)

8

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation

Profile Hidden Markov Models

A C T TObserved Sequence #1: ACTT
(No variation)

Expected sequence: ACTT

9

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions

Profile Hidden Markov Models

Observed Sequence #2: ACTG
(Substitutions)

A C T G

Expected sequence: ACTT

10

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions

Profile Hidden Markov Models

Observed Sequence #3: AGGGCTT
(I: Insertions)

A C T T

I

3×

Expected sequence: ACTT

11

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions, Deletions

Profile Hidden Markov Models

Observed Sequence #4: ATT
(D: Deletions)

A C T T

D

Expected sequence: ACTT

12

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically
- Each state outputs a biological character (emission) when visited
- States are visited via transitions (edges) based on observed variations
- Variations: No variation, Substitutions, Insertions, Deletions

Profile Hidden Markov Models

Observed Sequence #1: ACTT
Observed Sequence #2: ACTG
Observed Sequence #3: AGGGCTT
Observed Sequence #4: ATT
…

A C T T

D

I I I I

D D

13

• Profile Hidden Markov Models (pHMMs) are powerful and
common graph structures for sequence comparison
- Goal: Identify variations between sequences probabilistically

Probabilities in pHMMs

A C T T

D

I I I I

D D

A: 0.1
T: 0.2
G: 0.6
C: 0.1

A: 0.9
T: 0.1
G: 0.0
C: 0.0

A: 0.1
T: 0.1
G: 0.1
C: 0.7

A: 0.2
T: 0.2
G: 0.2
C: 0.4

0.2

0.4

0.7

0.6

0.3

0.1

14

• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
P

j2V Ft�1(j)↵jieS[t](vi)

Forward Calculations
Bt(i) =

P
j2V Bt+1(j)↵ijeS[t+1](vj)

Backward Calculations

↵⇤
ij =

nS�1P
t=1

↵ijeS[t+1](vj)Ft(i)Bt+1(j)

nS�1P
t=1

P
x2V

↵ixeS[t+1](vx)Ft(i)Bt+1(x)

Updating
Transition Probabilities

e⇤X(vi) =

nSP
t=1

Ft(i)Bt(i)[S[t] = X]

nSP
t=1

Ft(i)Bt(i)

Updating
Emission Probabilities

15

• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
P

j2V Ft�1(j)↵jieS[t](vi)

Forward Calculations
Bt(i) =

P
j2V Bt+1(j)↵ijeS[t+1](vj)

Backward Calculations

↵⇤
ij =

nS�1P
t=1

↵ijeS[t+1](vj)Ft(i)Bt+1(j)

nS�1P
t=1

P
x2V

↵ixeS[t+1](vx)Ft(i)Bt+1(x)

Updating
Transition Probabilities

e⇤X(vi) =

nSP
t=1

Ft(i)Bt(i)[S[t] = X]

nSP
t=1

Ft(i)Bt(i)

Updating
Emission Probabilities

16

• The Baum-Welch algorithm is commonly used with pHMMs
- For both inference and training by effectively utilizing the probabilities

• Inference: Identifying the variations between sequences

• Training: Maximizing parameters to observe certain variations

Utilizing Probabilities in pHMMs

Ft(i) =
P

j2V Ft�1(j)↵jieS[t](vi)

Forward Calculations
Bt(i) =

P
j2V Bt+1(j)↵ijeS[t+1](vj)

Backward Calculations

↵⇤
ij =

nS�1P
t=1

↵ijeS[t+1](vj)Ft(i)Bt+1(j)

nS�1P
t=1

P
x2V

↵ixeS[t+1](vx)Ft(i)Bt+1(x)

Updating
Transition Probabilities

e⇤X(vi) =

nSP
t=1

Ft(i)Bt(i)[S[t] = X]

nSP
t=1

Ft(i)Bt(i)

Updating
Emission Probabilities

Training Step

17

• A dynamic programming approach
- Calculate the ‘possibility’ of visiting each state in a pHMM
- Given an observed sequence (from both directions of the sequence)

Forward & Backward Calculations

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

18

• Goal: Identifying the variations between sequences
- Inference by using decoding algorithms (e.g., the Viterbi Algorithm)

Inference using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

A C T T

D

G
Inference:

19

• Goal: Maximizing parameters to observe certain variations
- Training using the parameter updating steps in the Baum-Welch algorithm

Training using pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

20

• pHMMs are commonly used in many genomics applications

pHMMs in Genomics Workloads

1. Error
Correction

GCCCATATGGTTAAGCTT

CCCT TGCT GCTA

CCTA GCTT

ATGC AAGC

CCCT GCTT

GCCCTTATGCTTAAGCTA

2. Protein Family
Search
Protein

Protein
Family #1

Protein
Family #2

3. Multiple Sequence
Alignment

GCCC-TATGGTTAAGCTT

GCCCATATGATTAAGCTT

GCCCATATGGTTAAGCTT

GCCCATATGGTTAAGCTT

GCCCGTATGGTT---GCTT

GCCCATATGCTTAAGCTT

GCCC---TGGTTAAGCT--T

GCCCATATCCTTAAGCTT

21

• The Baum-Welch algorithm causes a major
computational overhead in genomics workloads
- Taking up from 46% to 99% of the overall execution time
- Computationally complex dynamic programming calculations
- Compute intensive many floating-point operations

The Baum-Welch Algorithm is Costly

Error
Correction

80604020
Percentage	of	Total	Execution	Time	(%)

0

Forward	Calculation Backward	Calculation Parameter	Updates

100

Protein
Family	Search

Multiple
Sequence
Alignment

24.11% 21.65%

26.48% 24.96%

75.63%10.47%12.47%

21.65%24.11%

26.48% 24.96%

45.76%

51.44%

98.57%

22

• pHMMs are specialized version of Hidden Markov Models
(HMMs) with fixed patterns on states and transitions

Existing Solutions are Ineffective

Generic HMM accelerators cannot exploit
the fixed data dependency pattern of pHMMs

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations in pHMMs

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Forward Calculations in HMMs

A DI D C I D T I

A
T
G
T

23

• Design can change based on the application
- Different pHMM designs:

- Different alphabet sizes: DNA (4 letters), protein (20 letters)

Existing Solutions are Inflexible

A C T T

D

I I I I

D D

A C T T

I I I I

Lack of flexible mechanisms
to handle different design choices

24

• Suboptimal vectorization of SIMD-based solutions
on CPUs and GPUs
- High warp divergence, branching, low port utilization…

• A significant portion of the floating-point operations in dynamic
programming is redundant
- Same multiplications results can redundantly be computed during training
- Unnecessary data movements

Existing Solutions are Inefficient

Existing solutions provide suboptimal solutions due to
inefficient hardware of software design

25

• SIMD-based solutions on CPUs and GPUs provide suboptimal
vectorization
- High warp divergence, branching, low port utilization…

• A significant portion of the floating-point operations in DP is
redundant
- Same multiplications appear repeatedly due to constant values during

training
- Unnecessary data movements

The Problem

Hardware- or software-only solutions
are not sufficient

for effectively accelerating pHMMs

The Baum-Welch algorithm causes
major performance overhead in
important genomics applications

26

Conclusion

Background & Problem

Evaluation

Outline

ApHMM

27

Goal

Enable rapid, power-efficient, and flexible
use of pHMMs when using the Baum-Welch algorithm

28

ApHMM
The first flexible hardware-software co-designed

acceleration framework that can significantly reduce
the computational overhead of the Baum-Welch algorithm

for pHMMs

ApHMM-GPU: The first GPU implementation
of the Baum-Welch algorithm for pHMMs

29

SW

HW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

• Reduce data movement by exploiting fixed data pattern

• Flexible and efficient control logic and hardware design

Key Software & Hardware Optimizations

30

SW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

Key Software & Hardware Optimizations

31

• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

32

• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

✓ Needed No need

33

• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

34

• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

35

• Observation: Filling the entire Backward table is unnecessary
- Pipelining opportunities to directly consume a Backward value
- Partial compute approach: Only a single row should be fully stored
- Reduces the storage requirements during training

SW: Minimizing Redundant Storage

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

Observed Sequence: ATGT
𝑩𝒕 𝒊 𝒊

𝑡

Backward Calculations

A DI D C I D T I A DI D C I D T I

A
T
G
T

Training

36

• Observation: ‘Negligible’ cells can be ignored
without significantly reducing overall accuracy
- Filtering: Non-negligible states are identified by sorting
- Sorting to find exactly 𝑛 states with largest Forward or Backward values

• Sorting is complex to implement in hardware (and costly)
- Can we filter without sorting?

SW: Reducing Unnecessary Computations

𝑭𝒕 𝒊 𝒊
𝑡
A
T
G
T

Forward Calculations

A DI D C I D T I
𝑭𝒕 𝒊 𝒊

𝑡

Filtered Forward Calculations

A DI D C I D T I

A
T
G
T

Filter by
sorting

37

• Observation: ‘Negligible’ cells can be ignored
without significantly reducing overall accuracy
- Goal: Find at least 𝑛 states with largest Forward and Backward values
- Histogram-based filtering: Placing the states into buckets

corresponding to a range of values
- Filter is full as soon we find at least 𝒏 states (e.g., 𝒏 = 𝟏𝟎)

SW: Reducing Unnecessary Computations

Filter is full

Histogram Filter

.

.

.

8, 9
10, 14
15, 16, 18
11, 20, 21, …
13, 17, 19, …

States Range
1.00 – 0.94
0.94 – 0.88
0.88 – 0.82
0.82 – 0.76
0.76 – 0.70

0.06 – 0.00

.

.

.
The rest is ignored
from further calculation

Filter size = 2 < 10
Filter size = 4 < 10
Filter size = 7 < 10

Filter size = 13 > 10

38

• Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Costly FP
Operations

Same output

39

• Observation: Same multiplications are redundantly performed
- Same default values are used for each possible connection in pHMMs
- Fixed connection patterns generate a fixed set of multiplication results

• Goal: Avoid redundant computations
- By enabling efficient reuse of the common multiplications results
- Lookup tables (LUTs) to efficiently store and use these common results

SW: Avoiding Repeated Operations

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

A

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

A: 0.1
T: 0.2
G: 0.3
C: 0.4

0.6

T

…

𝟎. 𝟔	×	𝟎. 𝟐

… Cheap LUTs

Same output

40

SW

HW

• Minimize redundant data storage by efficient pipelining

• Reduce unnecessary computations with quick filtering

• Avoid repeated operations by utilizing lookup tables

• Reduce data movement by exploiting fixed data pattern

• Flexible and efficient control logic and hardware design

Key Software & Hardware Optimizations

41

Overview of ApHMM Design

ApHMM	Core

Compute	BlockControl	Block

LUT

Transition	
Scratchpad

Histogram
Filter

Data	Control

Parameters

Index	Control

Calculate	Backward	
(Step-by-Step)

Memory	(DRAM/L2/L1)CPU

Calculate	Forward	
(Full)

Flexible and efficient control logic and hardware design
enables opting out from heuristics and supporting different pHMM designs
✓

Update	Emission	
Probabilities
(Step-by-Step)

Update	Transition	
Probabilities
(Step-by-Step)

42

Computing the Baum-Welch in ApHMM

Compute	Block

Update	Emission	(UE)

Calculate	
Emission
Numerator

Calculate	
Emission

Denominator

Division	&	
Update	
Emission

Calculate	Forward/Backward	&	Update	Transition

Write	
Selector

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	
Group
#1

Register

PE	Group	#1

PE	Engine	#1PE	Engine	#1PE	Engine	#1PE	#1

PE	#1

Index	Control

Flexible and efficient control logic and hardware design to ..
ssss

✓

Forward/
Backward	(PE)

Previous	Step	Coefficients	(L1):
𝑭𝒕 𝒊 	or	𝑩𝒕"𝟏(𝒋)	(Broadcasting)

𝑭𝒕 𝒊 	or	𝑩𝒕"𝟏(𝒋)

LUT
𝛼$%×𝑒&"'(𝑗)

Update	Transition	(UT)

Previous	Transition	Numerator
8KB	Transition	
Scratchpad

MUL ADD FP	DIV

𝛼$%×𝑒&"'(𝑗)

Dot	Product	Tree Accumulator

Reduction	Tree

𝑭𝒕"𝟏 𝒋 	or	
𝑩𝒕(𝒊)

𝑭𝒕 𝒊 ,	𝑩𝒕"𝟏 𝒋

TE	MUL

43

Conclusion

Background & Problem

Evaluation

Outline

ApHMM

44

Evaluation Methodology
• Performance, Area, and Power Analysis:
- Synthesized SystemVerilog Model in a 28nm process @1GHz
- CPU baseline: AMD EPYC 7742 @2.26GHz (1, 12, 32 threads)
- GPU baselines: Titan V & A100
- FPGA baseline: FPGA D&C

• Use cases and their software baseline:
1. Error Correction – Apollo
2. Protein Family Search – HMMER
3. Multiple Sequence Alignment – HMMER

45

• Comparison Points
- CPU: Apollo, HMMER
- GPU: ApHMM-GPU, HMM_cuda
- FPGA: FPGA D&C

• Datasets
- Error correction: Real 10,000 DNA sequences from Escherichia coli

(E. coli) with average 5,128 read length
- Protein family search: Entire Pfam database (19,632 pHMMs) and

real 214,393 protein sequences from Mitochondrial carrier
- Multiple sequence alignment: Aligning over ~1 million

protein sequences from Pfam database

Evaluation Methodology

46

Performance: The Baum-Welch Algorithm
HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1

ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Forward	
Calculation

Backward	
Calculation

100
101
102
103

Parameter
Updates

Complete
Baum-Welch

(a
)S
pe
ed
up
	

O
ve
r	
CP
U
-1

CPU
FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU

Complete	Baum-Welch Error	Correction

10-4
10-3
10-2

100

Protein
Family
Search

Multiple
Sequence
Alignment

(b
)	E
ne
rg
y	
Re
du
ct
io
n

O
ve
r	
CP
U
-1

10-1

CPU

Ap
H
M
MGPU CPU

Ap
H
M
MGPU CPU CPU

Ap
H
M
M

Ap
H
M
M

15.55×–260.03×, 1.83×–5.34×, and 27.97× faster than
the CPU, GPU, and FPGA implementations of the Baum-Welch algorithm

GPUs provide better performance for Forward calculations
due to frequent off-chip memory accesses in ApHMM during Forward calculation

47

Performance: Workload Acceleration

Error	Correction Protein	Family	Search

100

101

102

1	Thread Multiple	
Sequence
Alignment

Sp
ee
du
p	
ov
er
	C
PU
-1

12	Threads 32	Threads

CPU

FP
GA

Ap
H
M
MGPU

CP
U
-1

FP
GA

Ap
H
M
M

CP
U-
12

Ap
H
M
M

CP
U-
32

Ap
H
M
M

CP
U
-1

FP
GA

Ap
H
M
M

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

1.29×–59.94×, 1.03×–1.75×, and 1.03×–1.95× better performance
in end-to-end workload acceleration compared to

the CPU, GPU, and FPGA baselines

Error correction benefits most from the acceleration
due to frequent and costly training

48

Energy: Overall Comparisons

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Forward	
Calculation

Backward	
Calculation

100
101
102
103

Parameter
Updates

Complete
Baum-Welch

(a
)S
pe
ed
up
	

O
ve
r	
CP
U
-1

CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU

Complete	Baum-Welch Error	Correction

10-4
10-3
10-2

100

Protein
Family
Search

Multiple
Sequence
Alignment

(b
)	E
ne
rg
y	
Re
du
ct
io
n

O
ve
r	
CP
U
-1

10-1

CPU

Ap
H
M
MGPU CPU

Ap
H
M
MGPU CPU CPU

Ap
H
M
M

Ap
H
M
M

HMM_cuda (Titan	V) HMM_cuda (A100)CPU-32CPU-12CPU-1
ApHMM-GPU	(Titan	V) ApHMM-GPU	(A100) FPGA	D&C ApHMM-4

Forward	
Calculation

Backward	
Calculation

100
101
102
103

Parameter
Updates

Complete
Baum-Welch

(a
)S
pe
ed
up
	

O
ve
r	
CP
U
-1

CPU
FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU CPU

FP
GA

Ap
H
M
MGPU

Complete	Baum-Welch Error	Correction

10-4
10-3
10-2

100

Protein
Family
Search

Multiple
Sequence
Alignment

(b
)	E
ne
rg
y	
Re
du
ct
io
n

O
ve
r	
CP
U
-1

10-1

CPU

Ap
H
M
MGPU CPU

Ap
H
M
MGPU CPU CPU

Ap
H
M
M

Ap
H
M
M

For the Baum-Welch algorithm: 2474.09× and 896.70×–2622.94×
reduction in energy consumption compared to CPU-1 and GPU implementations

For the workloads: 64.24×, 1.75×, and 1.96× reduction compared to CPU-1

49

•We analyze the speedup that each optimization provides over
the CPU baseline

Speedup of Each Optimization

Broadcasting and partial compute together is only possible
with an efficient HW-SW co-design

50

•We analyze the area and power for ApHMM-4 using the
Synopsys Design Compiler with a 28nm process @1GHz:

Area and Power

UTs require the largest area due to several complex units
such as multiplexer, division pipeline, and local memory

ApHMM can significantly accelerate pHMMs
with relatively small area and power requirements

51

More in the Paper
•More Results
- Detailed discussion on the results generated per use case
- Justification of the dataset and baseline choices

•Details of all mechanisms and configurations
- Details of our design space exploration
- Data distribution and memory layout
- Control and execution flow of ApHMM cores
- Related work discussion (e.g., Pair HMMs vs pHMMs)
- Detailed background on the equations and algorithms

52

ApHMM
• Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol

Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël
Lindegger, Mohammed Alser, Juan Gómez Luna, Sreenivas
Subramoney, and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and
Energy-Efficient Genome Analysis”
ACM TACO, Dec 2023.
[Online link at ACM TACO]
[arXiv preprint]
[ApHMM Source Code]

https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

53

ApHMM-GPU Source Code

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU

54

Conclusion

Background & Problem

Evaluation

Outline

ApHMM

55

Conclusion

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance
– Up to 2622.94× reduction in energy consumption

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU

HiPEAC 2024

Accelerating Profile Hidden Markov Models
for Fast and Energy-Efficient Genome Analysis

ApHMM Paper

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger,

Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu

Can Firtina
canfirtina@gmail.com
https://cfirtina.com

https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/

57

Backup Slides

58

• Accurate comparison requires identifying changes (insertions,
deletions, substitutions) between sequences due to
- Variations between individuals and template sequences
- Errors in sequences

• How to avoid unnecessary (and costly) comparisons?

Why Graphs are Useful

Variants?

Which
variant?

Erroneous
analysis?

Errors?

59

• Filtering heuristics aim to reduce unnecessary computations

Filtering – Performance Benefits

N
or
m
al
iz
ed
	R
un
ti
m
e

(O
ve
r	
15
0-
ba
se
	R
ea
ds
)

4

10.9

2.4 1

25

6.5

150-base	Reads 650-base	Reads 1000-base	Reads

ApHMM (w/o	Filtering) ApHMM (with	Filtering)

0
5
10
15
20
25

Histogram	Filter

.

.

.

!, #
$%, $&

$', $(, $!
$$,)%,)$,…
$+, $,, $#,…

State	IDs	(-) Max.	Value

$. %%
0. #&
0. !!
0. !)
0. ,(

0. %(

Same	Memory
Block

/! $' = %. !'

Ignore	rest	
when	the	
filter	is	full

Filter	is	full

.

.

.

(a) (b)

Motivational Study: ~2.5x performance improvements with filtering

60

• Software-based filtering heuristics aim to reduce unnecessary
computations
- High-accuracy can be achieved with filtering with correct setting

Filtering – Accurate but Costly Sorting

88%
90%
92%
94%
96%
98%
100%

0

10

20

30

40

50 100 200 300 400 500 1000

Ac
cu
ra
cy
	(%

)

N
or
m
al
iz
ed
	R
un
ti
m
e	
of
	

th
e	
Ba
um

-W
el
ch
	E
xe
cu
ti
on

Filter	Size

Normalized	Runtime	(Over	Filter	Size	=	50) Accuracy

Filtering takes up ~8.5% of the overall execution time
due to sorting

61

•We analyze maximum number of cores that ApHMM can utilize
- Before it is bottlenecked by memory bandwidth for genomics applications

Choosing the Right Amount of Cores

ApHMM with 4 cores (ApHMM-4) provides the best overall speedup

CPU ApHMM-accelerated	Baum-Welch	Execution Overhead

0.2
0.4
0.6
0.8
1.0

Error	Correction Protein	Family
Search

Multiple	Sequence
Alignment	(MSA)

N
or
m
al
iz
ed
	R
un
ti
m
e

(A
pH

M
M
-1
) 1.00

0.75

1.00

0.80
0.85
0.90
0.95

0.95
0.96
0.97
0.98
0.99

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

Ap
H
M
M
-1

Ap
H
M
M
-2

Ap
H
M
M
-4

Ap
H
M
M
-8

HiPEAC 2024

Accelerating Profile Hidden Markov Models
for Fast and Energy-Efficient Genome Analysis

ApHMM Paper

Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joël Lindegger,

Mohammed Alser, Juan Gómez Luna, Sreenivas Subramoney, Onur Mutlu

Can Firtina
canfirtina@gmail.com
https://cfirtina.com

https://dl.acm.org/doi/10.1145/3632950
mailto:canfirtina@gmail.com
https://cfirtina.com/

