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Abstract

Image segmentation is a key component in many com-
puter vision systems, and it is recovering a prominent spot
in the literature as methods improve and overcome their
limitations. The outputs of most recent algorithms are in the
form of a hierarchical segmentation, which provides seg-
mentation at different scales in a single tree-like structure.
Commonly, these hierarchical methods start from some low-
level features, and are not aware of the scale information of
the different regions in them. As such, one might need to
work on many different levels of the hierarchy to �nd the
objects in the scene. This work tries to modify the existing
hierarchical algorithm by improving their alignment, that
is, by trying to modify the depth of the regions in the tree
to better couple depth and scale. To do so, we �rst train a
regressor to predict the scale of regions using mid-level fea-
tures. We then de�ne the anchor slice as the set of regions
that better balance between over-segmentation and under-
segmentation. The output of our method is an improved hi-
erarchy, re-aligned by the anchor slice. To demonstrate the
power of our method, we perform comprehensive experi-
ments, which show that our method, as a post-processing
step, can signi�cantly improve the quality of the hierar-
chical segmentation representations, and ease the usage of
hierarchical image segmentation to high-level vision tasks
such as object segmentation. We also prove that the im-
provement generalizes well across different algorithms and
datasets, with a low computational cost.1

1. Introduction

Generic image segmentation has been part of computer
vision and image processing communities since the advent
of these �elds many decades ago. The de�nition of the
problem, although vague, is easy to give and understand:
“to divide the pixels of an image into different pieces, where
each piece represents a distinguishedthing in the image.”

1Codes are publicly available at: https://github.com/
yuhuayc/alignhier

Figure 1.Example of improved hierarchy alignment: The orig-
inal hierarchy (top row) needs three different �at partitions to rep-
resent the four objects (highlighted in red). Our aligned hierarchy
(bottom row) correctly puts all objects in the same level.

Martin et al. [19] provided these instructions to annota-
tors to create the Berkeley Segmentation Database (BSDS),
which proved that the problem of image segmentation was,
indeed, well de�ned, as humans provided consistent parti-
tions of the imagesup to re�nement. In other words, image
segmentation is inherently a multi-scale problem.

We refer to�at image segmentation techniques as those
whose output is a single partition of the image pixels into
sets [29, 4, 10]. In these cases, in order to capture the afore-
mentioned multi-scale nature of objects, one needs to sweep
different parameterizations to obtain multiple partitions that
contain the different scales when working with �at segmen-
tation techniques.

On the other hand, hierarchical segmentation produces
a single multi-scale structure that aims at capturing the
objects at all scales [1, 14, 28, 26, 22]. These types
of structures have been successfully used in image �lter-
ing [28], semantic segmentation [16, 9], salient object de-
tection [34], object proposals generation [22], or video seg-
mentation [32, 31].

The representation power of these hierarchies comes at a
cost, however, which is the dif�culty to handle them from a
practical (coding) point of view. While a �at partition can
be represented by a matrix of labels of each pixel, hierarchi-
cal structures need a much more complex representation. In
this context, the Ultrametric Contour Map (UCM) [1] repre-
sentation is the one that gained more traction and it is widely
used in the literature. In it,�attening the hierarchy can be
achieved simply bythresholdingthe UCM.
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Figure 2.Our proposed hierarchy realignment: Given a hierarchy (a) in which the objects at the same scale are not well aligned
(represented in the same scale level), we produce a realigned hierarchy (b) that has the similar-scale regions in the same level.

The process of�attening or pruninga hierarchy is there-
fore of paramount importance for segmentation, because it
is the main proxy used towards the �nal application. This
work presents a novel technique to improve the �attening of
any given hierarchy, that is, to get better �at partitions from
the same hierarchical segmentation.

Figure 1 motivates this work. In the �rst row we can
see different �at partitions extracted from the same hierar-
chy. To get the regions representing the four lions we need
to search in three different �at partitions, extracted at three
different levels of the hierarchy. The second row shows our
results, where the same hierarchy isalignedto have all ob-
jects represented in the same �at partition.

In other words, the threshold level of the hierarchy better
relates with the scale of the objects, not only in the same
image, but also across images. To further grasp the intuition
of our work, Figure2 shows a UCM and its interpretation
as a region tree (a). In it, the needed regions to form the
car are spread into different scale levels (thresholds of the
UCM), as marked by the red band. Our proposed realigned
hierarchy (b) aims at containing them all in the same scale.

Since the hierarchies are constructed based on low-level
features (edges, color, etc.), the scale of the objects is not
imposed to be coherent. We propose to learn the concept
of object scale from mid-level features within the hierarchy.
Our objective is to take advantage of these mid-level fea-
tures as much as possible without getting to high-level fea-
tures that would allow us to go beyond scale. This way, the
global approach would be to construct the hierarchies using
low-level features, and then exploit mid-level features to re-
align them, thus taking the maximum advantage of the most
simple features possible.

Our alignment also aims at providing a global alignment
among different images, that is, providing levels of scale
that keep meaning even when changing images, allowing
higher-level methods to generalize in a more straightfor-
ward manner. Speci�cally, we train a regressor to predict
whether each region of the hierarchy is oversegmented, un-

dersegmented, or correctly segmented; and we rescale the
hierarchy according to the prediction of this classi�er. Back
to the example in Figure1, the majority of regions in the
�rst column (bottom) are undersegmented, in the middle
column they are correctly segmented, and oversegmented
in the last column.

We perform comprehensive experiments using four dif-
ferent hierarchical segmenters, and we obtain consistent im-
provements on all hierarchies which proves the usefulness
of our approach and its generalization power. The remain-
der of the paper is organized as follows. First, Section2
gives a brief overview of the related work. Then Section3
presents our algorithm for re-scaling and aligning hierar-
chies. We demonstrate the effectiveness of our method in
the experiments in Section4 and draw the conclusions in
Section5.

2. Related Work

Hierarchical Segmentation: There is a rich literature of
hierarchical segmentation. As stated in the introduction,
our focus in this paper is not to develop a better hierarchi-
cal segmentation algorithm, but to provide a better align-
ment of a given hierarchy. Hierarchical segmentation typi-
cally starts from various local information embedded in an
af�nity matrix, such as Pointwise Mutual Information [13],
or multiscale local brightness, color, and texture cues [1].
It then greedily constructs a hierarchy of regions by itera-
tively merging the most similar sets of regions according
to a certain metric. The result of hierarchical segmentation
is commonly represented as an Ultrametric Contour Map
(UCM), where different levels of segmentation can be pro-
duced by applying different thresholds to the UCM. This
work proposes to realign the hierarchies in order to make
the thresholds of the UCM more closely related to the scale
of objects. Hierarchical segmentation has become the major
trend in image segmentation and most of top-performance
segmenters [1, 22, 26, 14] fall into this category.



Multiple Segmentations: Working with multiple seg-
mentations at the same time has been used in the computer
vision community for a long time, with the idea that, while
none of the segmentations is likely to partition the image
perfectly, some parts in some segmentations might be use-
ful. Hoiem et al. [11] use this idea to estimate the scene
structure. A similar idea was exploited by Russellet al. [27]
to discover objects, and by Malisiewiczet al. [18] to im-
prove the spatial support of regions for recognition. By re-
aligning the hierarchies we aim to minimize the number of
partitions from a hierarchy needed to obtain reasonable re-
sults, since we concentrate same-scale regions in the same
partition. Our work also shares some similarities with [32],
where they �atten supervoxel hierarchies in videos by �nd-
ing a slice with uniform entropy.

Predicting Segmentation Quality by Classi�cation:
Classi�cation has been exploited to predict segmentation
quality in many works. Renet al. [25] use a linear clas-
si�er base on Gestalt features [20] to distinguish good and
bad segmentations. Their negative training data are gener-
ated by randomly placing a ground-truth mask over an im-
age. A similar idea is used to select parameters by Penget
al. [21] to select� in graph-cut based interactive segmen-
tation. They compute the segmentation with different� ,
then select the one with highest predicted quality. More re-
cently, Carreiraet al. [2], Pont-Tusetet al. [22], and Endres
et al. [7] use a regression forest to predict the good over-
lap between segments (object proposals) and ground truth
objects. We use similar features to [2], which are based on
graph partition, region, and Gestalt properties.

Scale-aware Vision Algorithms: Our work also bear a
resemblance to the scale-aware algorithms for other vision
tasks. For instance, exploiting the scale information has
proven helpful for semantic image segmentation [3] and
pedestrain detection [17]. [6] show that vision algorithms
employing super-resolved images (higher-resolution) per-
form better than using low-resolution images directly. Other
scale-aware applications include object tracking [15] and
image thumbnailing [30].

3. Flattening and Re-scaling Hierarchies

As discussed in the introduction, while segmentation hi-
erarchies contain a rich multiscale decomposition of the
image, it is not trivial to distill such knowledge because
the hierarchies generated by current methods are not fully
scale-aware. Simply taking a layer yields a segmentation
of which some parts are under-segmented while others are
over-segmented. In this section, we present our method
which aligns the scales of segmentation hierarchies, mak-
ing image hierarchies easier to use in practice. We start

(a) (b) (c)

Figure 3.Examples of the slices and pathsof the segmentation
tree, where one path of the tree is shown in green (a) and one slice
is shown in grey (b). In (b), all nodes in blue are inL � , and all
nodes in red are inL + . Our approach re-aligns the hierarchy using
the anchor slice. The aligned tree is shown in (c).

with scale labeling, and then present the alignment strategy.

3.1. Flattening Hierarchies via Scale Labeling

Let's denote the segmentation tree of imageI by T , with
nodevi indicating itsi -th node. The nodes correspond to
regions (segments) ofI . Given T , our task is to �nd a
tree sliceL to divide all nodesvi 's (segments) into three
groups: L � , L , andL + indicating under-, properly- and
over-segmented, respectively. See Figure3(b) for an exam-
ple of nodes in the three groups.

The visual representation of a slice can be seen in Fig-
ure2 as red bands covering different regions and in Figure3
as gray bands. An example of the �at partitions resulting
from the three types of slices can be found in Figure1 (bot-
tom row), where the left partition is mainly oversegmented
(L � ), the middle one correctly segmented (L ), and the right
one undersegmented (L + ).

The problem is formulated as a three-class labeling prob-
lem. For each nodevi , we usex(vi ) 2 f� 1; 0; 1g as its
class label, with� 1, 0, and1 indicating the membership of
vi to L � , L , andL + respectively. Assume now that a func-
tion f (vi ) : vi ! [� 1; 1] is provided to measure the granu-
larity of image segments, where negative values stand for
under-segmented,0 for properly-segmented, and positive
for over-segmented regions. The magnitude off (vi ) signals
the deviation from being properly-segmented. Section3.1.2
presents the proposed learning algorithm forf (vi ).

The labeling of allvi 's could be done by greedily tak-
ing the best-scoring class for each node. However, not any
labeling represents a valid slice of the tree. Following the
de�nition in [23, 32], a tree slice is a set of nodes such that
every pathPn ; n 2 f 1; 2; :::; N g from the leaf node�vn to
the root nodev0 contains one and only one nodev in the
slice. Figure3(a) shows one of these paths in green.

From the nature of segmentation hierarchies, the labels
of parent nodesvp

i should be equal or smaller than their
child nodesvi . Intuitively, if a region is correctly seg-
mented, the parent cannot be oversegmented. On the other
hand, the parent of an undersegmented region will also be
undersegmented. Putting the two constraints together, the



labeling problem can be formulated as:

X̂ = arg min
X

E(X )

E(X ) =
X

v i 2L

#( vi ) � kf (vi )k2 + �
X

v i =2L

#( vi ) � l (vi )

s.t 8n :
X

v2P n

1L (v) = 1

8v : x(v) > = x(vp)

(1)

where#( v) is the size (number of pixels) of segment (node)
v, � is a weighting value for the two energy terms, andl(vi )
is the loss function de�ned forvi 2 fL � ; L + g, it encour-
ages the sign ofx(vi ) to be consistent withf (vi ).

l (vi ) = max(0 ; � f (vi ) � x(vi )) : (2)

The loss function penalizes two contradictory cases: (i) seg-
ments in the group of under-segmented with positive scores;
and (ii) segments in the group of over-segmented with neg-
ative scores. The problem will be solved via dynamic pro-
gramming, as explained in the following section.

3.1.1 Inference by Dynamic Programming

The optimization problem in Equation1 is highly structured
and can be solved recursively by Dynamic Programming.
For the subtree rooted at nodev, its optimal sliceL (v) is
either the nodev itself or the union of the optimal slices of
all its child nodesvc 's, depending on whose energy is lower.
Thus, the problem has optimal substructure [5] and so it
naturally �ts to the framework of dynamic programming to
�nd the global optimal solution.

The problem proceeds from bottom to the top of the tree.
For each subtree rooted at the current nodev, the energy of
v 2 L (v) is computed and the energy of the optimal slices
of all its child nodes is requested for comparison. The algo-
rithm traverses back, and all comparison will be completed
when the algorithm reaches the root node, and the global
optimal of Equation1 is obtained. The method is highly ef-
�cient with complexity O(N ), whereN is the total number
of nodes. The global optimal of the energy can be found by
applying Algorithm1 to the root node, and the optimal slice
is the corresponding set of nodes labeled to0.

3.1.2 Predicting the Scales of Segments

In order to predict the scales (under-, properly-, or over-
segmented) of the segments, we follow the route of modern
computer vision systems to learn a predictor from human-
annotated training data. To this end, we de�ne a mea-
sure to compare the scale of an image segmentr to that
of the corresponding human-annotated segmentg. The cor-
respondence is built up by computing the overlap between

Algorithm 1 Dynamic Programming in a Tree
Input: tree nodevi

if vi is a leaf nodethen
Cv i  #( vi ) � max(0; � f (vi ))

E �
v i

 #( vi ) � kf (vi )k2

else
Cv i  

P
v j 2f v c g Cv j + #( vi ) � max(0; � f (vi ))

E �
v i

 min (
P

v j 2f v c g E �
v j

+ � �#( vi ) �max(0; f (vi )) ;

#( vi ) � kf (vi )k2 + � �
P

v j 2f v c g Cv j )
end if
return Cv i ; E �

v i

computer-generated segments and human-annotated ones –
the most-overlapping human-annotated segment is taken as
the ground-truth of the computer-generated ones. The over-
lap is computed with the Intersection over Union (IoU).

After having the ground-truth segmentg, the scale of the
segmentr is then de�ned as:

S(r ) =
#( g) � #( r )

max(#( r ); #( g)))
: (3)

The value of S(r ) is in [� 1; 1], with negative values
for under-, 0 for properly- and positive values forover-
segmentedregions, the magnitude of the values representing
the extent of being under- or over-segmented, which casts to
what we expected fromf (v) (see Section3.1).

With Equation3, thescalesof the segments by segmen-
tation methods can be computed and used as the training
data to train our scale predictor.

As to the learning method, we employ a regression forest
as the predictorf (v). As to the features, we use a set of
low-, and middle-level features, mainly following the work
done for object proposals [2, 22]. The features are designed
to capture a variety of region properties, and the detailed list
of the features is provided in Section4.1.

The main difference between our prediction and the pre-
vious work [2, 25, 22] is that they predict the quality of
segments, while we predict the scale of the segments. We
argue that its is easier to quantify the granularity of the seg-
ments than its quality, apart from providing more speci�c
information such as under-segmented or over-segmented.

3.2. Hierarchy Rescaling with Labeled Scales

After setting the optimal slice, we use it as an anchor
to stretch the segmentation tree accordingly. In our experi-
ments, we use the threshold value of each optimal node as a
control point, and linearly interpolate the original hierarchy.

We represent the segmentation trees as UCMs [1], which
are a matrix with size(2h+1) � (2w+1) , whereh is the height
of the original image, andw is its width. For each pair of



Algorithm 2 Rescaling Hierarchy
Input: Optimal SliceS, UCM mapM ucm

for r 2 S do
b  Boundary(r )
a  InnerArea(r )
m  min (M ucm (b))

M ucm (a)  M ucm (a)
2m

end for

ball  Boundary(S)
mmin  min (M ucm (ball))

M ucm (ball)  1+ M ucm (ball ) � 2m min

2(1 � m min )

neighboring pixels in the image, the value in the UCM ma-
trix represents their boundary strength (between 0 and 1).
A partition at a certain scale can be extracted by threshold-
ing the UCM at a certain strength value. Our algorithm is
summarized in Algorithm2, where the functionBoundary
�nds the corresponding elements of boundary of a regionr
in the UCM, andInnerArea its inner area. We perform a
local linear transform on the UCM map, and align the opti-
mal slice to threshold0:5, for the convenience of later use.

4. Experiments

We evaluate our approach on the segmentation hierar-
chies generated by multiple segmentation methods, and fur-
ther examine its usefulness on the task of object segmenta-
tion. The goal is to demonstrate that the proposed method
is able to improve general segmentation hierarchies and the
improvement is re�ected to high-level vision tasks as well.

4.1. Experiment Settings

Dataset: We benchmark the performance of our approach
on the BSDS500 dataset [1], which includes 500 images
(200 for training, 100 for validation, and 200 for testing).
Each image is annotated by 5 different people on average.
As segmentation evaluation measures, we use Segmentation
Covering (SC), Probabilistic Rand Index (PRI), and Varia-
tion of Information (VI); all at Optimal Dataset Scale (ODS)
and Optimal Image Scale (OIS) – see [24] for a review of
these measures and scales. We select these three particular
measures given their wide acceptance in previous work [1].

Segmentation Techniques: As to the hierarchical seg-
mentation techniques, we chose the following due to pop-
ularity, good performance, and the availability of public
code:

� UCM [1]: A widely-used hierarchical segmentation
method. Discriminative features are learned for local
boundary detection and spectral clustering is applied
on top of it for boundary globalization.

� MCG [22]: A uni�ed framework for segmentation and
object proposals. It combines information from multi-
ple resolutions of the image to produce image segmen-
tations and object proposals.

� SCG [22]: The single-resolution version of MCG. It
gets competitive results and is faster than MCG.

� PMI [13]: A recent work for unsupervised boundary
detection. It can be applied for image segmentation as
well in order to generate a hierarchical segmentation.

Training: The training set and the validation set of
BSDS500 are pooled together as the training set for our re-
gression forest. The four segmentation methods are used to
generate hierarchies, over which the training samples (seg-
ments) are extracted. We train method-speci�c regression
forests as the scale predictor. Since a large portion of re-
gions in the hierarchies are very small and features extracted
from them are not reliable, we exclude regions smaller than
50 pixels for the training of the predictor.

Speci�cally, for each regionr , we �nd its corresponding
ground-truth regiong by taking the human-annotated one
with the highest IoU score. The relative scale ofr is then
computed with Equation3 for the regression target ofr . As
to the features forr , we draw on the success of object pro-
posals [2, 22]. There, a large pool of middle-level features
have been de�ned for segment description. The features
used are summarized as follows:

� Graph partition properties: cut, ratio cut, normalized
cut, unbalanced normalized cut.

� Region properties: area, perimeter, bounding box size,
major and minor axis lengths of the equivalent ellipse,
eccentricity, orientation, convex area, Euler number.

� Gestalt properties: inter- and intra-region texton sim-
ilarity, inter- and intra-region brightness similarity,
inter- and intra-region contour energy, curvilinear con-
tinuity, convexity.

Readers are referred to [2] for the details of these features.
We extract the features from a subset of layers uniformly
sampled from the hierarchies, over the range of UCM val-
ues. As to the parameters of our method, we set100 trees
for the random forest; and� in Equation1 is set to0:1 to
balance information from the three groups, because there
are more segments over and under the optimal sliceL .

4.2. Results

Table 1 shows the results of our method evaluated on
top of the four segmentation techniques. The improvements
achieved by our alignment are considerable and, more im-
portantly, they are consistent across different methods. The



SC (" ) PRI (" ) VI (#)

ODS OIS ODS OIS ODS OIS

MCG 0.61 0.67 0.83 0.86 1.57 1.39
MCG-Aligned 0.63 0.68 0.83 0.86 1.53 1.38

SCG 0.60 0.66 0.83 0.86 1.63 1.42
SCG-Aligned 0.61 0.67 0.83 0.86 1.61 1.41

UCM 0.59 0.65 0.83 0.86 1.69 1.48
UCM-Aligned 0.60 0.66 0.83 0.86 1.66 1.46

PMI 0.53 0.59 0.76 0.81 2.03 1.80
PMI-Aligned 0.54 0.59 0.76 0.81 2.01 1.80

Table 1. The results of our aligned hierarchies with a comparison
to the original hierarchies.

method improves more on ODS than OIS, because OIS ac-
cesses the ground-truth segmentations to search for the best-
performing threshold, which somehow diminish the in�u-
ence of the learned knowledge. We argue that ODS is more
practical than OIS in a real vision systems, because for real
applications there is no human-annotated segmentations.

Figure 4 shows segmentation examples of MCG and
aligned MCG by our method. As the �gure shows, the
aligned hierarchies generate characteristics closer to what
human expect when �at segmentations are sampled out of
the hierarchies. More particularly, after alignment, sam-
pled segmentations of the hierarchies generate consistent
responses across all parts of the image: all parts under-
segmented, to all parts properly-segmented, and �nally to
all over-segmented while sampling from the top to the bot-
tom of the hierarchies. This alignment greatly simpli�es the
use of hierarchical image segmentation for other high-level
vision tasks.

Figure5 shows qualitative results with different hierar-
chies. Our approach shows a consistent improvement over
the original results. Again, since our approach is scale-
aware, regions at the same level of the hierarchy are of sim-
ilar scales across all areas of the images after the alignment.
Also, our method demonstrates better ability of preserving
region scale across images.

We also tested the method in the scenario where the ran-
dom forests are trained with segments from all of the four
methods, and applied to all of them at test time. This gives
slightly poorer results but in turn shows that our method can
be applied in a method-agnostic approach.

4.3. Comparison to Other Methods

As the previous section shows, the MCG aligned by our
method generally performs the best. Here, we compare
MCG-aligned to other competing methods. The results are
summarized in Table2 and demonstrate that segmentation
quality can be improved by our alignment. In particular, the
aligned MCG achieves the best result in SC and VI. After
alignment, the results are on par with the newest method

SC (" ) PRI (" ) VI (#)

ODS OIS ODS OIS ODS OIS

Ncut [29] 0.45 0.53 0.78 0.80 2.23 1.89
Felz-Hutt [10] 0.52 0.57 0.80 0.82 2.21 1.87
Mean Shift [4] 0.54 0.58 0.79 0.81 1.85 1.64

Hoiem [12] 0.56 0.60 0.80 0.77 1.78 1.66
UCM [1] 0.59 0.65 0.83 0.86 1.69 1.48

ISCRA [26] 0.59 0.66 0.82 0.85 1.60 1.42
PFE+mPb [33] 0.62 0.67 0.84 0.86 1.61 1.43
PFE+MCG [33] 0.62 0.68 0.84 0.87 1.56 1.36

MCG [22] 0.61 0.67 0.83 0.86 1.57 1.39
MCG+Ours 0.63 0.68 0.83 0.86 1.53 1.38

Table 2. Segmentation results on BSDS500 test set, with a com-
parison to the state-of-the-art competitors.

of PFE+MCG [33]. It is noteworthy that our method and
theirs are complementary, and the combination of the two
may yield even better results. Their method is to improve
feature embedding for a better local distance measure, while
we aim to improve the hierarchy of existing segmentation
methods.

4.4. Evaluation towards Object Segmentation

Segmentationper seis rarely the �nal objective of real
applications, it is rather a middle tool towards, for instance,
object segmentation [22] or semantic segmentation [16].
This section is devoted to show that better aligned hierar-
chies also help in this scenario.

We �rst perform the evaluation using the object annota-
tions provided on the BSDS300 set by [7] (we retrain on
only BSDS300 train instead of BSDS500). The intuitive
idea is to measure how well we can segment these objects
by selectingregions from the different �attened hierarchies.

Figure6 (left) shows the achievable quality that an or-
acle could reach if selecting the regions from the original
hierarchies or the ones with our newly-proposed alignment.
The X axis corresponds to the number of needed regions,
i.e., the lower the better.

We can observe that the aligned hierarchies consistently
need less regions to get the same quality in all the tested hi-
erarchies. In PMI, for instance, we need to select 5 regions
to achieve the same quality that we can get with 4 on the
aligned hierarchy. The combinatorial space of all possible
4-region combinations is signi�cantly smaller and thus the
search is more probable to succeed. On the other direction,
if we limit the number of regions we get improvements up
to 3 points (9%) in the achievable quality.

To further illustrate the scalability of the hierarchy align-
ment on a larger dataset, we evaluated our alignment algo-
rithm on the Pascal VOC 2012 Segmentation set [8]. We
retrain our scale predictor using the training set of Pascal
2012. In it, only the segmentation of foreground objects are
given, in contrast to BSDS which is fully annotated. Thus



Figure 4.Qualitative results of MCG (�rst row) and MCG improved by our approach (second row). Original images are shown in the left
most. Segmentations of Optimal Dataset Scale (ODS) are given in the middle. From left to right we �nd different scales, �ne to coarse.
The red bounding box indicates the scale with best results achieved by MCG, and the blue box for ours. It can be seen that our approach
provides better alignment, both across images and within one image.

during training we only consider all the segments that have
overlap with foreground object annotations. The scale pre-
dictor is trained as described in Sec3.1.2, the only differ-
ence is thatg can only be foreground object. This strategy
introduces extra bias towards foreground objects, because
no information about the scale of background is given in

the training phase. However, we are still able to improve
alignment of segmentation hierarchies. As shown in Fig-
ure 6 (right), we see that for the range of 2-3 regions (the
one in which the MCG object proposal work), the aligned
hierarchy provides a 2.5-point improvement (� 6%), which
shows that our method generalizes to larger datasets.



Image UCM UCM + ours SCG SCG + ours MCG MCG + ours

Figure 5.Qualitative comparisonof segmentation results, hierarchies are �attened by Optimal Dataset Scale (ODS)
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Figure 6.Flattened hierarchies for object detection: Achievable object quality by an oracle selecting regions from the �attened partitions,
with respect to the number of regions needed

4.5. Running Time

Our approach takes approximately 3 seconds in total for
each image, of which2:39 seconds are spent on feature ex-
traction from the segments. The prediction of regression
forest takes about0:45 seconds, and the dynamic program-
ming takes0:05seconds for the inference. Finally,0:11sec-
onds are spent for re-scaling the UCM. All times are mea-
sured on a standard desktop machine.

5. Conclusions

In this work, we presented a novel technique to align seg-
mentation hierarchies, which learns and predicts the scale
of their segments. We formulated the scale prediction for

the segments in a hierarchy as a graph label problem, which
is solved by dynamic programming. With the labeled scales
as constraints, we then re-align the segmentation hierarchies
by stretching the UCM maps.

The method is evaluated on four different segmentation
hierarchies on BSDS500, and it consistently improves their
quality. We also showed that the improvement of seg-
mentation hierarchies by our alignment is re�ected well to
a higher-level task of getting object segmentations on the
BSDS300 as well as the larger, more challenging PASCAL
Segmentation dataset.
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