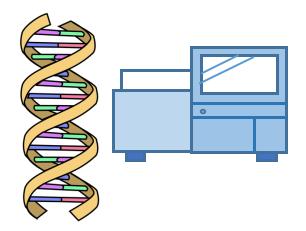


A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

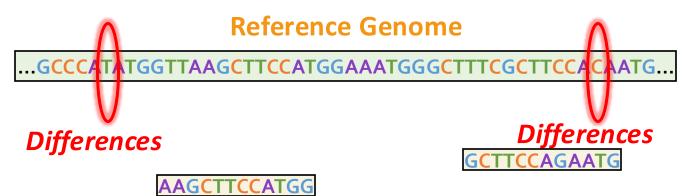
Jeremie S. Kim*, **Can Firtina***, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu

arXiv Preprint

Source Code

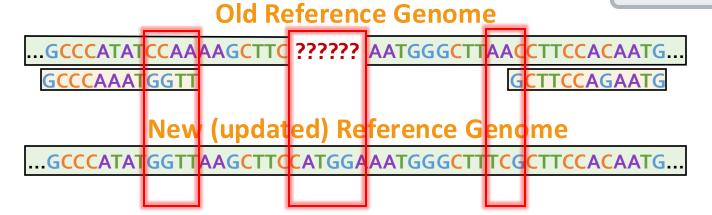

Carnegie Mellon

Genome Analysis

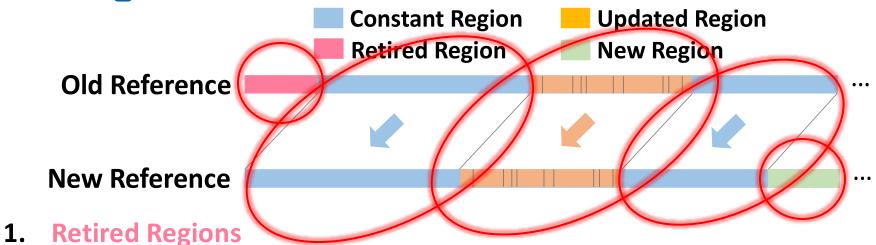

- Genome analysis is critical for many applications
 - Personalized medicine
 - Outbreak tracing
 - Evolutionary studies
- Genome sequencing machines extract smaller fragments of the original DNA sequence, known as reads

Reference Genomes

- Reference genomes play a crucial role in genome analysis for
 - Accurately mapping reads to potential matching locations in the genome
 - Identifying genomic differences in an individual's genome


- Reference genomes should provide an accurate and complete representation of a species to enable accurate analysis in the later steps of genome analysis:
 - Variant calling
 - Gene annotation and enrichment

Updating the Reference Genomes


- Reference genomes are updated regularly to
 - Correct the errors in the older versions
 - Fill in the missing genomic sequences

Unmapped Reads

- Remapping the reads to the updated reference genome can generate novel information due to
 - More accurately identified genomic differences
 - **New reads mapped** to updated or completed regions

Changes between Reference Genomes

- **Removed** from the new reference genome
- 2. New Regions
 - Added to the new reference genome
- 3. Constant Regions
 - Exactly the **same sequences**
 - Positions may change
- 4. Updated Regions
 - Mostly the same sequences with **small changes**

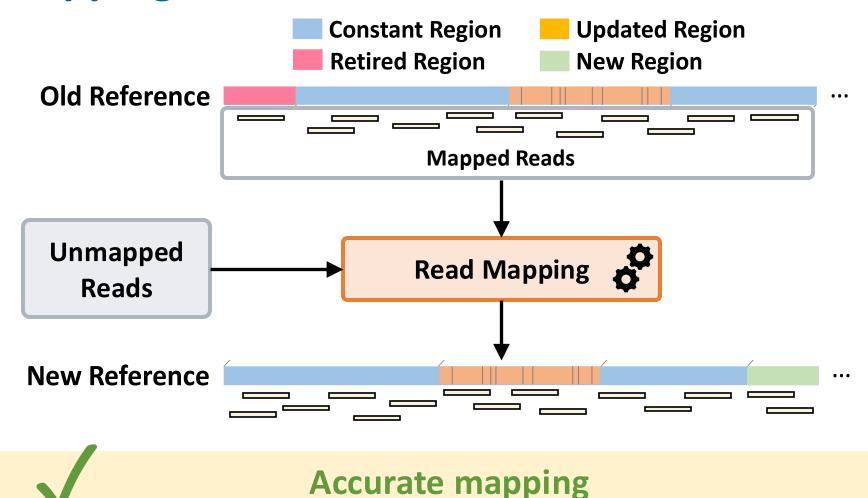
Existing Solutions for Remapping Reads

Map all the reads from scratch

2

Move the mapping locations

Existing Solutions for Remapping Reads


Map all the reads from scratch

Move the mapping locations

Mapping Reads from Scratch



Significant computation overhead

Mapping Reads from Scratch

A large portion of the reference genome remains unchanged (constant regions)

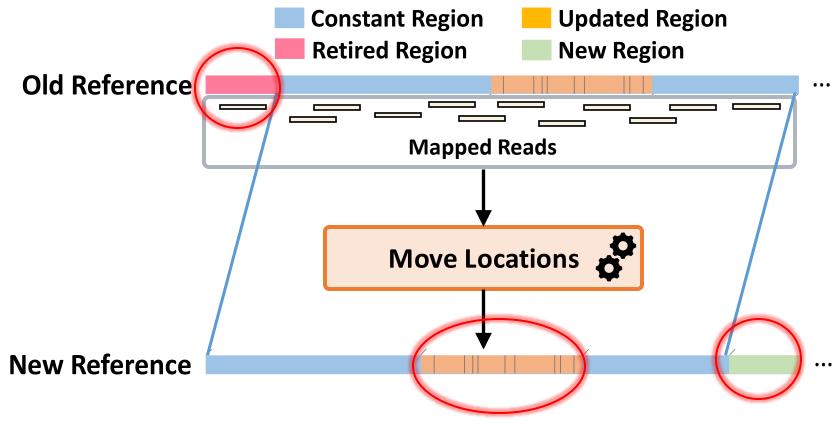
Identifying the differences for reads in the constant regions is **redundant**

Existing Solutions for Remapping Reads

Map all the reads from scratch

Move the mapping locations

Existing Solutions for Remapping Reads



Map all the reads from scratch

2

Move the mapping locations

Moving the Mapping Locations



Minimal computation overhead

Inaccurate Mapping

Moving the Mapping Locations

- Cannot Remap: Reads in the deleted regions are not remapped
- Bad Remap: Reads in the updated regions may map other regions better

A large portion of the mapping information is lost or inaccurate

Outline

Background

Goal and Key Idea

AirLift

Evaluation

Conclusions

Our Goal

Accurately and quickly remap all reads by either mapping or moving them from the old reference genome to the new reference genome

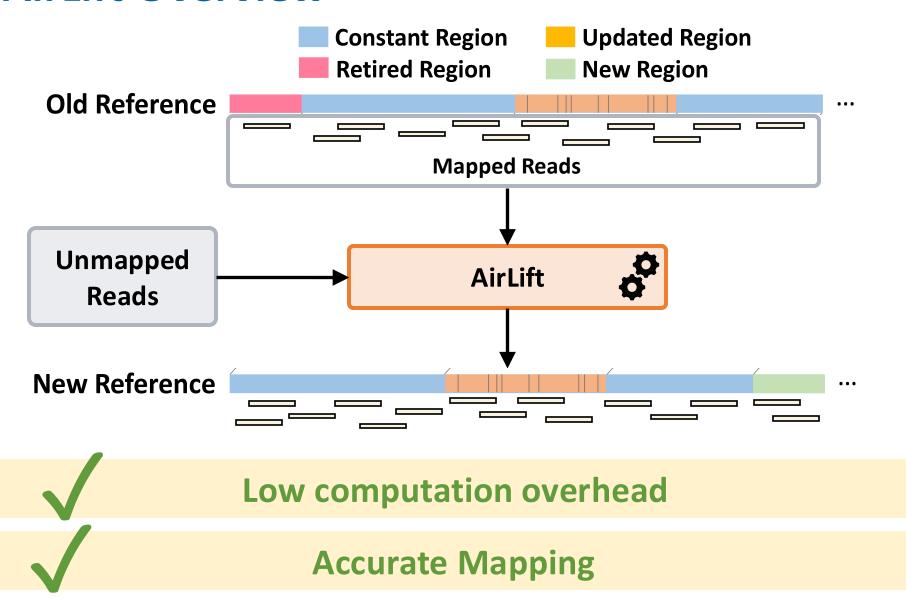
Avoids redundant read mapping for the constant regions

for the constant regions

Quickly identifies and maps the reads that cannot be accurately moved

Outline

Background


Goal and Key Idea

AirLift

Evaluation

Conclusions

AirLift Overview

AirLift

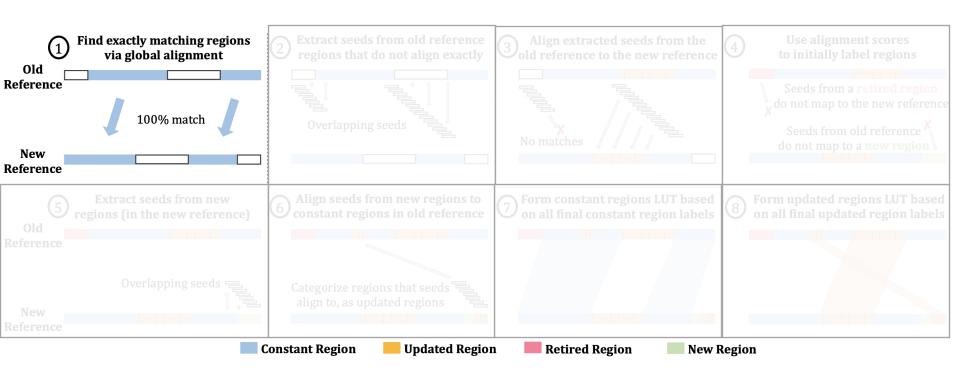
AirLift Indexing (Offline)

AirLift Mapping

AirLift

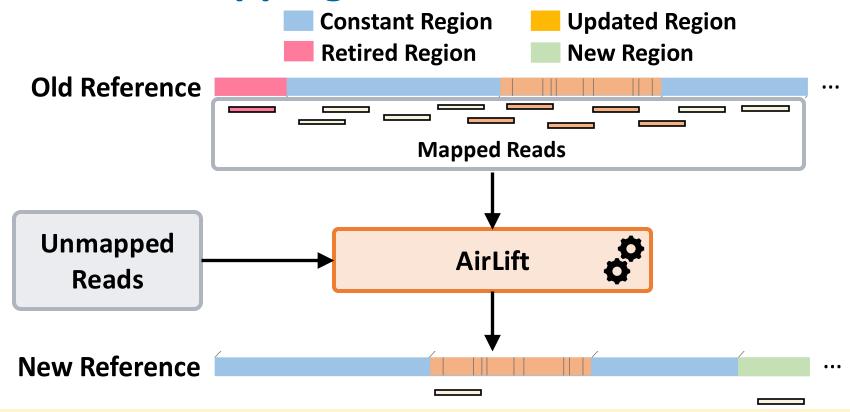
AirLift Indexing (Offline)

AirLift Mapping



AirLift Indexing (Offline)

AirLift Indexing (Offline)


AirLift

AirLift Indexing (Offline)

AirLift Remapping

AirLift Remapping

Quickly move reads in the constant regions

Remap reads in the updated regions

Remap retired and unmapped reads

AirLift Remapping

AirLift fully utilizes all reads by either moving or remapping them

AirLift generates an accurate alignment file (BAM) that can easily be used in downstream analysis

Outline

Background

Goal and Key Idea

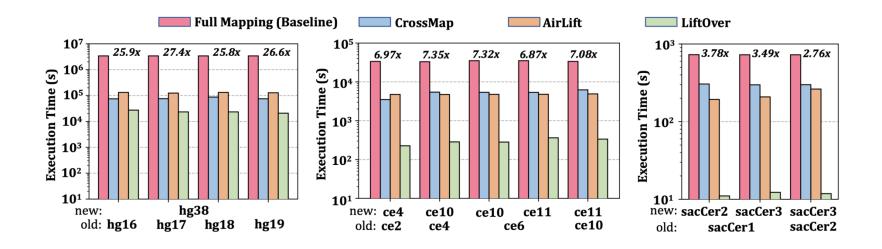
AirLift

Evaluation

Conclusions

Evaluation Methodology

Remapping

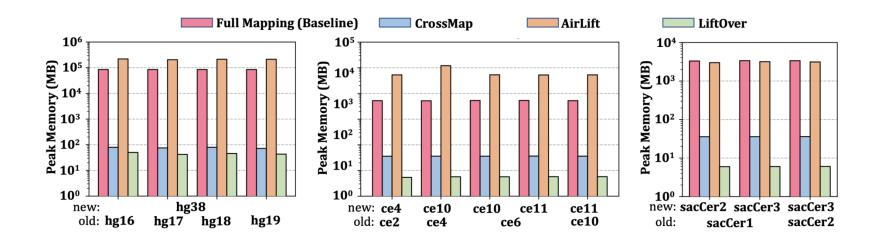

- Baseline: Fully mapping all reads
 - CrossMap remapper that can generate alignment files (BAM)
 - LiftOver remapper that generates only the updated positions

Accuracy: Variant calling using AirLift and full mapping

Datasets

- Human (hg): Oldest: HG16 Newest: HG38 (5 versions)
- Worm (ce): Oldest: ce2 Newest: ce11 (5 versions)
- Yeast (sacCer): Oldest: sacCer1 Newest: sacCer3 (3 versions)

Performance



2.8× - 27.4× speedup compared to the full mapping

More comprehensive mapping:

Longer execution times than CrossMap and LiftOver

Peak Memory Usage

Peak memory usage similar to full mapping

Accuracy – Variant Calling

Precision/Recall values compard to

- Ground truth
- Full mapping

	Remap	Read Sets		vs. Full Mapping		vs. Ground Truth	
	Technique	from	to	SNP (%)	Indel (%)	SNP (%)	Indel (%)
Baseline:	Full Mapping	-	hg38	-	-	99.54/88.00	81.31/92.38

Comparable accuracy to full mapping without the significant performance cost

Outline

Background

Goal and Key Idea

AirLift

Evaluation

Conclusions

AirLift Summary

Problem

Remapping to a new reference genome is either **costly (full mapping)** or **inaccurate** (moving mapping positions)

Goal

Accurately and quickly remap all reads by either mapping or moving them from the old reference genome to the new reference genome

AirLift

• AirLift Indexing: Accurately categorize and label each region in the old reference genome compared to the new reference genome

- AirLift Remapping:
- 1. Remap a read to a new reference genome or
- 2. Quickly move its position based on AirLift index

• 2

AirLift consistently outperforms full mapping

2.8x – 27.4x speedup over full mapping

Key Results

AirLift identifies SNPs and INDELs with precision and recall similar to full mapping

AirLift

 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,

"AirLift: A Fast and Comprehensive Technique for Remapping Alignments between

Reference Genomes"

IEEE/ACM TCBB, August 2024.

[arXiv preprint]

[bioRxiv preprint]

[IEEE version]

Presented at the 21st APBC, Changsha, China, April 2023.

[Slides (pptx) (pdf)]

[Talk Video at BIO-Arch 2023 Workshop]

[BIO-Arch 2023 Workshop Slides (pptx) (pdf)]

[AirLift Source Code and Data]

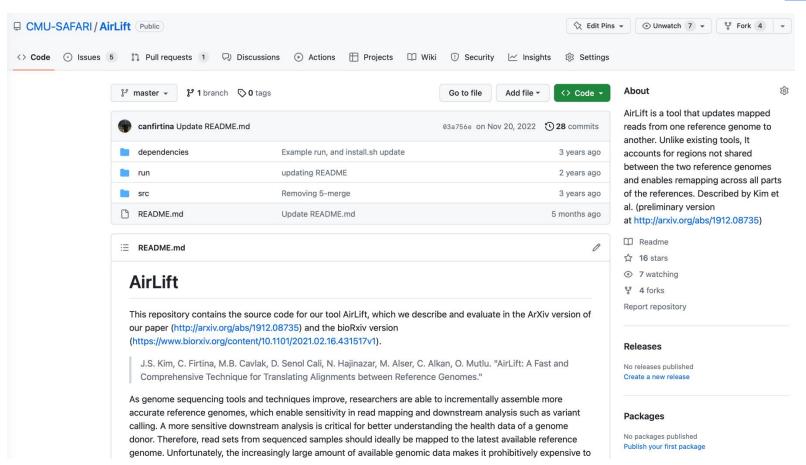
arXiv Preprint

AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

Jeremie S. Kim^{1,†} Can Firtina^{1,†} Meryem Banu Cavlak¹ Damla Senol Cali² Nastaran Hajinazar^{1,3} Mohammed Alser¹ Can Alkan⁴ Onur Mutlu^{1,2,4}

¹ETH Zurich

²Carnegie Mellon University ³Simon Fraser University


⁴Bilkent University

AirLift Source Code

Source Code

https://github.com/CMU-SAFARI/AirLift

A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

Jeremie S. Kim*, **Can Firtina***, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu

arXiv Preprint

Source Code

Carnegie Mellon

Backup Slides

AirLift Remapping

Read data set & mapping information to old reference (BAM file) For each read that mapped to old reference If read mapped to a Check mapping location to old Remap the read using any 1 constant region reference in constant regions LUT not map to old reference remapping tool (e.g., CrossMap) For each read that did If read did not map to any constant region If read mapped to an Check mapping location to old Remap the read to the new reference updated region reference in updated regions LUT using a full mapper (e.g., BWA-MEM) If read did not map to any updated region Mark read as unmapped 3 The read mapped to a 3 retired region in the old reference in the new reference

Remap the read to new and updated regions in the new reference using a full mapper (e.g., BWA-MEM)